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ABSTRACT 

Micro-Gravity is a valuable tool in reservoir engineering to 
monitor changes in fluid density during production and 
injection of geothermal fluids. Survey data from micro-
gravity stations at regular intervals is therefore an important 
constraint to numerical reservoir simulations. 

However, comparison between survey data and simulator 
output is not straightforward. While reservoir simulators 
like TOUGH2 and TETRAD can output relevant 
thermodynamic and porosity data, the accurate calculation 
of micro-gravity is difficult due to the highly geometric 
nature of the problem and the 1/r2 dependency of gravity. 

The algorithm presented here decouples the time-dependent 
calculation of the fluid density in the model blocks from the 
static calculation of geometric factors between each block 
and each gravity station. The static volume integral over 
each model block is approximated by a series of tetrahedral 
refinements of the block. Comparisons between this 
method, the analytical solution of a sphere, cube, and the 
commonly used point-mass approximation are shown. 

1. INTRODUCTION 

Isaac Newton’s studies into the effects of gravity signify the 
beginning of modern physics. Hence the mathematical 
treatment of gravitation is one of the most basic equations 
taught to every physicist and engineer. 

Newton focused his studies on the movement of celestial 
bodies, characterized as very heavy objects separated over 
huge distances in space. However, the Newtonian treatment 
of gravity also holds true for small masses at short 
distances. To observe these effects in nature one needs to 
refer to specialized instruments which can resolve tiny 
changes in gravity. 

Micro-gravity surveys are a valuable tool in geoscience. For 
the geothermal reservoir engineer they provide a window to 
observe changes in mixture density deep down below the 
ground. Typically these changes can describe shifts in the 
water table or change of fluid density – either by thermal 
expansion or by changes in gas saturations. 

Surveys performed at regular intervals primarily document 
the change in spread of two-phase zones in a geothermal 
reservoir or the penetration of injection fluids into 
previously void rock structures. Surveys are typically run at 
intervals of several years. Care needs to be taken that 
measurements are made at the same locations (called 
stations) and the effects of shift in groundwater tables may 
need to be taken into consideration before the data can be 
used to describe changes in the geothermal reservoir. 

Owing to the nature of the measurements, micro-gravity 
surveys generate 2D maps of gravitational changes relative 
to a primary survey. Quantitative interpretation of these 
maps can be difficult since each gravity measurement 
represents a volume integral of density weighted by the 
inverse of distance squared. Thus small changes in density 
close to a station can contribute similarly as large changes 
in density far away from a station. 

Numerical reservoir simulators are widely used to model 
the thermodynamic changes in geothermal reservoirs in 3D. 
The calibration of any reservoir model requires a variety of 
physical measurements and observations, among them 
micro-gravity surveys. However calculation of micro-
gravity from numerical models is not straightforward from 
standard reservoir simulator (e.g. TOUGH2, TETRAD) 
output. Many modelers therefore use approximations, like 
treating blocks as point masses and calculating gravity at 
regular locations (e.g. the center of a block surface) instead 
of mimicking the real world location of a station. 
Alternatively there exist some analytical solutions for 
common geometries, like the right-rectangular prism (Nagy 
1966). However these usually involve multiple coordinate 
transformations and work only under certain geometric 
constraints. 

The method presented here leads to an easy to use, accurate 
calculation of gravity from numerical reservoir simulator 
output and provides data which can be individually 
compared to station data. 

2. MATHEMATICAL DESCRIPTION 

2.1. General 

At any given time, the gravity at a station (denoted by index 
j) can be calculated by summing the contributions from all 
N individual blocks (denoted by index i) in the model: 

 

where G is the universal gravitational constant and ρi 
denotes the density of the block. GFij denote the static 
gravity factors between each block and station, and are 
calculated as: 

 

where the volume integral needs to be evaluated over the 
block volume Vi. Note that GFij, g and x are vector 
quantities, though usually only the z-component of GFij and 
g need to be calculated. 
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The density of a block is calculated by summing 
contributions from all MINC layers: 

 

where m denotes the individual MINC layer with porosity φ 
and volume fraction Vfraction. SG and SL denote gas and 
liquid saturations and ρG, ρL the gas and liquid phase 
densities. The rock density part may be omitted if it is 
considered constant and only relative changes in gravity 
over time are of interest. Note that it is assumed that gas 
and liquid phase are well mixed over the block volume – 
tracking of a front or a water table is very complex and is 
beyond the scope of this paper. 

Calculation of the density is straightforward, although the 
parameters need to be collated from different files. The 
approach taken here is to convert all the reservoir data into 
a visualization tool kit (VTK) file series before further 
processing. The added benefits are that both TOUGH2 and 
TETRAD simulator output can be used to generate 
standardized data, which can be plotted in 3D using tools 
like Paraview. Also the open source VTK libraries help 
with the task of calculating the gravity factors. 

2.2. Gravity Factors 

Calculation of the gravity factors is difficult since for 
proper evaluation of the volume integral not only the block 
shape needs to be considered but also the orientation 
towards the station. Only for a very limited amount of 
geometrical shapes the exact solution is known, for 
example the hollow or filled sphere, the infinite-length 
cylinder or the point mass. Nagy (1966) described an 
analytical method for integration of a right rectangular 
prism, which since has been extended by other authors for 
use with other polygons. However these methods usually 
still require certain criteria towards the shape and 
orientation of the objects. 

The numerical algorithm presented here works on any given 
discretized block shape and any orientation, and is thus not 
limited to rectilinear blocks or symmetries. 

Any given block shape is divided into smaller volumes 
which are treated as point masses, i.e. all the mass of the 
sub-volume is considered to be located at its center of 
gravity, xc. The point mass approach for a gravity factor is: 

 

The sum over all sub-volumes (cells) provides a better 
approximation to the volume integral than using the point-
mass approach for the whole block. By controlling the local 
level of refinement it is possible to refine areas close to the 
gravity station to a higher degree than areas further away, 
thus taking care of the strong 1/r2 dependency. 

At the 0th level of refinement, the block is treated as a point 
mass and the gravity factor GFij,0 is calculated. 

Next, the block is divided into multiple tetrahedra by using 
its center of mass as a common vertex. The surface of the 
block is divided into triangles using a vtkTriangleFilter 
routine. Combining the triangles with the common vertex 
forms the tetrahedra of the 1st level. The number of 
tetrahedral formed in this level depends on the shape of the 

original block, for example there will be 4 tetrahedra 
formed if the original block was a tetrahedron, or 12 if the 
original block was a hexahedron.  Treating these tetrahedra 
as point masses and summing over them gives the next 
refinement of the gravity factor, GFij,1. 

The particular choice for using tetrahedrons as refinements 
was made due to practical reasons, since any 3D block 
shape (hexahedrons, wedges, tetrahedra) defined in a VTK 
unstructured grid can be easily broken down into simpler 
tetrahedral units by just following the rules given above. 

Further, the volume and center of gravity of a tetrahedron 
can be easily calculated using simple vector algebra. If the 
4 vertices of a tetrahedron are in 3D space given by vectors 
P1 to P4, the tetrahedron is spanned by vectors 

r12 = P2-P1 

r13 = P3-P1 

r14 = P4-P1 

Thus its volume is calculated using a cross- and a dot-
product: 

 

and its center of mass is: 

 

Further refinements to the block can now simply be made 
by successively refining tetrahedra into 8 smaller 
tetrahedra, using the mid-way points of the vectors r12, r13 
and r14 (see figure 1). Each successive refinement thus 
yields a better approximation GFij,L where L denotes the 
level of refinement. The number of cells the original block 
is broken down to increases by factor 8 per refinement 
level, i.e. 

NV = N1 * 8L-1 

If the original block was a hexahedron with N1=12, at level 
4 one would have 6144 individual sub-volumes. 

 

Figure 1: Tetrahedral refinement scheme. The original 
block (grey) is divided into cells using its center 
of mass as common point. After that tetrahedral 
refinements are applied, L1 (red), L2 (blue), L3 
(green). 
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At this stage one needs to make a choice about memory 
management. If a model with 50,000 blocks is used and is 
refined to level 4 and 4 vectors with 3 components and 4 
byte of memory are required for storage, then the memory 
requirement is ~14GB, which is beyond what most modern 
desktop computers have installed. However, once a single 
block gravity factor is calculated, the memory for its 
calculation can be released and only the gravity factor 
saved for later usage. But if one wants to investigate the 
structure of the refinement to check for the performance of 
this algorithm all data points need to be kept, thus limiting 
the size of the model and the maximum possible refinement 
level Lmax. 

Another consideration is that not all regions of a single 
block need to be refined to the same level. For regions far 
away from the gravity station location, the point mass 
approximation will already be good, and refinements will 
only slightly improve the gravity factor. Hence it becomes 
useful to define a convergence criterion beyond which no 
further refinements are required. 

The convergence criterion is specified via setting a global 
parameter EPV (error per volume). A block will be further 
refined if it is believed that by not refining it the difference 
to the actual convergence value is larger than EPV times the 
block volume. A discussion on how to best define the EPV 
will be given further down. 

Once a refinement level of 2 or further has been created, the 
local rate of convergence can be calculated: 

Consider a cell in level L. Let Grav denote the gravity 
factor calculated by the cell. This cell is part of a larger cell 
from level L-1, which we will denote as the “parent” cell. 
Let ParGrav denote the gravity factor calculated by the 
parent, weighted by the volume fraction factor between the 
cell and the parent volume. Also, the cell has been divided 
into smaller units, its “children” cells, which are from level 
L+1. Hence let ChildGrav be the sum of gravity factors 
calculated by its children cells. 

The rate of convergence, crate, is then calculated using the 
differences between gravity factors: 

 

If crate is larger or equal to 1 then the series has not 
converged yet. If crate < 1 then the truncation error is 
estimated using the geometric series: 

 

If ε is less than the EPV times the cell volume then 
convergence is assumed. Else the children cells will be 
called upon to refine to the next level. 

2.3. Estimation of the EPV Parameter 

Consider the total volume of the numerical reservoir model, 
V, and a typical distance R at which changes in the density 
of the fluid could be important. The typical total gravity 
factor is then in the order of GF = V/R2. 

Density changes occur over 2 orders of magnitude (102), i.e. 
from about 10kg/m3 to 1000kg/m3. 

Changes in gravity can be typically determined to 5%. 

The total error allowable is therefore 0.05 / 102 = 5 * 10-4 
times the total gravity factor. Dividing by V yields the EPV 
= 0.05 / 102 / R2. 

This criterion may be a bit too strict though, and it needs to 
be determined if such a fine EPV will lead to too many 
refined cells – which could force the computer to run out of 
memory. A good strategy is to start the algorithm with the 
desired EPV but a low maximum level, followed by a run 
with a higher maximum level. If the gravity factors don’t 
change significantly between these two runs higher 
refinements may not be needed. 

3. COMPARISONS 

3.1. Analytical Solution of a Homogenously Filled 
Sphere 

The analytical solution for a homogeneously filled sphere 
shows linear increase with growing distance from the center 
to the surface. Outside the sphere, gravity falls with 1/R2. 

For comparison with the algorithm shown here a discretized 
version of a sphere with 1.0m radius was created in VTK. 
Angles ψ and φ and the radial component were discretized 
in 20, 20 and 10 intervals, respectively. The discretization 
results in a representation of a sphere with slightly reduced 
volume, leading to an effective radius of 0.99m which was 
used in the analytical model. Note that the grid for the 
sphere already consist of 20*20*10=4000 single blocks, 
which itself is already very refined. We expect therefore 
quick convergence using the refinement scheme, even at 
low maximum refinement levels. 

Total gravity factors for the sphere were calculated using 
EPV=0.1 and maximum levels 2 and 3 for stations located 
from 0.01m to 100m away from the center. Figure 2 shows 
the comparison with the analytical model. The agreement is 
excellent; the maximum residual encountered corresponds 
to an EPV of 0.015, showing that the above mentioned 
convergence criterion might indeed be too strict. 

 

Figure 2: Comparison of the algorithm with the 
analytical solution of a sphere. 

Note that the point mass approximation (not shown here) 
yields exactly the same solution for R>=1.0m, but diverges 
very rapidly for R<1.0m. 

3.2. Homogeneously Filled Cube 

Cubes or rectilinear blocks are a common feature in most 
geothermal reservoir simulations. Unfortunately, an 
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analytical model does not exist for cubes or rectilinear 
boxes of finite dimension for arbitrary orientations. 
However, analytical solutions exist for some special cases, 
like right-rectangular prisms (e.g. Nagy 1966). Standard 
practice by many modelers is to place artificial gravity 
stations at the center of the block’s face on the surface and 
use the point mass approximation. 

This practice makes direct station-by-station inter-
comparison hard, since the data from the artificially created 
station needs to be interpolated to the actual station 
position, thus introducing another artifact. Further, not 
much thought has been given to the inaccuracies introduced 
by assuming the blocks to be point masses. Certainly, for 
blocks deep down in the reservoir this simplified treatment 
sounds reasonable, but it is not immediately clear how large 
the error is for blocks close to the surface. 

For testing purposes, a cube of 1x1x1m dimensions was 
created with the z-axis perpendicular to one of its faces. 
The center of the cube was placed at (0,0,0). Gravity 
stations were investigated along the z-axis (face centered 
stations) and along an axis running from the center through 
one of the corner. Since the grid for the cube consists of 
only single block we expect a slower convergence than for 
the sphere example. 

Gravity factors were calculated using EPV=0.1 and 
maximum levels refinement levels from 2 to 5. 

Figure 3 shows the results for the face centered stations. At 
the surface, i.e. at 0.5m distance, the point mass model 
gives a gravity factor twice as large as the value calculated 
using the refinement scheme. While this difference at the 
surface is very large it vanishes quickly with increasing 
distance. At a distance of 1.5m the residual is only 1.3%. 

 

Figure 3: Gravity factors for a cube of 1x1x1m with 
gravity stations located along the z-axis. 

Figure 4 shows the results for stations located along the axis 
through the corner of the block. At the surface, z=0.5m, the 
residual is about 20%, but at z=1.0m the residual is less 
than 1%. Convergence between the point mass model and 
the refined calculation is hence faster for corner centered 
stations than for face centered station. 

 

Figure 4: Gravity factors for the cube with stations 
located along an axis through the corner of the 
cube. 

 

Figure 5: z-component of gravity for a station located at 
the face of the cube. Highlighted is a section 
bounded by two concentric rings. 

 

Figure 6: z-component of gravity for a station located at 
the corner of the cube. Note gravity falls off 
quicker radially than vertically due to the cosine 
factor. 

To further verify the results for the cube a simple 
calculation was set up using the analytical method of Nagy 
(1966). Two gravity factors were calculated using the 
corner-centered points (which are easier to set up using the 
Nagy scheme) at z=1.0 and z=1.5m. The analytical solution 
differed from the numerical method by 0.9% and 0.2%, 
respectively, using the level 5 refinement scheme. 
Therefore, for any practical purposes, the numerical method 
described here can substitute the analytical method which 
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requires complex coordinate transformations and works 
only on rectilinear block shapes. 

4. INTERACTION WITH TOUGH2 

To test the functionality and correctness of the whole 
routine, a simple TOUGH2 test model was created that 
included just enough complexity to make the manual 
calculation of gravity changes possible for inter-
comparison. 

The model consists of a cube 1000x1000x1000m dimension 
and includes 1000 equal blocks. It is set up using a dual 
porosity model to ensure the calculation routine can handle 
multiple MINC layers. 3 gravity stations were placed on top 
of the model. 

Two blocks, spatially far apart and deep down in the 
reservoir, were chosen to represent a source and a sink. In a 
first approach it was tried to use an ordinary TOUGH2 
simulation to extract/inject fluid from/to the source and sink 
blocks. However, manually calculating the associated 
changes in gravity proved too hard. If permeabilities in the 
model were chosen too low, TOUGH2 would crash. If they 
were chosen too high, TOUGH2 would spread the changes 
over several blocks. The resulting gravity changes were 
certainly of the right magnitude but were not suitable for 
direct comparison with the manual calculations. 

To overcome this problem the change in fluid mixture 
density was isolated from the TOUGH2 simulation. The 
model was run into steady state and two sets of identical 
thermodynamic variables were written to the output file. 

The output file was then manually edited by changing 
liquid and gas saturations in the source/sink blocks in the 
second printout. In this manner one can exactly control the 
change of mass in particular blocks without having to deal 
with the TOUGH2 simulation complexity. 

The complete algorithm – creation of a gravity matrix, VTK 
file series and subsequent gravity analysis – was run over 
this manipulated TOUGH2 output file and the changes in 
gravity were compared to a manual calculation. The 
maximum residuals encountered were 0.03%, which 
demonstrates that the algorithm and the associated 
workflow  perform very well. 

5. DISCUSSION 

The refined integration scheme and the associated tools 
described here facilitate the calculation of changes in 
micro-gravity in geothermal reservoir modeling situations. 
Changes can be calculated directly at station locations. This 
makes direct inter-comparison of data easy; potentially the 
data could be used in inverse modeling for reservoir 
parameter estimation using iTOUGH or PEST. 

The convergence criterion shown appears to be valid but 
too stringent, i.e. the errors calculated appear to be smaller 
than the error criterion given. More work could be done to 
find a better convergence criterion in order to improve the 
algorithm; however in practical terms the criterion suffices. 

For cubic blocks the refined integration has shown that the 
difference to the point mass model vanishes for distances 
about 1.5 times the block height. This signifies that the 
commonly used point mass calculation is valid only if the 
dimensions of the blocks in the top layers are adequately 
chosen and if changes in mixture density in the surface 
layers are insignificant over the modeled period. 
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