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ABSTRACT

Silica scaling limits the flow rate of the geothermal fluid
passing through a powerplant and hence heat and the power
that can be extracted from it. The chemical kinetics of silica
colloid nucleation and growth are reasonably well
understood, but the hydrodynamic transport and the process
of binding to solid surfaces are not. A key question is
whether the rate at which particles accumulate on the
surface is limited by the rate of transport of particles
through the fluid near the wall, or by the fraction of
particles which form permanent bonds at the surface.

Previous work by Dunstall, Zipfel and Brown showed the
scale deposited on a cylindrical object placed in flowing
geothermal brine varied in thickness from place to place,
with thicker deposits forming in the locations where the
shear stress is high. This suggests a transport-limited
process.

This paper reports new computational fluid dynamics
(CFD) study which suggests that if electrostatic interactions
are ignored, the rate of arrival of silica particles at the
surface is several orders of magnitude higher than the
observed scaling rate. This suggests only a small fraction
(~1 in 10°) of the particles arriving at the wall in that
experiment actually attach to it, and that the scaling process
is limited by the process of bonding with the surface.

In an attempt to resolve this contradiction, the theory or
particle transport and interaction has been explored. When
the wall is coated with silica, colloids in motion near the
wall experience electrostatic repulsion. The resultant energy
barrier can be calculated from the Derjaguin, Landau,
Verwey and Overbeek (DLVO) theory. It is used here to
find the stability of a colloidal system under various
hydrodynamic conditions: pure Brownian motion (stagnant
fluid), laminar and turbulent shear flows. For the conditions
of the experiments, the theory predicted that 1 in 10* to 1 in
10° of the particles arriving at the wall would bind
permanently to the surface. When multiplied by the
transport rate determined from CFD results, the
experimentally observed rate of scaling is predicted
correctly.

The results give a starting point to build a theory of silica
colloid transport and deposition.

Wall roughness, which is enhanced as ridges of silica scale
grow, is shown to enhance the scaling rate significantly.
Further calculations and more experimental data are
required to integrate roughness into the theory.

1. INTRODUCTION

Silica scaling, the deposition of colloidal silica in
geothermal plant and wells, depends on both hydrodynamic
and chemical conditions.

Experimental studies of colloidal silica transport in pipes
suggest inertial effects dominate over diffusion in colloidal
silica deposition [1, 2]. On the other hand, the theory of
particle transport and deposition suggests that diffusion
transport should dominate for these experimental conditions

2.

In this paper an attempt is made to resolve this
contradiction by comparing previous experimental and new
analytical and computational fluid dynamics (CFD) results
and by analyzing the discrepancies.

1.1 Silica deposition on steel cylinders in crossflow

Silica deposition from natural geothermal brine onto
cylinders in cross-flow was studied by Dunstall et al. [1].
The height of the silica ridges was found to vary
significantly around the cylinder circumference. The
maximum height of ~0.25 mm was reached at
approximately 21° from the upstream stagnation point (Fig.
1). There was little to no deposition formed at the
stagnation point, or on the downstream (wake) side of the
cylinder. The height of the ridges is plotted in Fig. 2.
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Figure 1: Flow around a circular cylinder [3] and
conditions of the experiment [1]
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Figure 2: Experimental silica scale height over the
circumference of a 25 mm diameter test cylinder;
particle size 125nm; Re=1.07*10°[1]
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The overall deposition rate increased as the average size of
silica particles increased. This finding agrees with other
experimental data on silica scaling [2].

The average scaling rate is calculated as a function of
location on the cylinder circumference (Fig. 3) by dividing
the total deposited mass by the experiment duration. The
total deposition rate was calculated to be 2.2*10° kg/s per
1m of cylinder length from the curve in Fig. 3. In this
calculation it is assumed that this curve describes the height
of a continuous film of silica. In reality, though the curve
follows the edges of the highest silica ridges, there are voids
and pores between these ridges. Thus to find the real
deposition rate the void fraction of the silica deposit is
required. This is unknown but from inspection of the
photographs in [1] it is estimated to be 0.25 with an
uncertainty of +50%. Taking this into account the total
deposition rate averaged over the circumference of the
cylinder is (1.6+0.6)*10° kg/s per 1 m length, of the 25mm
cylinder or (4.2+1.6)*10°® kg/s/m?.
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Figure 3: Silica scaling rate calculated from [1]

This experimental data is compared with theoretical
speculations below.

1.2 General theory of particle transport

Uncharged particles suspended in a turbulent flow are
transported to a stationary wall by two main mechanisms:
diffusion and convection (the latter is sometimes called
inertial transport). The flux of particles in the direction y
normal to the wall for fully developed flow can be
expressed as [4]:

H aép ~\/C
j=—(Dg + DT)EJGCVW (1)

The first term on the right-hand side of Eq. 1 is the
diffusion due to a gradient in the particle concentration and
the second term represents convective transport emerging
from particle inertia. The particle convective velocity in the

y direction \7;y is determined from the particle momentum

equation which accounts for the gradients in turbulent
intensity, shear induced lift and other external forces. In all
calculations in this section, the particles are assumed not to
interact with each other, or with the wall.

Numerical solutions of Eq. 1 and the corresponding particle
momentum equation performed for the deposition on a
smooth parallel surface allowed Guha [4] to find a
relationship between non-dimensional deposition velocity
V&, and particle relaxation time 7, (Fig. 4). The non-

+

dimensional deposition velocity V., is the wall particle

flux normalized by bulk concentration of particles C(; and
fluid friction velocity vy:

s ]

Vdep - /C,f 0y, 2
with v, =47/ p, determined from flow conditions (here ¢
denotes wall shear stress).

The dimensionless particle relaxation time is a measure of
the particle’s ability to deviate from fluid motion:

rt =7ppd§ (‘LO)Z

P18p, v ),
where p, and p, are particle and fluid densities
correspondingly and V' the fluid viscosity.

Smaller particles (with short relaxation times) follow the
fluid motion more closely than bigger particles, thus as they
get closer to the wall they lose the y component of their
convective velocity much faster than bigger particles.
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Figure 4: Classification of the particle transport
mechanisms [4]

For very small particles this eventually leads to existence of
a thin region close to the wall in which particle transport
continues only by Brownian diffusion. This region is called
the diffusion sublayer (see Fig. 6).

Interestingly, the dimensionless scaling velocity calculated
for the conditions of the experiment [1] is
(1.4+0.5)x10® which is about 3 orders of magnitude

smaller than Vg, predicted by particle transport theory for

the corresponding value of 7, (yellow and pink circles in
Fig. 4). This may indicate that in the experiment, colloidal
silica deposition is retarded by the electrostatic particle—
wall interactions discussed later in section 2.3.

Guha has also shown that particle deposition velocity is
significantly affected by the roughness of the surface to
which particles are transported (Fig. 5).

Real walls, having roughness elements protruding from
their surface, experience higher mass transfer than ideal,
perfectly smooth walls. In this particular case, particles
need to be transported through the diffusion sublayer over
distance equal to the theoretical sublayer thickness less the
effective height of these roughness elements k.. This

increases transport of smaller particles for which this
diffusion sublayer exists (see Fig.5 for 1og ,, 7, < 0: silica
colloids in geothermal brine have log,, z; ~ -4).
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Figure 5: The effect of surface roughness on theoretical
transport rate [4]

Here the dimensionless transport rate increases by almost 3
orders of magnitude when the effective height of roughness
elements k. = k,v, /v increases from O to 5.

Finding Kk, values for the Uy (see Fig. 8, 7, =20Pa) and

Vv characteristic of the experiments in [1] we can estimate
the effect of roughness in silica scaling.

Thus, for new steel surfaces with k, = 0.05mm the
dimensionless effective roughness height is k; =16.

Whereas if the effective height of the silica ridges is taken
as k, ~ 0.12mm this value increases to k; = 38.

Comparing these values with the trends in Fig. 5 shows that
the effect of surface roughness in silica deposition onto
circular cylinder is significant for both of these cases.

In case of developed turbulent pipe flow, where the wall
shear stress (is 1-5 Pa , the k. value for a new steel surface
is about 6. This suggests the influence of roughness on
silica deposition in pipes is also significant.

2. THEORETICAL STUDY OF SILICA TRANSPORT
AND DEPOSITION ONTO CYLINDRICAL
SURFACES

This section presents analytical and computational fluid
dynamics (CFD) analysis of colloidal silica transport onto
cylindrical collectors. For the former, a solution of the
convection-diffusion equation from [5] was adopted to find
the particle transport rate from a turbulent, isothermal
suspension onto a smooth surface (section 2.1). Thus, no
inertial effects or particle-particle/particle-wall interactions
(i.e. no electrostatic forces) were considered in this case.

To evaluate the role of inertial particle transport the CFD
simulations were performed (section 2.2). Again, no
particle-particle or particle-wall forces were considered.

Both of these theoretical studies were conducted for
hydrodynamic conditions identical to those of the
experiment [1]. The analysis of the discrepancies between
experimental and theoretical results provides valuable
insight into the dominant mechanisms of particle transport.

Finally, to study effects of the inter-particle forces on the
deposition process the interaction potentials were calculated

for particle—particle and particle-wall interaction cases.
These were then incorporated with analytical mass transfer
calculations and the corresponding stability curves and
coagulation/deposition rates obtained (section 2.3).

2.1 Analytical calculations

The diffusion problem [5] was considered with silica
concentration C5; =0 on the cylinder wall and C5; = C,
=500 ppm [1] in the bulk.

In an Eulerian frame the convection-diffusion equation can
be used to describe molecular and particle solute transport
(Eq. 3).
&C oC oC oC o°C o°C o°C
7+ux—+uy—+uz—=D[ st—+ 2] 3)
ot X oy ford oyt @
where D is either a molecular or Brownian diffusion
coefficient of silicic acid molecules or colloidal silica
particles respectively, in water. It is assumed that particles
follow the flow streamlines perfectly. Thus, all inertial
effects are neglected. These are considered in 2.2.

With a known velocity distribution U =(v,;0,;0,) and
boundary conditions for C it is possible to find silica mass
flux j to the surface by integrating Eq. 3.

Due to the close relation between the mass and momentum
transfer processes, the concentration distribution near the
solid surface has a layered structure similar to the flow
velocity distribution. Thus, for the case of the turbulent
flow over infinite plate (y=0) there are four regions with
different mass diffusion patterns (Fig. 6). Far from the
surface there is a zone of developed turbulence (region I)
where both average velocity and concentration have

constant values (C,= C, for y >d). Closer to the surface,

in the turbulent boundary layer (region Il), the average
velocity, and so the concentration, decrease slowly
according to a logarithmic law (Eq. 4):

e
C, ﬁuolnd+C0 for 5, <y<d, 4

where g is a constant numerical coefficient.

Further, with an assumption of gradual decay of turbulence
within the viscous sublayer [5], over the region Il
(8, >y > &) mass transport by residual turbulent pulsations

is still stronger than mass transport by molecular/Brownian
diffusion. It can be shown that solute (monomeric or
colloidal Si in this case) distribution in this region is given
by Eq. 5:

jo jos[1 1
Cui :L+ e 3 3 (5)
D 3, (8 y
where y is a certain numerical coefficient.

Only in the innermost part of the viscous sublayer (region
IV), at Y<O, does the molecular (Brownian) diffusion
mechanism prevail over the turbulent, so here (Eq. 6):

. oC j

J:Dg and Cy :B(y_a) (6)
where a is an average particle radius in case of colloidal
silica transport and a=0 for the monomeric silica.
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Figure 6: Structure of the diffusion boundary layer [5]

Equating the expressions for Cy;, and C, at y =& gives the
flux (Eq. 7):

i DC,
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The height of the diffusion boundary layer according to [5]
is (Eq. 8):

1
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where Sc =%- dimensionless Schmidt number, the ratio of

momentum diffusion (viscosity) to mass diffusion.

For high values of the Schmidt number (e.g. Sc~10°%) the
expression for mass flux simplifies to (Eq. 9):

i~ DC,
%ﬂ,Lﬁmi‘o} O]
3 (10-s¢)*“p d

and 5~1/6 S in this case. The unknown numerical

constants B and ) were found experimentally to be of
order unity and thus it can be shown that the second term in
the denominator is substantially smaller than the first, and
can be neglected to simplify Eq.9 to Eq.10:

j~ DC, Cy,
~ - 3/4 1
45 asc

where o = 210 (10)
3

If the bulk silica concentration, diffusion coefficient
(molecular for dissolved Si and Brownian for the colloidal)
and thickness of the boundary layer are known, it is
possible to find the maximum realizable (i.e. not limited by
the surface reaction rate) diffusion flux toward any surface
by integrating Eq. 10 over its area.

In the case of diffusion to a circular cylinder in a crossflow,
when the boundary layer is laminar over the upstream part
of its circumference and becomes turbulent downstream
from the separation line, the total diffusion flux to the
cylinder surface can be shown [5] to be (Eq. 11):

_ 196 #* DC, [g ) 164 JKUCo

7360 4 ScV L 360 4  Sc¥*

where U0 is the velocity of undisturbed flow far away

. 0.27
from the cylinder and K; * R

the drag coefficient.
The diffusion transport rate calculated from Eqg. 11 and
corresponding experimental results are shown in Table 1.

The monomeric (or direct) silica deposition was found
experimentally to be very slow [2, 6, 7] and not responsible

for the scale build-up. So, the calculated transport rate of
the monomeric silica being higher by two orders of
magnitude than the experimentally observed deposition rate
suggests that this mechanism is limited by the surface
reaction rate of monomeric silica attachment to the wall
surface. The distribution of dissolved silicic acid in the flow
thus must be near uniform (i.e. same at the wall surface and
in the bulk flow) unless there is some non-transport reason
for the concentration to vary with location (e.g. a thermal
gradient).

The colloidal silica transport rate obtained in the analytical
calculations is within the uncertainty interval of the mean
experimental value. Interestingly, Eq. 11 predicts transport
rate towards the downstream part of the cylinder to be
higher than that to the upstream part. This correlates with
the assumption made about the boundary layer state, but is
contrary to the scale distribution observed experimentally.

It is possible that inertial transport, not included in this
analytical model, is responsible for the observed
distribution of scale. To investigate the role of inertial
mechanisms of particles transport, CFD simulations of
particle transport were performed.

2.2 CFD calculations

ANSYS Fluent software, was used to model the transport of
the colloidal particles, using Lagrangian particle tracking
and allowing both convective diffusion and inertial effects
to be modelled simultaneously. The corresponding 2D
computational domain is outlined in Fig. 7. It comprised
180,000 mesh nodes representing a rectangular region of
flow (250x125 mm) with a circular cutout (25mm in
diameter) in the middle. The circle represented the surface
of the cylinder, so the no-slip condition for the flow and an

Table 1: Comparison of the experimental, analytical and simulation results

Total per 1 m length | Average per unit area, Dimensionless, @
of a cylinder, kg/s kg/s/m? 7=20Pa
Experimental deposition rate 1.6+0.6x10” 4.2+1.6x10° 1.2+0.5x10°
i Qi 7 5 5
Analytical transport monomeric Si 1.4x10 1.7 x10 4.8 Xl(()i
rate colloidal Si 2.9x10° 3.7x10® 1x10°
N B -1
CFD transport rate of colloidal Si 4.7x10™ 1.2x10? 3.4x10
-3
Theoretical transport rate towards a smooth parallel wall from Fig.4 1x10
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ideal sink for the particles were imposed on it. The water
entered the domain through the velocity inlet boundary
condition with average velocity of 1.9 m/s and temperature
66°C. Surface type particle injection was specified at the
same boundary. Total colloidal silica mass flow rate was set
to 0.098 kg/s. This corresponds to 250 ppm of colloidal
silica suspended in the flow.

= " CISIOs).ar-250 ppm
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Figure 7: Outline of the computational domain

The problem was solved in two steps. First, a converged
steady state solution for the flow equations was obtained. A
convergence criterion of 10°® for the scaled residual of the
continuity equation was used. The solution was verified by
comparing calculated and experimentally ~measured
distribution of the pressure coefficient along the cylinder
circumference. Less than 20 % difference was found.

In the second step, a discrete phase model was enabled and
transient calculations of the coupled particle-flow dynamics
were performed. On average, 10 seconds of the flow time
were computed. In order to record the particle mass flux to
the cylinder surface, the accretion model was used [8].

The overall transport rate of colloidal silica obtained in this
way is given in Table 1, while its distribution over the
cylinder circumference is illustrated in Fig. 8.
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Figure 8: Comparison of CFD and experimental results

The rate of transport of colloidal silica in these CFD
simulations is five orders of magnitude higher than the
experimentally measured deposition rate and the rate
computed from the analytical model in the previous section.
This discrepancy may suggest that the scale growth caused
by colloidal silica is limited by its attachment to the surface
(chemical bonding) which is intimately related to particle-
wall interaction (electrostatic force).

Both analytical and CFD model omit attachment and
electrostatic effects, yet the CFD predicts a higher rate of
transport than the analytical model and the theory in Fig.4.
Some hypotheses which may explain this discrepancy are:

- the CFD model’s better representation of the flow
field around the cylinder (than the one used in
derivation of Eq. 11) affects the transport;

- the inertial transport of particles, which is not
accounted for in the analytical model, but is present
in the CFD, is dominant;

- the curvature of the cylinder surface and the Saffman
lift forces, which are present in the CFD but not in
the theory used to generate Fig. 4 enhance the
transport of colloidal silica to the surface.

The shapes of the experimental and predicted deposition
profiles are different, with the simulated colloid transport
rate peaking at the stagnation line on the front of the
cylinder, but the observed scaling rate peaking at 21°.
However, the colloid transport rate and scaling rate are not
the same parameter and cannot be directly compared. The
observed scaling rate may be explained by combining the
predicted transport rate with the attachment probability, i.e.
the fraction of particles that reach the surface and actually
bond and remain on the surface, all others remaining in the
flow. This fraction is estimated based on the DLVO theory
of charged colloidal particles interaction in the next section.

To summarise the findings so far, particles can travel to the
surface by diffusion or inertial transport. The diffusion
transport rate of particles (calculated from the analytical
model) is of the same order of magnitude as the
experimentally observed deposition rate. The inertial
transport rate calculated from the CFD model is several
orders of magnitude higher than the experimentally observed
deposition rate. Both analytical and CFD models exclude
particle-particle and particle-wall interactions. Theory and
experiment may be reconciled with the experimental
observations if, due to those interactions, only a small
fraction of the particles arriving at the surface bind to it. To
investigate  this, particle-particle and particle-wall
interactions are considered in the next section.

2.3 Theoretical model incorporating electrostatic and
hydrodynamic effects

Being in continuous Brownian motion in addition to the
motion induced by the suspending fluid, colloidal particles
experience numerous mutual collisions and collisions with
stationary walls. In the absence of any limiting factors each
of these collisions would results in close contact between
particles followed by chemical bonding and agglomeration
(or attachment to the surface). This process is called fast, or
rapid, aggregation as it results in all colloidal particles being
separated from the solution as aggregate in a matter of
minutes.

However, depending on the solution pH, silica colloids can
carry uncompensated surface charge due to ionization of the
surface silanol groups. The presence of charge of the same
sign on all particles, and on wall surfaces covered with
amorphous silica, results in an electrostatic potential barrier
which the particles need to overcome to form the bond. Due
to this so called electrostatic stabilization, not all collisions
of the particles lead to aggregation or particle attachment to
the surface. This process is called slow aggregation. Under
the right conditions charge stabilized colloidal systems can
be stable for very long periods of time (years).

The potential barrier between charged particles is usually so
high (in terms of potential energy) and wide (in terms of
distance of approach) that individual particles are unable to
pass it in one attempt — they lose all kinetic energy obtained
in separate Brownian projections well before they clear the
potential barrier, due to friction with surrounding liquid
(viscous interaction). The particles overcome the barrier in a
sequence of Brownian collisions rather than in one step.
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This allows the effect of the interparticle forces to be treated
as an additional diffusion process [9]. In this case the
corresponding particle flux can be expressed as (Eq. 12):

_nav
]DLVO - B dr’ (12)
where n is local particle concentration, B is the friction
factor and V, is total interaction potential, which equal to
sum of the attractive and repulsive potentials calculated from

DLVO theory [2, 10].

For the simplest case of a stagnant colloidal suspension,
when total particle flux (towards each other) is determined
only by Brownian motion and electrostatic potential yields
the following for the stability value [9] (Eg. 13):

Number of particle collisions o V, \ds
= — — —=2fleq |5 (13)
Number of collisions resulting in coagulation 2 KT Js

where s=r/fa is a non-dimensional distance between
particles (or particle and wall), r is centre-to-centre (or
centre-to-wall) distance, and a is particle radius.

Stability curves calculated with this equation for two particle
sizes are presented in Fig. 9 (broken lines). It shows that
colloid stability W decreases with increasing ionic strength
of the solution | (concentration of dissolved salts) and with
decreasing particle size d. It can be seen that in silica sols
with sufficiently low ionic content only 1 in 10% collisions
result in particle coagulation.
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Figure 9: Stability curves for colloidal silica sols

The case of flowing colloidal solution is of more practical
interest. The rate of particle collisions can be much higher
than in the stagnant case due to the presence of velocity
gradients and turbulent pulsations. Thus, Levich gives the
following expressions for the number of particle-particle
collisions per second [5]:

- Brownian encounters N, =8zDdn,
. 32
- Gradient encounters N :?ngd%}

- Re3l2
- Turbulent encounters Ny, =nyd’v 2

where D is the particle diffusion coefficient, d its diameter,
n, the number of particles per unit volume, G the velocity
gradient, Re the Reynolds number, v the kinematic viscosity
and L the characteristic length.

Calculating these numbers for the conditions of the
experiment [1] we find (Fig. 10) that the number of
encounters due to the velocity gradients is higher by several
orders of magnitude than those due to Brownian motion.

Here the broken blue line is obtained for the velocity
gradient G=5*10° s. This value corresponds to the
maximum shear stress in turbulent flow around a cylinder
(Fig. 8). Also, the difference in slopes of the curves in Fig.
10 shows a slower decay of gradient-induced collision rate
with increasing particle size than for the Brownian
collisions.
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Figure 10: Rates of idealized collision processes

Unfortunately, an attempt to calculate the aggregative
stability of colloidal system with gradient or turbulent
collisions included faces significant theoretical difficulties.
The steady-state convection-diffusion equation with
electrostatic particle interaction term must be resolved on the
particle size length scale to find the total number of other
particles reaching the surface of the selected centre particle.
In this case finding the solution cannot be simplified by
using the boundary layer approach (as was done in finding
mass flux to a flat wall, Eq. 10). The thickness of the
diffusion boundary layer present on the particle surface is
comparable with particle size. Thus (in essence inertial)
effects of the particle’s relative motion due to the velocity
gradients in mean flow and turbulent pulsations may
significantly affect the mass transfer rate. Presumably, this
problem can be tackled numerically.

On the other hand it is relatively straightforward to include
the additional particle flux due to the electrostatic interaction
between particles into the problem of particle transport
towards a smooth wall.

For this we assume that the target surface caries uniform
charge of the same sign and magnitude as SiO, colloids
suspended in the flow. Physically this corresponds to the
ideally smooth amorphous silica surface. Next, we assume
that the region of significant inter-particle interaction lies
entirely within the diffusion boundary layer. This is true for
the conditions of the experiment [1] (as diffusion boundary
layer height is 300-2000nm, whereas interaction potential
can be neglected at separation distances above 50 nm). This
assumption would be violated only for a very fast flow
(shear velocity ~0.5 — 1 m/s).

This last assumption allows us to express the particle
concentration distribution in the diffusion boundary layer
(region 1V in Fig. 6) as (Eq. 14):

Cy = c(ﬁ)—J—SIexder , (14)
)

where C(0) is particle concentration at the edge of the
diffusion boundary layer y=¢, subscript s is for the “slow”
particle flux — retarded by the interaction forces. Using the
condition of concentration continuity at y=0 we can find
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Js by comparing equations 14 and 10 (for c,, expressed

through c,, ). Simplifying the result the same way as for Eq.
10 we arrive at (Eq. 15):

B Dn,
s~=a
lexp\TdH%

where § is the diffusion boundary layer thickness (Eq. 8), a

i (15)

— Vv
is particle radius, V:ﬁ is the - ratio of electrostatic
interaction potential and molecular thermal energy.

Calculating ratio of j, (determined by Eq. 14) and Js Eq.

15) we get the stability of the colloids to deposition onto
smooth surface (Eq. 16):

3 Jexder
"4 s5-a (16)

Fig. 11 illustrates solutions of the Eq. 16 for three particle
sizes and two solution ionic strengths. Stability curves from
Eq. 16 also shown in Fig. 9 for comparison with the particle-
particle interaction case. Similarly to particle-particle
collisions, the ratio of successful particle-wall collisions
decreases with increasing particle size and decreasing ionic
strength.
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Figure 11: Colloidal silica stability in smooth surface
scaling

The idealized particle-wall collisions modeled here are less
likely to result in binding than particle-particle collisions
(Fig. 9). This agrees with the fact that the electrostatic
potential is twice as high for particle-wall interactions than
for particle-particle interactions, but contradicts the
experimentally observed behavior of such systems, that
particle deposition onto stationary walls has a higher or
similar rate to particle aggregation in the bulk. Experiments
also show that this rate increases with increasing particle
size.

The rate of bonding in the particle-wall collisions has a weak
dependence on the shear stress (Fig. 11). It is worth
mentioning that this dependence is mostly caused by the
variation of the “fast” surface particle flux (Eq. 10) with
diffusion boundary layer thickness. Whereas, its “slow”
counterpart (Eq. 15) was found to be almost independent of
the flow conditions. The first term in the denominator of the
Eq. 15 is significantly higher than the second. This means
that, in this particular idealized case, mass transfer to the
wall is more severely limited by the potential barrier than by
the convection-diffusion transport. The transport of particles
can limit the deposition rate in case of very slow flow

velocities, when the convective diffusion rate is very small.
Also, the transport of particles to the surface may be so fast
that the thickness of the boundary layer can become
comparable with characteristic length of the inter-particle
interactions. This, as well as surface roughness, requires a
more complex model than that presented here.

3. DISCUSSION

Stability values of the two marginal collision scenarios
considered in Section 2.3 can be used to assess particle
attachment probability in silica scaling process.

Surfaces of powerplant equipment can rarely be considered
smooth. Their inherent roughness affects particle transport
and electrostatic interaction. If they contain roughness
elements of micrometer scale with varying radii of
curvature. If assumed to be coated with a monolayer of
silica, they will have heterogeneous distributions of surface
charge.

This heterogeneity is even higher when the surface is
covered with a layer of colloidal particles. Though areas of
high curvature near particle contact points become smoothed
by monomeric silica deposition, the average effective
surface curvature remains at the same order of magnitude as
the particle size. New particles arriving at the wall will
interact with those particles which arrived and bonded
earlier. We hypothesise that the stability of such “particle -
rough wall” collisions is between the corresponding values
for the “particle-particle” and “particle-smooth wall” cases
presented in Fig. 9.

For the hydrodynamic and chemical conditions of the
experiment [1] this gives stability value 10*<W<10®i.e. 1in
10* to 1 in 10° particles arriving at the wall will bind, the rest
(the majority) will return to the flow. Other calculations
presented in Section 2.3 predict that W will increase with
increasing particle size and decreasing wall shear stress (or
effectively convective transport rate).

The former effect is expected as higher particle diameter
means lower curvature and thus a higher interaction
potential barrier. The latter effect is more complex. The
fraction of particles that pass through the potential barrier
may be affected by the variations in particle kinetic energy
distribution (caused by convection and particle inertia). With
a lack of evidence to the contrary it is assumed, for now, that
W is determined solely by the physicochemical properties of
the colloidal system. This allows for the silica scaling
process to be treated like a chemical reaction of the first
order by concentration (flux) of particles on the reaction
surface:

[Scaling rate] = k*[Transport rate]
where k= 1/W is particle attachment probability.

The particle transport rate value obtained in the CFD
simulations (Fig. 12, green circle) can now be converted into
expected scaling rate:

[3.4x107*10° = 3.4x10°

which is the same order of magnitude as the experimental
scaling rate (yellow circle).

However, the CFD transport rate may be overestimated as a
smooth surface was assumed. It seems unlikely it will be
even higher than the transport rate in an inertia dominated

regime (log,,z, >1).
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Extrapolating the trend that increasing surface roughness
raises the transport rate, the green circle in Fig. 12 is close to
the expected value of transport rate in experiment [1] with
fully developed roughness.
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Figure 12: Theoretical and experimental trends in the
silica scaling

The difference in theoretical predictions and experimental
observations of the scaling rate behavior with increasing
particle size is illustrated schematically in Fig. 12.
Experimental data (yellow broken arrow) shows that the
scaling rate increases with particle size. Meanwhile,
theoretical results (red broken arrow) suggest that both
attachment probability and transport rate decrease with
increasing particle size.

It is hypothesized that in this range of particle sizes,
increasing particle inertia, though it has insignificant effect
on convection normal to the wall, intensifies tangential
(parallel to the wall) convection onto roughness elements
protruding from the wall.

This argument also may explain the difference observed
(Fig. 8) between the spatial distributions of scale on the
cylinder in experiment and theory. Higher scaling rate may
be expected at locations with higher wall shear stress. First,
the thickness of the diffusion boundary layer is smaller here
which makes the effect of existing surface roughness higher.
Second, at the locations with higher wall shear stress
particles have higher tangential velocity and thus higher
inertial deposition rate in this direction.

The wall shear stress distribution in Fig. 8 was calculated for
a smooth cylinder. For a rough cylinder its maximum will
probably shift towards the front. This is because roughness
elements decelerate the flow and render near wall velocity
distribution more uniform downstream from where they are
located. Thus, the observed scale distribution around the
cylinder may coincide with real wall shear stress
distribution.

4. CONCLUSIONS

The comparison of experimental and new theoretical results
on silica scale formation found the following:

1. The scaling rate may be expressed as a product of the
rate of transport of silica particles to the surface and
the probability of their permanent attachment to it.

2. Calculations of inertial and diffusional transport of
particles without electrostatic interactions predict a
transport rate several orders of magnitude higher than
the experimentally observed scaling rate.

3. Increasing surface roughness significantly increases
(by orders of magnitude) the particle transport rate to
the surface. Surface roughness will increase as
particles bond to the surface. Understanding the role
of surface roughness may explain the effect of particle
size effect on silica scaling.

4. The particle attachment probability can be determined
based on the DLVO theory of colloidal particle
interactions.

5. Such calculations show that attachment probability
decreases with increasing particle size and decreasing
ionic strength of the solution

6. For the conditions of the silica scaling experiment [1]
this probability was argued to be 10*<W?<10°® which
when multiplied by the computed transport rate
(taking into account both diffusional and inertial
transport) predicts to within an order of magnitude the
experimentally observed scaling rate. Roughness
effects may explain the remaining discrepancy, but
this must be investigated further.

7. The CFD transport rates may vary with further
refinement of the mesh in the near-wall region.

8. Further work is required to integrate surface
roughness into the model.
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