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ABSTRACT

In many applications, local refinement of a TOUGH2 model
grid is needed where smaller-scale details of the model
behaviour must be resolved- for example, around production
areas (or even individual wells) in a geothermal field.
Because of its flexibility, TOUGH2 makes a range of
approaches to local grid refinement possible. TOUGH2’s
numerical formulation does implicitly require that the
connection faces between grid blocks are orthogonal to the
lines joining the block centres. However, not all approaches
to local grid refinement satisfy this requirement.

This paper surveys the available approaches to horizontal
local grid refinement of TOUGH2 models, considering the
merits and disadvantages of each with reference to model
performance on a test problem. A new approach is also
introduced, incorporating a non-linear optimization
technique for ensuring maximum compliance with
TOUGH2’s orthogonality requirement.

1. INTRODUCTION

The TOUGH2 simulator (Pruess, 2004) is widely used for
the numerical simulation of many types of subsurface flow
and transport problems, including modelling geothermal and
other reservoirs. In many cases, a TOUGH2 model contains
one or more areas of particular interest, over which either
smaller-scale physical processes need to be simulated
accurately, or more detailed results are required (or both).
The production area of a geothermal reservoir model is an
example.

The accuracy of the numerical formulation used by
TOUGH2 (and other simulators) varies inversely with the
local size of the model grid. Hence, the increased accuracy
needed in areas of interest generally requires smaller grid
blocks in that area.

The simplest way to achieve this is by refining the grid over
the entire model. This increases the model accuracy in the
area of interest, but also gives unnecessary increased
accuracy outside this area, resulting in a needlessly large
model and often excessive computation time (particularly if
the area of interest is relatively small).

2. LOCAL GRID REFINEMENT

Hence, local grid refinement is needed, in which block sizes
within the area of interest are reduced, while leaving the
block sizes in the remainder of the model unchanged. The
main difficulty with local grid refinement lies in the
treatment of the transition zone- the zone between refined
and unrefined blocks at the edge of the area of interest.

In this paper, we will focus mainly on horizontal grid
refinement, rather than general 3-D grid refinement. Current
3-D reservoir models typically have a layer/ column

structure, with a horizontal 2-D grid projected vertically
down through a series of layers. In such models, fully 3-D
local grid refinement cannot be carried out without
destroying the layer/ column structure. Horizontal and
vertical local grid refinement are instead carried out
independently.

Hence, vertical refinement in layered reservoir models is
carried out over the entire horizontal grid. This results in
some wasted vertical refinement outside the horizontal area
of interest, but allows the layered structure to be preserved,
and keeps the vertical refinement process simple. The
vertical transition zone just consists of a transition between
thinner and thicker layers, requiring no special treatment
beyond ensuring that the change in layer thickness is not too
abrupt.

Similarly, horizontal local refinement in such grids extends
down through all grid layers, resulting in some wasted
horizontal refinement outside (typically below) the area of
interest, but preserving the columnar structure of the grid.
Handling the horizontal transition zone is more complex and
there are various approaches to it.

3. TOUGH2 GRIDS

TOUGH2 uses an ‘integrated finite difference’ (IFD)
numerical formulation (Narasimhan and Witherspoon,
1976), often referred to as a ‘finite volume’ formulation, in
which the model grid is specified only as a set of block
volumes and the connections between them. A connection
between two blocks (with volumes 77 and 75) is defined by
its interface area A;, and the two perpendicular distances d;
and d, from the block centres to the interface (see Figure 1).

Figure 1: TOUGH2 blocks and connections

This formulation is very flexible, allowing grid blocks of
almost arbitrary shape and a wide variety of grid
configurations. However, as for other formulations, such as
finite elements or finite differences (which IFD reduces to
for regular rectangular blocks), solution accuracy can be
degraded by the use of block shapes that are very irregular-
e.g. blocks that have large aspect ratios (or more generally,
large variations in block interface area), or are very skewed.

In addition, the IFD formulation’s accuracy is reduced
whenever the connection interface between two blocks is not
orthogonal to the line joining the block centres- i.e.
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whenever the angle 6 in Figure 1 is less than 90°. This is
because the pressure difference between the block centres,
divided by the distance d; + d,, is used to approximate the
normal component of pressure gradient driving flow through
the interface (Pruess and Garcia, 2000). As 6 decreases, this
becomes increasingly inaccurate. Hence, designing
TOUGH2 grids with orthogonal connections (6 = 90°) “may
be difficult to achieve in practice but should be
approximated as closely as possible” (Narashimhan and
Witherspoon, 1976). The most common way to achieve this
is simply to use rectangular grids. However, even then the
problem may reappear when local refinement is carried out,
depending on the approach taken.

4. LOCAL GRID REFINEMENT APPROACHES

Figure 2 shows three commonly-used approaches to local
refinement of a rectangular grid. A small section of example
grid is shown, originally consisting of three coarse blocks,
the rightmost of which has been refined by a factor of two in
both the x- and y-directions (the transition zone is shown in
grey). Refinement of a real reservoir model grid consists
mostly of repetitions of patterns similar to this (for irregular
grids, the shapes may vary but the grid topology is the
same).
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Figure 2: Three approaches to local grid refinement

4.1 Simple local refinement

The simplest approach to local refinement is just to add
extra faces to the transition zone blocks, connecting them to
the newly refined blocks, and leave the grid otherwise
unchanged. In the Figure 2a example, the transition zone
block has five horizontal faces. This approach has the virtue
of simplicity, but has the drawback that the connections
from the transition blocks to the refined blocks are almost
never orthogonal.

Noting this, Pruess and Garcia (2000) proposed a
modification of the simple scheme, in which additional
“interpolation nodes” are introduced into the transition
blocks, to enable correct pressure gradients to be calculated
across the connections to the refined blocks. This approach
performs well but is limited to regular rectangular grids.

Simple refinement results in transition blocks with more
than four horizontal faces. This poses no problem for
TOUGH2 itself but can cause difficulties for auxiliary
software (e.g. visualization, data fitting or solid mechanics)
that uses a finite-element formulation, which may only
permit 2-D elements with a maximum of four sides.

4.2 Voronoi local refinement

Voronoi grids are constructed from a specified set of block
centres (and a boundary), with the faces formed by the
perpendicular bisectors of the lines joining pairs of blocks.
Hence, the connections in a Voronoi grid are always
orthogonal. The Voronoi grid in Figure 2b is constructed
from the block centres of the simple refinement in Figure 2a.
Specifying different block centres would result in other
refinement configurations.

Like simple refinement, Voronoi refinement usually results
in transition blocks with more than four horizontal faces.
Voronoi grid generators can also produce blocks with some
very small faces (see Figure 3). Sieger et al. (2010) noted
that these can cause numerical instability, even if only one
block in the grid has a small face, and presented a method
for eliminating them from Voronoi grids; however, no
implementations of this method appear to be widely
available as yet.

N\

Figure 3: Blocks in a Voronoi grid with a small
connection interface

4.3 Triangular local refinement

Another approach to local grid refinement is to triangulate
the transition zone- essentially performing a Delaunay
triangulation on it. This is a common local refinement
approach for finite element grids. As can be seen in Figure
2c¢, more transition blocks are created than in the previous
two approaches, but they are of intermediate size, making a
less abrupt change in block volumes across the transition
zone. No blocks with more than four horizontal faces are
created. However, the transition zone connections are
usually not orthogonal.

5. GRID OPTIMIZATION

The problem of non-orthogonal connections in TOUGH2
grids can be addressed by adjusting the positions of the grid
nodes to make the connections as orthogonal as possible.
This process can be formulated as a non-linear least squares
optimization problem. The nodal coordinates are the
optimization parameters, and the functions to be minimized
are the cosines of the connection angles (calculated for each
connection from the dot product of the vector along the
connection face with the vector difference between the block
centres).
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When this optimization process is used in conjunction with
local grid refinement, usually only grid nodes within the
transition zone need be optimized. Nodes in neighbouring
blocks can be added in as well if needed.

Optimization of a grid with simple local refinement gives
something very similar to the Voronoi grid generated from
the original block centres.  An optimization of the
triangulated grid from Figure 2c is shown in Figure 4.
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Figure 4: Optimized triangular local refinement

This optimization scheme has been implemented as part of
the PyTOUGH Python scripting library (Croucher, 2011;
Wellmann et al., 2012) for TOUGH2. It makes use of the
‘leastsq’ routine from the SciPy library (www.scipy.org), or
optionally the parameter estimation software PEST
(Doherty, 2010), to do the optimization, and can carry out
horizontal optimization of layer/ column grids. The user can
also include, with appropriate weighting, other grid quality
measures in the optimization (aspect ratio and skewness).

The optimization scheme could also be extended, with little
effort, to arbitrary unstructured 3-D grids. The formulation
would be essentially the same, but the calculation of the
connection angle & would be slightly different.

6. TEST PROBLEM

A test problem was formulated to illustrate the importance
of maintaining orthogonal connections in TOUGH2 grids,
the performance of different local refinement approaches
and the effect of the grid optimization scheme described
above. The problem consists of a very simple isothermal,
one-dimensional uniform flow caused by a constant pressure
gradient in the x-direction. In this flow a square grid is
located, which can be rotated about its centre to various
orientations with respect to the flow direction. As the grid
orientation angle ¢ varies, the boundary conditions on the
grid are adjusted so that the underlying solution stays the
same (see Figure 5).

The parameters of the problem are given in Table 1.
Neglecting any variation of fluid density or viscosity with
pressure, a simple application of Darcy’s Law yields the
analytical solution for the pressure P at any position x,y :

P(x,y)=Po—pgx!(pk)

Pressure boundary conditions, given by the analytical
solution, are applied on the upstream boundaries via inactive
blocks connected to the boundary. Fluid is extracted via
sink terms from the blocks on the downstream boundaries,
so that the total mass extracted from the top and right-hand
side boundaries is g 4 I sin(p) and g & I cos(p) respectively.
(Top and bottom boundary conditions are not applied for ¢ =
0or90°)

Starting from the 36-block ¢ = 0 grid, all 18 blocks to the
right of the grid centre were refined by a factor of two in
each direction, using four different local grid refinement
approaches (simple, Voronoi, triangular and optimized
triangular). The steady-state problem was then solved
numerically using TOUGH?2 for all angles ¢ between 0 and

90°, in 5° increments. The pressure and flow results in each
case were compared with the analytical solution. The
PyTOUGH scripting library was used to set up, run, and
post-process all 76 TOUGH2 models from a Python script.

TOUGH?2 strictly does not give the modelled pressures at
particular points, but rather the average pressure over each
block. Hence, in comparing modelled pressures with an
analytical solution, the average of the analytical solution
over each block should be computed, via e.g. Gaussian
quadrature, and used for comparison. For the present
problem the pressure varies only linearly in space, so the
averages can be computed exactly using only a low-order
Gaussian quadrature scheme.
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Figure 5: Test problem configuration
Parameter Value
Grid side length / 6000 m
Grid depth 7 100 m
Unrefined grid block size 1000 m
Permeability (k) 108 m?
Porosity 0.1

Fluid flux in x-direction (q) 0.5x 10 kgm?s?

Pressure at x = 0 (Pg) 5 bar

Temperature (constant) 20°C

Fluid viscosity u 1.0017 x 103 kg m? s?
Fluid density p 998.44 kgm™

Table 1: Test problem parameters
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Figure 6: Test results for simple refinement, ¢ = 0°
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Figure 7: Test results for simple refinement, ¢ = 45°
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Figure 8: Test results for simple refinement, ¢ = 90°
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Figure 9: Test results for Voronoi refinement, ¢ = 0°
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Figure 10: Test results for Voronoi refinement, ¢ = 45°

T T T T 0.10
0.08
6000 -]
- - - - - - 0:06
4000 |- 3
- |- -] - 0.02
—_— e e
E 0.00
> 2000 -]
-0.02
-0.04
ok |
-0.06
Mass flow/area = 1le-05 kg/s/m? -0.08
-2000 |- . .
! L L L -0.10
0 2000 4000 6000
x (m)

Figure 11: Test results for Voronoi refinement, ¢ = 90°

35" New Zealand Geothermal Workshop: 2013 Proceedings
17 — 20 November 2013
Rotorua, New Zealand

Pressure error (bar)

Pressure error (bar)

Pressure error (bar)



T T T T 0.10
0.08
6000 ]
- - |- 0»06
e llks 0.04
4000 + .
- - |- 0.02
E | e s 0.00
> 2000 .
— | — _0-02
- - | -0.04
ok ]
-0.06
Mass flow/area = 1e-05 kg/s/m? -0.08
=2000 - ]
1 J_—=_F 1 —-0.10
0 2000 4000 6000
x (m)

Figure 12: Test results for triangular refinement, ¢ = 0°
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Figure 13: Test results for triangular refinement, ¢ = 45°
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Figure 14: Test results for triangular refinement, ¢ = 90°
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Figure 15: Test results for optimized triangular
refinement, ¢ = 0°
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Figure 16: Test results for optimized triangular
refinement, ¢ = 45°
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Figure 17: Test results for optimized triangular

refinement, ¢ = 90°
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7. RESULTS

Figures 6 — 17 show the results for ¢ = 0, 45° and 90°, for
each of the four types of local grid refinement. In each case
the pressure error in each block is shown, together with the
block-averaged mass flux vector (calculated from the
connection mass flows). The exact solution for the flux is a
constant vector of length ¢ in the x-direction.
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Figure 18: Maximum absolute pressure errors as a
function of orientation angle ¢, for four
refinement types

Figure 18 shows the maximum absolute pressure error over
the grid as a function of orientation angle ¢, again for each
of the four types of local grid refinement.

8. DISCUSSION

The results for simple refinement (Figures 6 - 8) show
pressure errors in the transition zone increasing in
magnitude to nearly 0.1 bar (5%) for the ¢ = 90° case.
These errors are solely an artefact of the non-orthogonal
connections in the transition zone, and have an alternating
pattern between adjacent blocks along the edge of the zone.
Figure 19 shows the effect of this pressure distribution on
the mass flows through the block connections. The
oscillating pressures give rise to mass flows of alternating
sign, forming small flow loops in and out of the transition
zone. This effect shows up in Figure 8 as an oscillation in
the block-averaged mass fluxes. It has also been observed in
real reservoir models using simple refinement.

The simple refinement scheme does not, however, introduce
any pressure errors for ¢ = 0. Again, this can be understood
by considering the connections between the refined part of
the grid and the transition zone. As pointed out by Pruess
and Garcia (2000), a line from the centre of a refined block
perpendicular to its connection interface with a transition
block does not pass through a transition block centre, but
rather through a point some distance above or below it.
Hence, in calculating the pressure gradient at the interface
from the pressures at the block centres, the position of the
transition block centre is effectively incorrect only in its y-
coordinate. However, when ¢ = 0 this does not matter,
because the pressure for this problem does not depend on the
y coordinate.
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Figure 19: Connection mass flows around the transition
zone for simple refinement, ¢ = 90°

Figures 9 - 11 show that using a Voronoi grid to regain
orthogonal connections practically eliminates the errors seen
in the case of simple refinement. All the block-averaged
mass fluxes are aligned with the x-axis and have the correct
magnitude of 0.5 x 10 kg m? s, and the pressure errors
are close to zero.

There are again obvious pressure errors when triangular
refinement is used (Figures 12 - 14). When ¢ = 0, all blocks
downstream from the transition zone have pressures nearly
0.1 bar too high. For intermediate angles, the magnitude of
the pressure error reduces somewhat and takes on an
alternating pattern, like that of the simple refinement case,
which again causes oscillations in the mass flows.
Interestingly, the downstream errors are near zero for the ¢ =
45° case, indicating that some of the errors introduced in the
transition zone have fortuitously cancelled each other out.
However, as ¢ increases further to 90° the errors increase
again in magnitude (though reversed in sign) to nearly 0.1
bar, and are larger at the downstream end of the grid.

Figures 15 - 17 show that optimizing the triangular
refinement grid is sufficient to regain correct performance,
with near-zero pressure errors and correctly aligned mass
fluxes.

Finally, Figure 18 shows that the error behaviour is similar
for intermediate orientation angles. The errors for the
simple refinement scheme increase steadily with the angle ¢,
while those for the triangular scheme are lowest at around ¢
= 40°. Pressure errors for the optimized triangular scheme
are practically zero at all angles, while those for the Voronoi
scheme are small but still detectable, particularly at larger
angles. A closer analysis of the grids reveals that the
connection angles (6) in the Voronoi grid are not all exactly
90° (as would be expected in theory), but depart from this by
up to 1°, possibly from loss of precision when the grid data
were written to file. By comparison, the connections in the
optimized triangular grid are all within 0.4° of being
orthogonal, while the worst connections in both the simple
refinement and triangular grids are 18.4° from orthogonal.

9. CONCLUSIONS

As previous authors have stated (but is sometimes
overlooked), it is important to use TOUGH2 grids with
connections that are as close to orthogonal as possible.
Rectangular grids (regular or irregular) automatically satisfy
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this requirement, but local grid refinement even on a regular
rectangular grid can result in non-orthogonal connections,
depending on the refinement approach used.

TOUGH2 solutions on grids with non-orthogonal
connections will usually contain pressure errors. The test
problem used here to demonstrate this is very simple, but
representative of the general situation of pressure gradients
causing flow at various angles to any computational grid.
The nature of the pressure errors will depend on the
refinement approach and the orientation of the flow with
respect to the grid. Even relatively small pressure errors can
lead to unphysical flow patterns, e.g. flow loops at the edge
of the refinement area.

To avoid these problems, it is recommended to use either
Voronoi grids for local refinement, or the optimized
triangular scheme presented in this paper. (Optimized
simple refinement is essentially the same as Voronoi
refinement.) Both approaches give grids with very nearly
orthogonal connections. Grids with Voronoi local
refinement have somewhat fewer blocks than those created
using the optimized triangular scheme: 90 blocks instead of
102 for the test problem shown here. More generally, when
refining a rectangular grid by a factor of two in each
direction, over a rectangular area of interest, the number of
extra blocks created by the optimized triangular scheme is
twice the number of transition zone blocks in the
corresponding Voronoi grid. However, the optimized
triangular approach gives block sizes that vary less abruptly
across the transition zone.

The optimization scheme also avoids the problem of the
very small connection faces often created by Voronoi grid
generators.  Also, with optimized triangular refinement,
blocks with more than four horizontal faces are not needed,
which can be advantageous for interfacing with finite-
element based auxiliary software. The optimization scheme
could be extended to local refinement of unstructured 3-D
TOUGH2 grids.
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