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ABSTRACT 

Silica scaling limits the flow rate of the geothermal fluid 
passing through a powerplant and hence heat and the power 
that can be extracted from it. The chemical kinetics of silica 
colloid nucleation and growth are reasonably well 
understood, but the hydrodynamic transport and the process 
of binding to solid surfaces are not. A key question is 
whether the rate at which particles accumulate on the 
surface is limited by the rate of transport of particles 
through the fluid near the wall, or by the fraction of 
particles which form permanent bonds at the surface. 

Previous work by Dunstall, Zipfel and Brown showed the 
scale deposited on a cylindrical object placed in flowing 
geothermal brine varied in thickness from place to place, 
with thicker deposits forming in the locations where the 
shear stress is high. This suggests a transport-limited 
process. 

This paper reports new computational fluid dynamics 
(CFD) study which suggests that if electrostatic interactions 
are ignored, the rate of arrival of silica particles at the 
surface is several orders of magnitude higher than the 
observed scaling rate. This suggests only a small fraction 
(~1 in 105) of the particles arriving at the wall in that 
experiment actually attach to it, and that the scaling process 
is limited by the process of bonding with the surface. 

In an attempt to resolve this contradiction, the theory or 
particle transport and interaction has been explored. When 
the wall is coated with silica, colloids in motion near the 
wall experience electrostatic repulsion. The resultant energy 
barrier can be calculated from the Derjaguin, Landau, 
Verwey and Overbeek (DLVO) theory. It is used here to 
find the stability of a colloidal system under various 
hydrodynamic conditions: pure Brownian motion (stagnant 
fluid), laminar and turbulent shear flows. For the conditions 
of the experiments, the theory predicted that 1 in 104 to 1 in 
106 of the particles arriving at the wall would bind 
permanently to the surface. When multiplied by the 
transport rate determined from CFD results, the 
experimentally observed rate of scaling is predicted 
correctly.  

The results give a starting point to build a theory of silica 
colloid transport and deposition. 

Wall roughness, which is enhanced as ridges of silica scale 
grow, is shown to enhance the scaling rate significantly. 
Further calculations and more experimental data are 
required to integrate roughness into the theory. 

1. INTRODUCTION 

Silica scaling, the deposition of colloidal silica in 
geothermal plant and wells, depends on both hydrodynamic 
and chemical conditions.     

Experimental studies of colloidal silica transport in pipes 
suggest inertial effects dominate over diffusion in colloidal 
silica deposition [1, 2]. On the other hand, the theory of 
particle transport and deposition suggests that diffusion 
transport should dominate for these experimental conditions 
[2]. 

In this paper an attempt is made to resolve this 
contradiction by comparing previous experimental and new 
analytical and computational fluid dynamics (CFD) results 
and by analyzing the discrepancies.    

1.1 Silica deposition on steel cylinders in crossflow 

Silica deposition from natural geothermal brine onto 
cylinders in cross-flow was studied by Dunstall et al. [1]. 
The height of the silica ridges was found to vary 
significantly around the cylinder circumference. The 
maximum height of ~0.25 mm was reached at 
approximately 21° from the upstream stagnation point (Fig. 
1). There was little to no deposition formed at the 
stagnation point, or on the downstream (wake) side of the 
cylinder. The height of the ridges is plotted in Fig. 2.  

 

Figure 1: Flow around a circular cylinder [3] and 
conditions of the experiment [1] 

 

Figure 2: Experimental silica scale height over the 
circumference of a 25 mm diameter test cylinder; 
particle size 125nm; Re=1.07*105 [1] 
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The overall deposition rate increased as the average size of 
silica particles increased. This finding agrees with other 
experimental data on silica scaling [2]. 

The average scaling rate is calculated as a function of 
location on the cylinder circumference (Fig. 3) by dividing 
the total deposited mass by the experiment duration. The 
total deposition rate was calculated to be 2.2*10-9 kg/s per 
1m of cylinder length from the curve in Fig. 3. In this 
calculation it is assumed that this curve describes the height 
of a continuous film of silica. In reality, though the curve 
follows the edges of the highest silica ridges, there are voids 
and pores between these ridges. Thus to find the real 
deposition rate the void fraction of the silica deposit is 
required. This is unknown but from inspection of the 
photographs in [1] it is estimated to be 0.25 with an 
uncertainty of 50%. Taking this into account the total 
deposition rate averaged over the circumference of the 
cylinder is (1.6±0.6)*10-9 kg/s per 1 m length, of the 25mm 
cylinder or (4.2±1.6)*10-8 kg/s/m2. 

 

Figure 3: Silica scaling rate calculated from [1] 

This experimental data is compared with theoretical 
speculations below.  

1.2 General theory of particle transport  

Uncharged particles suspended in a turbulent flow are 
transported to a stationary wall by two main mechanisms: 
diffusion and convection (the latter is sometimes called 
inertial transport). The flux of particles in the direction y 
normal to the wall for fully developed flow can be 
expressed as [4]: 
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The first term on the right-hand side of Eq. 1 is the 
diffusion due to a gradient in the particle concentration and 
the second term represents convective transport emerging 
from particle inertia. The particle convective velocity in the 
y direction c

pyV  is determined from the particle momentum 

equation which accounts for the gradients in turbulent 
intensity, shear induced lift and other external forces. In all 
calculations in this section, the particles are assumed not to 
interact with each other, or with the wall.  

Numerical solutions of Eq. 1 and the corresponding particle 
momentum equation performed for the deposition on a 
smooth parallel surface allowed Guha [4] to find a 
relationship between non-dimensional deposition velocity 


depV  and particle relaxation time 

p  (Fig. 4). The non-
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depV  is the wall particle 
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 with l /0  determined from flow conditions (here 
denotes wall shear stress).  

The dimensionless particle relaxation time is a measure of 
the particle’s ability to deviate from fluid motion: 
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where p  and l  are particle and fluid densities 

correspondingly and  the fluid viscosity.  

Smaller particles (with short relaxation times) follow the 
fluid motion more closely than bigger particles, thus as they 
get closer to the wall they lose the y component of their 
convective velocity much faster than bigger particles. 

 

Figure 4: Classification of the particle transport 
mechanisms [4] 

For very small particles this eventually leads to existence of 
a thin region close to the wall in which particle transport 
continues only by Brownian diffusion. This region is called 
the diffusion sublayer (see Fig. 6).  

Interestingly, the dimensionless scaling velocity calculated 
for the conditions of the experiment [1] is 
(1.4±0.5)×10-6 which is about 3 orders of magnitude 
smaller  than 

depV  predicted by particle transport theory for 

the corresponding value of 

p  (yellow and pink  circles in 

Fig. 4). This may indicate that in the experiment, colloidal 
silica deposition is retarded by the electrostatic particle–
wall interactions discussed later in section 2.3.  

Guha has also shown that particle deposition velocity is 
significantly affected by the roughness of the surface to 
which particles are transported (Fig. 5).  

Real walls, having roughness elements protruding from 
their surface, experience higher mass transfer than ideal, 
perfectly smooth walls. In this particular case, particles 
need to be transported through the diffusion sublayer over 
distance equal to the theoretical sublayer thickness less the 
effective height of these roughness elements sk . This 
increases transport of smaller particles for which this 

diffusion sublayer exists (see Fig.5 for 0log 10 
p : silica  

colloids in geothermal brine have 4log 10 
p ). 
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Figure 5: The effect of surface roughness on theoretical 
transport rate [4]    

Here the dimensionless transport rate increases by almost 3 
orders of magnitude when the effective height of roughness 
elements  /0ss kk   increases from 0 to 5. 

Finding 
sk  values for the 0 (see Fig. 8, PaAVG 20 ) and 

  characteristic of the experiments in [1]  we can estimate 
the effect of roughness in silica scaling. 

Thus, for new steel surfaces with mmk s 05.0 the 

dimensionless effective roughness height is 16
sk . 

Whereas if the effective height of the silica ridges is taken 
as mmk s 12.0  this value increases to 38

sk . 

Comparing these values with the trends in Fig. 5 shows that 
the effect of surface roughness in silica deposition onto 
circular cylinder is significant for both of these cases. 

In case of developed turbulent pipe flow, where the wall 
shear stress (is 1-5 Pa , the 

sk  value for a new steel surface 
is about 6. This suggests the influence of roughness on 
silica deposition in pipes is also significant.  

2. THEORETICAL STUDY OF SILICA TRANSPORT 
AND DEPOSITION ONTO CYLINDRICAL 
SURFACES  

This section presents analytical and computational fluid 
dynamics (CFD) analysis of colloidal silica transport onto 
cylindrical collectors.  For the former, a solution of the 
convection-diffusion equation from [5] was adopted to find 
the particle transport rate from a turbulent, isothermal 
suspension onto a smooth surface (section 2.1). Thus, no 
inertial effects or particle-particle/particle-wall interactions 
(i.e. no electrostatic forces) were considered in this case. 

To evaluate the role of inertial particle transport the CFD 
simulations were performed (section 2.2). Again, no 
particle-particle or particle-wall forces were considered.  

Both of these theoretical studies were conducted for 
hydrodynamic conditions identical to those of the 
experiment [1]. The analysis of the discrepancies between 
experimental and theoretical results provides valuable 
insight into the dominant mechanisms of particle transport. 

Finally, to study effects of the inter-particle forces on the 
deposition process the interaction potentials were calculated 

for particle–particle and particle–wall interaction cases. 
These were then incorporated with analytical mass transfer 
calculations and the corresponding stability curves and 
coagulation/deposition rates obtained (section 2.3). 

2.1 Analytical calculations  

The diffusion problem [5] was considered with silica 
concentration CSi =0 on the cylinder wall and CSi = C0 
=500 ppm [1] in the bulk.  

In an Eulerian frame the convection-diffusion equation can 
be used to describe molecular and particle solute transport 
(Eq. 3). 
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where D is either a molecular or Brownian diffusion 
coefficient of silicic acid molecules or colloidal silica 
particles respectively, in water. It is assumed that particles 
follow the flow streamlines perfectly. Thus, all inertial 
effects are neglected. These are considered in 2.2. 

With a known velocity distribution );;( zyxU   and 
boundary conditions for C it is possible to find silica mass 
flux j  to the surface by integrating Eq. 3.  

Due to the close relation between the mass and momentum 
transfer processes, the concentration distribution near the 
solid surface has a layered structure similar to the flow 
velocity distribution. Thus, for the case of the turbulent 
flow over infinite plate (y=0) there are four regions with 
different mass diffusion patterns (Fig. 6). Far from the 
surface there is a zone of developed turbulence (region I) 
where both average velocity and concentration have 
constant values (CI = C0 for dy  ).  Closer to the surface, 

in the turbulent boundary layer (region II), the average 
velocity, and so the concentration, decrease slowly 
according to a logarithmic law (Eq. 4): 

0
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d
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  for  dy 0 ,      (4) 

where   is a constant numerical coefficient.  

Further, with an assumption of gradual decay of turbulence 
within the viscous sublayer [5], over the region III 
   y0

 mass transport by residual turbulent pulsations 

is still stronger than mass transport by molecular/Brownian 
diffusion. It can be shown that solute (monomeric or 
colloidal Si in this case) distribution in this region is given 
by Eq. 5: 
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 where   is a certain numerical coefficient.  

Only in the innermost part of the viscous sublayer (region 
IV), at y , does the molecular (Brownian) diffusion 
mechanism prevail over the turbulent, so here (Eq. 6):  
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where a is an average particle radius in case of colloidal 
silica transport and a=0 for the monomeric silica. 
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Figure 6: Structure of the diffusion boundary layer [5] 

 
Equating the expressions for CIII and CIV at y gives the 
flux (Eq. 7): 
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The height of the diffusion boundary layer according to [5] 
is (Eq. 8): 
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where 
D

Sc


 - dimensionless Schmidt number, the ratio of 

momentum diffusion (viscosity) to mass diffusion. 

 

For high values of the Schmidt number (e.g. Sc~103) the 
expression for mass flux simplifies to (Eq. 9): 
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and 
06/1~   in this case. The unknown numerical 

constants   and   were found experimentally to be of 
order unity and thus it can be shown that the second term in 
the denominator is substantially smaller than the first, and 
can be neglected to simplify Eq.9 to Eq.10:  
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If the bulk silica concentration, diffusion coefficient 
(molecular for dissolved Si and Brownian for the colloidal) 
and thickness of the boundary layer are known, it is 
possible to find the maximum  realizable (i.e. not limited by 
the surface reaction rate) diffusion flux toward any surface 
by integrating Eq. 10 over its area.  

 

In the case of diffusion to a circular cylinder in a crossflow, 
when the boundary layer is laminar over the upstream part 
of its circumference and becomes turbulent downstream 
from the separation line, the total diffusion flux to the 
cylinder surface can be shown [5] to be (Eq. 11): 
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where 0U  is the velocity of undisturbed flow far away 

from the cylinder and 1.0Re

27.0
fK   the drag coefficient. 

 
The diffusion transport rate calculated from Eq. 11 and 
corresponding experimental results are shown in Table 1.   
 
The monomeric (or direct) silica deposition was found 
experimentally to be very slow [2, 6, 7] and not responsible 

for the scale build-up. So, the calculated transport rate of 
the monomeric silica being higher by two orders of 
magnitude than the experimentally observed deposition rate 
suggests that this mechanism is limited by the surface 
reaction rate of monomeric silica attachment to the wall 
surface. The distribution of dissolved silicic acid in the flow 
thus must be near uniform (i.e. same at the wall surface and 
in the bulk flow) unless there is some non-transport reason 
for the concentration to vary with location (e.g. a thermal 
gradient). 

The colloidal silica transport rate obtained in the analytical 
calculations is within the uncertainty interval of the mean 
experimental value. Interestingly, Eq. 11 predicts transport 
rate towards the downstream part of the cylinder to be 
higher than that to the upstream part. This correlates with 
the assumption made about the boundary layer state, but is 
contrary to the scale distribution observed experimentally.  

It is possible that inertial transport, not included in this 
analytical model, is responsible for the observed 
distribution of scale. To investigate the role of inertial 
mechanisms of particles transport, CFD simulations of 
particle transport were performed. 

2.2 CFD calculations  

ANSYS Fluent software, was used to model the transport of 
the colloidal particles, using Lagrangian particle tracking 
and allowing both convective diffusion and inertial effects 
to be modelled simultaneously. The corresponding 2D 
computational domain is outlined in Fig. 7. It comprised 
180,000 mesh nodes representing a rectangular region of 
flow (250x125 mm) with a circular cutout (25mm in 
diameter) in the middle. The circle represented the surface 
of the cylinder, so the no-slip condition for the flow and an

Table 1: Comparison of the experimental, analytical and simulation results 

 

 
Total per 1 m length 
of a cylinder, kg/s 

Average per unit area, 
kg/s/m2 

Dimensionless, @
Pa20  

Experimental deposition rate 1.6±0.6×10-9 4.2±1.6×10-8 1.2±0.5×10-6 

Analytical transport 
rate 

monomeric Si 1.4 ×10-7 1.7 ×10-6 4.8 ×10-5 

colloidal Si 2.9×10-9 3.7×10-8 1×10-6 

CFD transport rate of colloidal Si 4.7×10-4 1.2×10-2 3.4×10-1 

Theoretical transport rate towards a smooth parallel wall from Fig.4 1×10-3 
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ideal sink for the particles were imposed on it. The water 
entered the domain through the velocity inlet boundary 
condition with average velocity of 1.9 m/s and temperature 
66oC. Surface type particle injection was specified at the 
same boundary. Total colloidal silica mass flow rate was set 
to 0.098 kg/s. This corresponds to 250 ppm of colloidal 
silica suspended in the flow. 
 

 
Figure 7: Outline of the computational domain  

 
The problem was solved in two steps. First, a converged 
steady state solution for the flow equations was obtained. A 
convergence criterion of 10-6 for the scaled residual of the 
continuity equation was used. The solution was verified by 
comparing calculated and experimentally measured 
distribution of the pressure coefficient along the cylinder 
circumference. Less than 20 % difference was found.  

In the second step, a discrete phase model was enabled and 
transient calculations of the coupled particle-flow dynamics 
were performed. On average, 10 seconds of the flow time 
were computed. In order to record the particle mass flux to 
the cylinder surface, the accretion model was used [8]. 

The overall transport rate of colloidal silica obtained in this 
way is given in Table 1, while its distribution over the 
cylinder circumference is illustrated in Fig. 8. 

 

Figure 8: Comparison of CFD and experimental results 
 
The rate of transport of colloidal silica in these CFD 
simulations is five orders of magnitude higher than the 
experimentally measured deposition rate and the rate 
computed from the analytical model in the previous section. 
This discrepancy may suggest that the scale growth caused 
by colloidal silica is limited by its attachment to the surface 
(chemical bonding) which is intimately related to particle- 
wall interaction (electrostatic force). 

Both analytical and CFD model omit attachment and 
electrostatic effects, yet the CFD predicts a higher rate of 
transport than the analytical model and the theory in Fig.4. 
Some hypotheses which may explain this discrepancy are: 
 

- the CFD model’s better  representation of the flow 
field around the cylinder (than the one used in 
derivation of Eq. 11) affects the transport; 

- the inertial transport of particles, which is not 
accounted for in the analytical model, but is present 
in the CFD, is dominant; 

- the curvature of the cylinder surface and the Saffman 
lift forces, which are present in the CFD but not in 
the theory used to generate Fig. 4 enhance the 
transport of colloidal silica to the surface. 

The shapes of the experimental and predicted deposition 
profiles are different, with the simulated colloid transport 
rate peaking at the stagnation line on the front of the 
cylinder, but the observed scaling rate peaking at 21o. 
However, the colloid transport rate and scaling rate are not 
the same parameter and cannot be directly compared. The 
observed scaling rate may be explained by combining the 
predicted transport rate with the attachment probability, i.e. 
the fraction of particles that reach the surface and actually 
bond and remain on the surface, all others remaining in the 
flow. This fraction is estimated based on the DLVO theory 
of charged colloidal particles interaction in the next section.  

To summarise the findings so far, particles can travel to the 
surface by diffusion or inertial transport. The diffusion 
transport rate of particles (calculated from the analytical 
model) is of the same order of magnitude as the 
experimentally observed deposition rate. The inertial 
transport rate calculated from the CFD model is several 
orders of magnitude higher than the experimentally observed 
deposition rate. Both analytical and CFD models exclude 
particle-particle and particle-wall interactions. Theory and 
experiment may be reconciled with the experimental 
observations if, due to those interactions, only a small 
fraction of the particles arriving at the surface bind to it. To 
investigate this, particle-particle and particle-wall 
interactions are considered in the next section. 

2.3 Theoretical model incorporating electrostatic and 
hydrodynamic effects   

Being in continuous Brownian motion in addition to the 
motion induced by the suspending fluid, colloidal particles 
experience numerous mutual collisions and collisions with 
stationary walls. In the absence of any limiting factors each 
of these collisions would results in close contact between 
particles followed by chemical bonding and agglomeration 
(or attachment to the surface).  This process is called fast, or 
rapid, aggregation as it results in all colloidal particles being 
separated from the solution as aggregate in a matter of 
minutes.  

However, depending on the solution pH, silica colloids can 
carry uncompensated surface charge due to ionization of the 
surface silanol groups. The presence of charge of the same 
sign on all particles, and on wall surfaces covered with 
amorphous silica, results in an electrostatic potential barrier 
which the particles need to overcome to form the bond. Due 
to this so called electrostatic stabilization, not all collisions 
of the particles lead to aggregation or particle attachment to 
the surface. This process is called slow aggregation. Under 
the right conditions charge stabilized colloidal systems can 
be stable for very long periods of time (years). 

The potential barrier between charged particles is usually so 
high (in terms of potential energy) and wide (in terms of 
distance of approach) that individual particles are unable to 
pass it in one attempt – they lose all kinetic energy obtained 
in separate Brownian projections well before they clear the 
potential barrier, due to friction with surrounding liquid 
(viscous interaction). The particles overcome the barrier in a 
sequence of Brownian collisions rather than in one step.  

particles 
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This allows the effect of the interparticle forces to be treated 
as an additional diffusion process [9]. In this case the 
corresponding particle flux can be expressed as (Eq. 12):  

,    (12) 

where n is local particle concentration, B is the friction 
factor and Vt is total interaction potential, which equal to 
sum of the attractive and repulsive potentials calculated from 
DLVO theory [2, 10].    

For the simplest case of a stagnant colloidal suspension, 
when total particle flux (towards each other) is determined 
only by Brownian motion and electrostatic potential yields 
the following for the stability value [9] (Eq. 13): 
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where s=r/a  is a non-dimensional distance between 
particles (or particle and wall), r is centre-to-centre (or 
centre-to-wall) distance, and a is particle radius. 

Stability curves calculated with this equation for two particle 
sizes are presented in Fig. 9 (broken lines). It shows that 
colloid stability W decreases with increasing ionic strength 
of the solution I (concentration of dissolved salts) and with 
decreasing particle size d. It can be seen that in silica sols 
with sufficiently low ionic content only 1 in 1010 collisions 
result in particle coagulation. 

 

Figure 9: Stability curves for colloidal silica sols 

The case of flowing colloidal solution is of more practical 
interest. The rate of particle collisions can be much higher 
than in the stagnant case due to the presence of velocity 
gradients and turbulent pulsations. Thus, Levich gives the 
following expressions for the number of particle-particle 
collisions per second [5]:  

- Brownian encounters 08 DdnNBrw   

- Gradient encounters GdnNGrad
32

03
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where D is the particle diffusion coefficient, d  its diameter, 
no the number of particles per unit volume, G the velocity 
gradient, Re the Reynolds number,  the kinematic viscosity 
and L the characteristic length.  

Calculating these numbers for the conditions of the 
experiment [1] we find (Fig. 10) that the number of 
encounters due to the velocity gradients is higher by several 
orders of magnitude than those due to Brownian motion. 

Here the broken blue line is obtained for the velocity 
gradient G=5*106 s-1. This value corresponds to the 
maximum shear stress in turbulent flow around a cylinder 
(Fig. 8). Also, the difference in slopes of the curves in Fig. 
10 shows a slower decay of gradient-induced collision rate 
with increasing particle size than for the Brownian 
collisions.  

 

Figure 10: Rates of idealized collision processes 

Unfortunately, an attempt to calculate the aggregative 
stability of colloidal system with gradient or turbulent 
collisions included faces significant theoretical difficulties. 
The steady-state convection-diffusion equation with 
electrostatic particle interaction term must be resolved on the 
particle size length scale to find the total number of other 
particles reaching the surface of the selected centre particle. 
In this case finding the solution cannot be simplified by 
using the boundary layer approach (as was done in finding 
mass flux to a flat wall, Eq. 10). The thickness of the 
diffusion boundary layer present on the particle surface is 
comparable with particle size. Thus (in essence inertial) 
effects of the particle’s relative motion due to the velocity 
gradients in mean flow and turbulent pulsations may 
significantly affect the mass transfer rate. Presumably, this 
problem can be tackled numerically. 

On the other hand it is relatively straightforward to include 
the additional particle flux due to the electrostatic interaction 
between particles into the problem of particle transport 
towards a smooth wall.  

For this we assume that the target surface caries uniform 
charge of the same sign and magnitude as SiO2 colloids 
suspended in the flow. Physically this corresponds to the 
ideally smooth amorphous silica surface.  Next, we assume 
that the region of significant inter-particle interaction lies 
entirely within the diffusion boundary layer. This is true for 
the conditions of the experiment [1] (as diffusion boundary 
layer height is 300-2000nm, whereas interaction potential 
can be neglected at separation distances above 50 nm). This 
assumption would be violated only for a very fast flow 
(shear velocity ~0.5 – 1 m/s).  

This last assumption allows us to express the particle 
concentration distribution in the diffusion boundary layer 
(region IV in Fig. 6) as (Eq. 14): 


a

s
IV drV

D

j
cc



 exp)( ,    (14) 

where  )(c  is particle concentration at the edge of the 
diffusion boundary layer y , subscript s is for the “slow” 
particle flux – retarded by the interaction forces. Using the 
condition of concentration continuity at y  we can find 



 

35th New Zealand Geothermal Workshop: 2013 Proceedings 
17 – 20 November 2013 

Rotorua, New Zealand 

Sj  by comparing equations 14 and 10 (for IIIc  expressed 

through IIc ). Simplifying the result the same way as for Eq. 
10 we arrive at (Eq. 15): 

3exp

0








aS

drV

Dn
j

   

(15) 

where   is the diffusion boundary layer thickness (Eq. 8), a 

is particle radius, kT

V
V 

 is the - ratio of electrostatic 

interaction potential and molecular thermal energy. 

Calculating ratio of fj  (determined by Eq. 14) and Sj  Eq. 

15) we get the stability of the colloids to deposition onto 
smooth surface (Eq. 16): 
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drV

W
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







exp

4

3

   
(16) 

Fig. 11 illustrates solutions of the Eq. 16 for three particle 
sizes and two solution ionic strengths. Stability curves from 
Eq. 16 also shown in Fig. 9 for comparison with the particle-
particle interaction case. Similarly to particle-particle 
collisions, the ratio of successful particle-wall collisions 
decreases with increasing particle size and decreasing ionic 
strength.  

 

Figure 11: Colloidal silica stability in smooth surface 
scaling  

The idealized particle-wall collisions modeled here are less 
likely to result in binding than particle-particle collisions 
(Fig. 9). This agrees with the fact that the electrostatic 
potential is twice as high for particle-wall interactions than 
for particle-particle interactions, but contradicts the 
experimentally observed behavior of such systems, that 
particle deposition onto stationary walls has a higher or 
similar rate to particle aggregation in the bulk. Experiments 
also show that this rate increases with increasing particle 
size. 

The rate of bonding in the particle-wall collisions has a weak 
dependence on the shear stress (Fig. 11). It is worth 
mentioning that this dependence is mostly caused by the 
variation of the “fast” surface particle flux (Eq. 10) with 
diffusion boundary layer thickness. Whereas, its “slow” 
counterpart (Eq. 15) was found to be almost independent of 
the flow conditions. The first term in the denominator of the 
Eq. 15 is significantly higher than the second. This means 
that, in this particular idealized case, mass transfer to the 
wall is more severely limited by the potential barrier than by 
the convection-diffusion transport. The transport of particles 
can limit the deposition rate in case of very slow flow 

velocities, when the convective diffusion rate is very small. 
Also, the transport of particles to the surface may be so fast 
that the thickness of the boundary layer can become 
comparable with characteristic length of the inter-particle 
interactions. This, as well as surface roughness, requires a 
more complex model than that presented here.  

3. DISCUSSION  

Stability values of the two marginal collision scenarios 
considered in Section 2.3 can be used to assess particle 
attachment probability in silica scaling process.  

Surfaces of powerplant equipment can rarely be considered 
smooth. Their inherent roughness affects particle transport 
and electrostatic interaction. If they contain roughness 
elements of micrometer scale with varying radii of 
curvature. If assumed to be coated with a monolayer of 
silica, they will have heterogeneous distributions of surface 
charge.  

This heterogeneity is even higher when the surface is 
covered with a layer of colloidal particles. Though areas of 
high curvature near particle contact points become smoothed 
by monomeric silica deposition, the average effective 
surface curvature remains at the same order of magnitude as 
the particle size. New particles arriving at the wall will 
interact with those particles which arrived and bonded 
earlier. We hypothesise that the stability of such “particle - 
rough wall” collisions is between the corresponding values 
for the “particle-particle” and “particle-smooth wall” cases 
presented in Fig. 9.   

For the hydrodynamic and chemical conditions of the 
experiment [1] this gives stability value 104<W<106 i.e. 1 in 
104 to 1 in 106 particles arriving at the wall will bind, the rest 
(the majority) will return to the flow. Other calculations 
presented in Section 2.3 predict that W will increase with 
increasing particle size and decreasing wall shear stress (or 
effectively convective transport rate). 

The former effect is expected as higher particle diameter 
means lower curvature and thus a higher interaction 
potential barrier. The latter effect is more complex. The 
fraction of particles that pass through the potential barrier 
may be affected by the variations in particle kinetic energy 
distribution (caused by convection and particle inertia). With 
a lack of evidence to the contrary it is assumed, for now, that 
W is determined solely by the physicochemical properties of 
the colloidal system. This allows for the silica scaling 
process to be treated like a chemical reaction of the first 
order by concentration (flux) of particles on the reaction 
surface:  

[Scaling rate] = k*[Transport rate] 

where k= 1/W is particle attachment probability. 

The particle transport rate value obtained in the CFD 
simulations (Fig. 12, green circle) can now be converted into 
expected scaling rate:  

[3.4×10-1]*10-5 = 3.4×10-6 

which is the same order of magnitude as the experimental 
scaling rate (yellow circle). 

However, the CFD transport rate may be overestimated as a 
smooth surface was assumed. It seems unlikely it will be 
even higher than the transport rate in an inertia dominated 
regime  ( 1log10 

p ).  
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Extrapolating the trend that increasing surface roughness 
raises the transport rate, the green circle in Fig. 12 is close to 
the expected value of transport rate in experiment [1] with 
fully developed roughness. 

 

Figure 12: Theoretical and experimental trends in the 
silica scaling  

The difference in theoretical predictions and experimental 
observations of the scaling rate behavior with increasing 
particle size is illustrated schematically in Fig. 12. 
Experimental data (yellow broken arrow) shows that the 
scaling rate increases with particle size. Meanwhile, 
theoretical results (red broken arrow) suggest that both 
attachment probability and transport rate decrease with 
increasing particle size.    

It is hypothesized that in this range of particle sizes, 
increasing particle inertia, though it has insignificant effect 
on convection normal to the wall, intensifies tangential 
(parallel to the wall)  convection onto roughness elements 
protruding  from the wall.   

This argument also may explain the difference observed 
(Fig. 8) between the spatial distributions of scale on the 
cylinder in experiment and theory. Higher scaling rate may 
be expected at locations with higher wall shear stress. First, 
the thickness of the diffusion boundary layer is smaller here 
which makes the effect of existing surface roughness higher. 
Second, at the locations with higher wall shear stress 
particles have higher tangential velocity and thus higher 
inertial deposition rate in this direction.  

The wall shear stress distribution in Fig. 8 was calculated for 
a smooth cylinder.  For a rough cylinder its maximum will 
probably shift towards the front. This is because roughness 
elements decelerate the flow and render near wall velocity 
distribution more uniform downstream from where they are 
located. Thus, the observed scale distribution around the 
cylinder may coincide with real wall shear stress 
distribution. 

4. CONCLUSIONS  

The comparison of experimental and new theoretical results 
on silica scale formation found the following: 
 

1. The scaling rate may be expressed as a product of the 
rate of transport of silica particles to the surface and 
the probability of their permanent attachment to it. 

2. Calculations of inertial and diffusional transport of 
particles without electrostatic interactions predict a 
transport rate several orders of magnitude higher than 
the experimentally observed scaling rate.  

3. Increasing surface roughness significantly increases 
(by orders of magnitude) the particle transport rate to 
the surface. Surface roughness will increase as 
particles bond to the surface. Understanding the role 
of surface roughness may explain the effect of particle 
size effect on silica scaling. 

4. The particle attachment probability can be determined 
based on the DLVO theory of colloidal particle 
interactions. 

5. Such calculations show that attachment probability 
decreases with increasing particle size and decreasing 
ionic strength of the solution  

6. For the conditions of the silica scaling experiment [1] 
this probability was argued to be 10-4<W-1<10-6 which 
when multiplied by the computed transport rate 
(taking into account both diffusional and inertial 
transport) predicts to within an order of magnitude the 
experimentally observed scaling rate. Roughness 
effects may explain the remaining discrepancy, but 
this must be investigated further. 

7. The CFD transport rates may vary with further 
refinement of the mesh in the near-wall region. 

8. Further work is required to integrate surface 
roughness into the model. 
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