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ABSTRACT

Micro-Gravity is a valuable tool in reservoir engineering to
monitor changes in fluid density during production and
injection of geothermal fluids. Survey data from micro-
gravity stations at regular intervals is therefore an important
constraint to numerical reservoir simulations.

However, comparison between survey data and simulator
output is not straightforward. While reservoir simulators
like TOUGH2 and TETRAD can output relevant
thermodynamic and porosity data, the accurate calculation
of micro-gravity is difficult due to the highly geometric
nature of the problem and the 1/ dependency of gravity.

The algorithm presented here decouples the time-dependent
calculation of the fluid density in the model blocks from the
static calculation of geometric factors between each block
and each gravity station. The static volume integral over
each model block is approximated by a series of tetrahedral
refinements of the block. Comparisons between this
method, the analytical solution of a sphere, cube, and the
commonly used point-mass approximation are shown.

1. INTRODUCTION

Isaac Newton’s studies into the effects of gravity signify the
beginning of modern physics. Hence the mathematical
treatment of gravitation is one of the most basic equations
taught to every physicist and engineer.

Newton focused his studies on the movement of celestial
bodies, characterized as very heavy objects separated over
huge distances in space. However, the Newtonian treatment
of gravity also holds true for small masses at short
distances. To observe these effects in nature one needs to
refer to specialized instruments which can resolve tiny
changes in gravity.

Micro-gravity surveys are a valuable tool in geoscience. For
the geothermal reservoir engineer they provide a window to
observe changes in mixture density deep down below the
ground. Typically these changes can describe shifts in the
water table or change of fluid density — either by thermal
expansion or by changes in gas saturations.

Surveys performed at regular intervals primarily document
the change in spread of two-phase zones in a geothermal
reservoir or the penetration of injection fluids into
previously void rock structures. Surveys are typically run at
intervals of several years. Care needs to be taken that
measurements are made at the same locations (called
stations) and the effects of shift in groundwater tables may
need to be taken into consideration before the data can be
used to describe changes in the geothermal reservoir.

Owing to the nature of the measurements, micro-gravity
surveys generate 2D maps of gravitational changes relative
to a primary survey. Quantitative interpretation of these
maps can be difficult since each gravity measurement
represents a volume integral of density weighted by the
inverse of distance squared. Thus small changes in density
close to a station can contribute similarly as large changes
in density far away from a station.

Numerical reservoir simulators are widely used to model
the thermodynamic changes in geothermal reservoirs in 3D.
The calibration of any reservoir model requires a variety of
physical measurements and observations, among them
micro-gravity surveys. However calculation of micro-
gravity from numerical models is not straightforward from
standard reservoir simulator (e.g. TOUGH2, TETRAD)
output. Many modelers therefore use approximations, like
treating blocks as point masses and calculating gravity at
regular locations (e.g. the center of a block surface) instead
of mimicking the real world location of a station.
Alternatively there exist some analytical solutions for
common geometries, like the right-rectangular prism (Nagy
1966). However these usually involve multiple coordinate
transformations and work only under certain geometric
constraints.

The method presented here leads to an easy to use, accurate
calculation of gravity from numerical reservoir simulator
output and provides data which can be individually
compared to station data.

2. MATHEMATICAL DESCRIPTION

2.1. General

At any given time, the gravity at a station (denoted by index
j) can be calculated by summing the contributions from all
N individual blocks (denoted by index i) in the model:
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where G is the universal gravitational constant and p;
denotes the density of the block. GF; denote the static
gravity factors between each block and station, and are
calculated as:
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where the volume integral needs to be evaluated over the
block volume 7. Note that GFj; g and x are vector
quantities, though usually only the z-component of GF; and
g need to be calculated.
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The density of a block is calculated by summing
contributions from all MINC layers:
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where m denotes the individual MINC layer with porosity ¢
and volume fraction Vj,ci0n. SG and SL denote gas and
liquid saturations and pg, p; the gas and liquid phase
densities. The rock density part may be omitted if it is
considered constant and only relative changes in gravity
over time are of interest. Note that it is assumed that gas
and liquid phase are well mixed over the block volume -
tracking of a front or a water table is very complex and is
beyond the scope of this paper.

Calculation of the density is straightforward, although the
parameters need to be collated from different files. The
approach taken here is to convert all the reservoir data into
a visualization tool kit (VTK) file series before further
processing. The added benefits are that both TOUGH2 and
TETRAD simulator output can be used to generate
standardized data, which can be plotted in 3D using tools
like Paraview. Also the open source VTK libraries help
with the task of calculating the gravity factors.

2.2. Gravity Factors

Calculation of the gravity factors is difficult since for
proper evaluation of the volume integral not only the block
shape needs to be considered but also the orientation
towards the station. Only for a very limited amount of
geometrical shapes the exact solution is known, for
example the hollow or filled sphere, the infinite-length
cylinder or the point mass. Nagy (1966) described an
analytical method for integration of a right rectangular
prism, which since has been extended by other authors for
use with other polygons. However these methods usually
still require certain criteria towards the shape and
orientation of the objects.

The numerical algorithm presented here works on any given
discretized block shape and any orientation, and is thus not
limited to rectilinear blocks or symmetries.

Any given block shape is divided into smaller volumes
which are treated as point masses, i.e. all the mass of the
sub-volume is considered to be located at its center of
gravity, x... The point mass approach for a gravity factor is:
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The sum over all sub-volumes (cells) provides a better
approximation to the volume integral than using the point-
mass approach for the whole block. By controlling the local
level of refinement it is possible to refine areas close to the
gravity station to a higher degree than areas further away,
thus taking care of the strong 1/ dependency.

At the 0™ level of refinement, the block is treated as a point
mass and the gravity factor GF; is calculated.

Next, the block is divided into multiple tetrahedra by using
its center of mass as a common vertex. The surface of the
block is divided into triangles using a vtkTriangleFilter
routine. Combining the triangles with the common vertex
forms the tetrahedra of the 1% level. The number of
tetrahedral formed in this level depends on the shape of the

original block, for example there will be 4 tetrahedra
formed if the original block was a tetrahedron, or 12 if the
original block was a hexahedron. Treating these tetrahedra
as point masses and summing over them gives the next
refinement of the gravity factor, GF;; ;.

The particular choice for using tetrahedrons as refinements
was made due to practical reasons, since any 3D block
shape (hexahedrons, wedges, tetrahedra) defined in a VTK
unstructured grid can be easily broken down into simpler
tetrahedral units by just following the rules given above.

Further, the volume and center of gravity of a tetrahedron
can be easily calculated using simple vector algebra. If the
4 vertices of a tetrahedron are in 3D space given by vectors
P, to P, the tetrahedron is spanned by vectors

ri; = PrP;
r;3 = P3-P;
T4 = PP

Thus its volume is calculated using a cross- and a dot-
product:

1
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and its center of mass is:
_1
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Further refinements to the block can now simply be made
by successively refining tetrahedra into 8 smaller
tetrahedra, using the mid-way points of the vectors r;, r;3
and r;, (see figure 1). Each successive refinement thus
yields a better approximation GF;;; where L denotes the
level of refinement. The number of cells the original block
is broken down to increases by factor 8 per refinement
level, i.e.

NV:N1 *8L71

If the original block was a hexahedron with N,=12, at level
4 one would have 6144 individual sub-volumes.

Figure 1: Tetrahedral refinement scheme. The original
block (grey) is divided into cells using its center
of mass as common point. After that tetrahedral
refinements are applied, L1 (red), L2 (blue), L3
(green).
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At this stage one needs to make a choice about memory
management. If a model with 50,000 blocks is used and is
refined to level 4 and 4 vectors with 3 components and 4
byte of memory are required for storage, then the memory
requirement is ~14GB, which is beyond what most modern
desktop computers have installed. However, once a single
block gravity factor is calculated, the memory for its
calculation can be released and only the gravity factor
saved for later usage. But if one wants to investigate the
structure of the refinement to check for the performance of
this algorithm all data points need to be kept, thus limiting
the size of the model and the maximum possible refinement
level L,

Another consideration is that not all regions of a single
block need to be refined to the same level. For regions far
away from the gravity station location, the point mass
approximation will already be good, and refinements will
only slightly improve the gravity factor. Hence it becomes
useful to define a convergence criterion beyond which no
further refinements are required.

The convergence criterion is specified via setting a global
parameter EPV (error per volume). A block will be further
refined if it is believed that by not refining it the difference
to the actual convergence value is larger than EPV times the
block volume. A discussion on how to best define the EPV
will be given further down.

Once a refinement level of 2 or further has been created, the
local rate of convergence can be calculated:

Consider a cell in level L. Let Grav denote the gravity
factor calculated by the cell. This cell is part of a larger cell
from level L-1, which we will denote as the “parent” cell.
Let ParGrav denote the gravity factor calculated by the
parent, weighted by the volume fraction factor between the
cell and the parent volume. Also, the cell has been divided
into smaller units, its “children” cells, which are from level
L+1. Hence let ChildGrav be the sum of gravity factors
calculated by its children cells.

The rate of convergence, c,.., is then calculated using the
differences between gravity factors:
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If c... is larger or equal to 1 then the series has not
converged yet. If ¢, < 1 then the truncation error is
estimated using the geometric series:

& = (Bray — Parf@rag} s ————
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If ¢ is less than the EPV times the cell volume then
convergence is assumed. Else the children cells will be
called upon to refine to the next level.

2.3. Estimation of the EPV Parameter

Consider the total volume of the numerical reservoir model,
¥, and a typical distance R at which changes in the density
of the fluid could be important. The typical total gravity
factor is then in the order of GF = V/R’.

Density changes occur over 2 orders of magnitude (10%), i.e.
from about 10kg/m? to 1000kg/m®.

Changes in gravity can be typically determined to 5%.

The total error allowable is therefore 0.05 / 10° = 5 * 10™
times the total gravity factor. Dividing by 7 yields the EPV
=0.05/10°/R°.

This criterion may be a bit too strict though, and it needs to
be determined if such a fine EPV will lead to too many
refined cells — which could force the computer to run out of
memory. A good strategy is to start the algorithm with the
desired EPV but a low maximum level, followed by a run
with a higher maximum level. If the gravity factors don’t
change significantly between these two runs higher
refinements may not be needed.

3. COMPARISONS

3.1. Analytical Solution of a Homogenously Filled
Sphere

The analytical solution for a homogeneously filled sphere
shows linear increase with growing distance from the center
to the surface. Outside the sphere, gravity falls with 1/R”.

For comparison with the algorithm shown here a discretized
version of a sphere with 1.0m radius was created in VTK.
Angles w and ¢ and the radial component were discretized
in 20, 20 and 10 intervals, respectively. The discretization
results in a representation of a sphere with slightly reduced
volume, leading to an effective radius of 0.99m which was
used in the analytical model. Note that the grid for the
sphere already consist of 20*20*10=4000 single blocks,
which itself is already very refined. We expect therefore
quick convergence using the refinement scheme, even at
low maximum refinement levels.

Total gravity factors for the sphere were calculated using
EPV=0.1 and maximum levels 2 and 3 for stations located
from 0.01m to 100m away from the center. Figure 2 shows
the comparison with the analytical model. The agreement is
excellent; the maximum residual encountered corresponds
to an EPV of 0.015, showing that the above mentioned
convergence criterion might indeed be too strict.

Gravity Factors for Sphere with R=1.0m
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Figure 2: Comparison of the algorithm with the
analytical solution of a sphere.

Note that the point mass approximation (not shown here)
yields exactly the same solution for R>=1.0m, but diverges
very rapidly for R<1.0m.

3.2. Homogeneously Filled Cube

Cubes or rectilinear blocks are a common feature in most
geothermal reservoir simulations. Unfortunately, an
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analytical model does not exist for cubes or rectilinear
boxes of finite dimension for arbitrary orientations.
However, analytical solutions exist for some special cases,
like right-rectangular prisms (e.g. Nagy 1966). Standard
practice by many modelers is to place artificial gravity
stations at the center of the block’s face on the surface and
use the point mass approximation.

This practice makes direct station-by-station inter-
comparison hard, since the data from the artificially created
station needs to be interpolated to the actual station
position, thus introducing another artifact. Further, not
much thought has been given to the inaccuracies introduced
by assuming the blocks to be point masses. Certainly, for
blocks deep down in the reservoir this simplified treatment
sounds reasonable, but it is not immediately clear how large
the error is for blocks close to the surface.

For testing purposes, a cube of 1x1xlm dimensions was
created with the z-axis perpendicular to one of its faces.
The center of the cube was placed at (0,0,0). Gravity
stations were investigated along the z-axis (face centered
stations) and along an axis running from the center through
one of the corner. Since the grid for the cube consists of
only single block we expect a slower convergence than for
the sphere example.

Gravity factors were calculated using EPV=0.1 and
maximum levels refinement levels from 2 to 5.

Figure 3 shows the results for the face centered stations. At
the surface, i.e. at 0.5m distance, the point mass model
gives a gravity factor twice as large as the value calculated
using the refinement scheme. While this difference at the
surface is very large it vanishes quickly with increasing
distance. At a distance of 1.5m the residual is only 1.3%.

Gravity Factors of Cube - Face Centered Stations
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Figure 3: Gravity factors for a cube of 1x1xim with
gravity stations located along the z-axis.

Figure 4 shows the results for stations located along the axis
through the corner of the block. At the surface, z=0.5m, the
residual is about 20%, but at z=1.0m the residual is less
than 1%. Convergence between the point mass model and
the refined calculation is hence faster for corner centered
stations than for face centered station.

Gravity Factors of Cube - Corner Centered
Stations
a0
35
an

pA
Corner Location

0
15

aF [m]

ULy

o
] 02 04 06 03 1 12 14 16 13 2

z[m]

05

——Paint Mass Maodel  ——level?  ——levell ——leveld ——levely

Figure 4: Gravity factors for the cube with stations
located along an axis through the corner of the
cube.

Figure 5: z-component of gravity for a station located at
the face of the cube. Highlighted is a section
bounded by two concentric rings.

Figure 6: z-component of gravity for a station located at
the corner of the cube. Note gravity falls off
quicker radially than vertically due to the cosine
factor.

To further verify the results for the cube a simple
calculation was set up using the analytical method of Nagy
(1966). Two gravity factors were calculated using the
corner-centered points (which are easier to set up using the
Nagy scheme) at z=1.0 and z=1.5m. The analytical solution
differed from the numerical method by 0.9% and 0.2%,
respectively, using the level 5 refinement scheme.
Therefore, for any practical purposes, the numerical method
described here can substitute the analytical method which
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requires complex coordinate transformations and works
only on rectilinear block shapes.

4. INTERACTION WITH TOUGH2

To test the functionality and correctness of the whole
routine, a simple TOUGH2 test model was created that
included just enough complexity to make the manual
calculation of gravity changes possible for inter-
comparison.

The model consists of a cube 1000x1000x1000m dimension
and includes 1000 equal blocks. It is set up using a dual
porosity model to ensure the calculation routine can handle
multiple MINC layers. 3 gravity stations were placed on top
of the model.

Two blocks, spatially far apart and deep down in the
reservoir, were chosen to represent a source and a sink. In a
first approach it was tried to use an ordinary TOUGH2
simulation to extract/inject fluid from/to the source and sink
blocks. However, manually calculating the associated
changes in gravity proved too hard. If permeabilities in the
model were chosen too low, TOUGH2 would crash. If they
were chosen too high, TOUGH2 would spread the changes
over several blocks. The resulting gravity changes were
certainly of the right magnitude but were not suitable for
direct comparison with the manual calculations.

To overcome this problem the change in fluid mixture
density was isolated from the TOUGH2 simulation. The
model was run into steady state and two sets of identical
thermodynamic variables were written to the output file.

The output file was then manually edited by changing
liquid and gas saturations in the source/sink blocks in the
second printout. In this manner one can exactly control the
change of mass in particular blocks without having to deal
with the TOUGH2 simulation complexity.

The complete algorithm — creation of a gravity matrix, VTK
file series and subsequent gravity analysis — was run over
this manipulated TOUGH2 output file and the changes in
gravity were compared to a manual calculation. The
maximum residuals encountered were 0.03%, which
demonstrates that the algorithm and the associated
workflow perform very well.

5. DISCUSSION

The refined integration scheme and the associated tools
described here facilitate the calculation of changes in
micro-gravity in geothermal reservoir modeling situations.
Changes can be calculated directly at station locations. This
makes direct inter-comparison of data easy; potentially the
data could be used in inverse modeling for reservoir
parameter estimation using iTOUGH or PEST.

The convergence criterion shown appears to be valid but
too stringent, i.e. the errors calculated appear to be smaller
than the error criterion given. More work could be done to
find a better convergence criterion in order to improve the
algorithm; however in practical terms the criterion suffices.

For cubic blocks the refined integration has shown that the
difference to the point mass model vanishes for distances
about 1.5 times the block height. This signifies that the
commonly used point mass calculation is valid only if the
dimensions of the blocks in the top layers are adequately
chosen and if changes in mixture density in the surface
layers are insignificant over the modeled period.

REFERENCES

Atkinson, P.G. & Pedersen, J.R.: Using Precision Gravity
Data in Geothermal Reservoir Engineering Modeling
Studies, Proceedings, Thirteenth Workshop on
Geothermal Reservoir Engineering, Stanford, 1988,
SGP-TR-113

Kitware Inc.: The VTK User’s Guide, Kitware Inc, ISBN
978-1-930934-23-8

Nagy, D.: The Gravitational Attraction of a Right
Rectangular Prism, Geophysics, Vol. 31, No.2 (April,
1966), pp. 362-371

Newton, |.: Philosophiae Naturalis Principia Mathematica,
London 1686

Plouff, D.: Gravity and magnetic fields of polygonal prisms
and application to magnetic terrain corrections,
Geophysics, 41, pp. 727-741

35™ New Zealand Geothermal Workshop: 2013 Proceedings
17 — 20 November 2013
Rotorua, New Zealand



