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ABSTRACT 

In many applications, local refinement of a TOUGH2 model 
grid is needed where smaller-scale details of the model 
behaviour must be resolved- for example, around production 
areas (or even individual wells) in a geothermal field.  
Because of its flexibility, TOUGH2 makes a range of 
approaches to local grid refinement possible.  TOUGH2’s 
numerical formulation does implicitly require that the 
connection faces between grid blocks are orthogonal to the 
lines joining the block centres.  However, not all approaches 
to local grid refinement satisfy this requirement. 

This paper surveys the available approaches to horizontal 
local grid refinement of TOUGH2 models, considering the 
merits and disadvantages of each with reference to model 
performance on a test problem.   A new approach is also 
introduced, incorporating a non-linear optimization 
technique for ensuring maximum compliance with 
TOUGH2’s orthogonality requirement. 

1. INTRODUCTION 

 The TOUGH2 simulator (Pruess, 2004) is widely used for 
the numerical simulation of many types of subsurface flow 
and transport problems, including modelling geothermal and 
other reservoirs.  In many cases, a TOUGH2 model contains 
one or more areas of particular interest, over which either 
smaller-scale physical processes need to be simulated 
accurately, or more detailed results are required (or both).  
The production area of a geothermal reservoir model is an 
example. 

The accuracy of the numerical formulation used by 
TOUGH2 (and other simulators) varies inversely with the 
local size of the model grid.  Hence, the increased accuracy 
needed in areas of interest generally requires smaller grid 
blocks in that area. 

The simplest way to achieve this is by refining the grid over 
the entire model.  This increases the model accuracy in the 
area of interest, but also gives unnecessary increased 
accuracy outside this area, resulting in a needlessly large 
model and often excessive computation time (particularly if 
the area of interest is relatively small). 

2. LOCAL GRID REFINEMENT 

Hence, local grid refinement is needed, in which block sizes 
within the area of interest are reduced, while leaving the 
block sizes in the remainder of the model unchanged.  The 
main difficulty with local grid refinement lies in the 
treatment of the transition zone- the zone between refined 
and unrefined blocks at the edge of the area of interest. 

In this paper, we will focus mainly on horizontal grid 
refinement, rather than general 3-D grid refinement.  Current 
3-D reservoir models typically have a layer/ column 

structure, with a horizontal 2-D grid projected vertically 
down through a series of layers.  In such models, fully 3-D 
local grid refinement cannot be carried out without 
destroying the layer/ column structure.  Horizontal and 
vertical local grid refinement are instead carried out 
independently. 

Hence, vertical refinement in layered reservoir models is 
carried out over the entire horizontal grid.  This results in 
some wasted vertical refinement outside the horizontal area 
of interest, but allows the layered structure to be preserved, 
and keeps the vertical refinement process simple.  The 
vertical transition zone just consists of a transition between 
thinner and thicker layers, requiring no special treatment 
beyond ensuring that the change in layer thickness is not too 
abrupt. 

Similarly, horizontal local refinement in such grids extends 
down through all grid layers, resulting in some wasted 
horizontal refinement outside (typically below) the area of 
interest, but preserving the columnar structure of the grid.  
Handling the horizontal transition zone is more complex and 
there are various approaches to it. 

3. TOUGH2 GRIDS 

TOUGH2 uses an ‘integrated finite difference’ (IFD) 
numerical formulation (Narasimhan and Witherspoon, 
1976), often referred to as a ‘finite volume’ formulation, in 
which the model grid is specified only as a set of block 
volumes and the connections between them.  A connection 
between two blocks (with volumes V1 and V2) is defined by 
its interface area A12 and the two perpendicular distances d1 
and d2 from the block centres to the interface (see Figure 1). 

 

Figure 1: TOUGH2 blocks and connections 

This formulation is very flexible, allowing grid blocks of 
almost arbitrary shape and a wide variety of grid 
configurations.  However, as for other formulations, such as 
finite elements or finite differences (which IFD reduces to 
for regular rectangular blocks), solution accuracy can be 
degraded by the use of block shapes that are very irregular- 
e.g. blocks that have large aspect ratios (or more generally, 
large variations in block interface area), or are very skewed. 

In addition, the IFD formulation’s accuracy is reduced 
whenever the connection interface between two blocks is not 
orthogonal to the line joining the block centres- i.e. 
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whenever the angle θ in Figure 1 is less than 90°.  This is 
because the pressure difference between the block centres, 
divided by the distance d1 + d2, is used to approximate the 
normal component of pressure gradient driving flow through 
the interface (Pruess and Garcia, 2000).  As θ decreases, this 
becomes increasingly inaccurate.  Hence, designing 
TOUGH2 grids with orthogonal connections (θ = 90°) “may 
be difficult to achieve in practice but should be 
approximated as closely as possible” (Narashimhan and 
Witherspoon, 1976).  The most common way to achieve this 
is simply to use rectangular grids.  However, even then the 
problem may reappear when local refinement is carried out, 
depending on the approach taken. 

4. LOCAL GRID REFINEMENT APPROACHES 

Figure 2 shows three commonly-used approaches to local 
refinement of a rectangular grid.  A small section of example 
grid is shown, originally consisting of three coarse blocks, 
the rightmost of which has been refined by a factor of two in 
both the x- and y-directions (the transition zone is shown in 
grey).  Refinement of a real reservoir model grid consists 
mostly of repetitions of patterns similar to this (for irregular 
grids, the shapes may vary but the grid topology is the 
same). 

 

Figure 2: Three approaches to local grid refinement 

4.1 Simple local refinement 

The simplest approach to local refinement is just to add 
extra faces to the transition zone blocks, connecting them to 
the newly refined blocks, and leave the grid otherwise 
unchanged.  In the Figure 2a example, the transition zone 
block has five horizontal faces.  This approach has the virtue 
of simplicity, but has the drawback that the connections 
from the transition blocks to the refined blocks are almost 
never orthogonal. 

Noting this, Pruess and Garcia (2000) proposed a 
modification of the simple scheme, in which additional 
“interpolation nodes” are introduced into the transition 
blocks, to enable correct pressure gradients to be calculated 
across the connections to the refined blocks.  This approach 
performs well but is limited to regular rectangular grids. 

Simple refinement results in transition blocks with more 
than four horizontal faces.  This poses no problem for 
TOUGH2 itself but can cause difficulties for auxiliary 
software (e.g. visualization, data fitting or solid mechanics) 
that uses a finite-element formulation, which may only 
permit 2-D elements with a maximum of four sides. 

4.2 Voronoi local refinement 

Voronoi grids are constructed from a specified set of block 
centres (and a boundary), with the faces formed by the 
perpendicular bisectors of the lines joining pairs of blocks.  
Hence, the connections in a Voronoi grid are always 
orthogonal.  The Voronoi grid in Figure 2b is constructed 
from the block centres of the simple refinement in Figure 2a.  
Specifying different block centres would result in other 
refinement configurations. 

Like simple refinement, Voronoi refinement usually results 
in transition blocks with more than four horizontal faces.  
Voronoi grid generators can also produce blocks with some 
very small faces (see Figure 3).  Sieger et al. (2010) noted 
that these can cause numerical instability, even if only one 
block in the grid has a small face, and presented a method 
for eliminating them from Voronoi grids; however, no 
implementations of this method appear to be widely 
available as yet. 

 

Figure 3: Blocks in a Voronoi grid with a small 
connection interface 

4.3 Triangular local refinement 

Another approach to local grid refinement is to triangulate 
the transition zone- essentially performing a Delaunay 
triangulation on it.  This is a common local refinement 
approach for finite element grids.  As can be seen in Figure 
2c, more transition blocks are created than in the previous 
two approaches, but they are of intermediate size, making a 
less abrupt change in block volumes across the transition 
zone.  No blocks with more than four horizontal faces are 
created.  However, the transition zone connections are 
usually not orthogonal. 

5. GRID OPTIMIZATION 

The problem of non-orthogonal connections in TOUGH2 
grids can be addressed by adjusting the positions of the grid 
nodes to make the connections as orthogonal as possible.  
This process can be formulated as a non-linear least squares 
optimization problem.  The nodal coordinates are the 
optimization parameters, and the functions to be minimized 
are the cosines of the connection angles (calculated for each 
connection from the dot product of the vector along the 
connection face with the vector difference between the block 
centres). 
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When this optimization process is used in conjunction with 
local grid refinement, usually only grid nodes within the 
transition zone need be optimized.  Nodes in neighbouring 
blocks can be added in as well if needed. 

Optimization of a grid with simple local refinement gives 
something very similar to the Voronoi grid generated from 
the original block centres.  An optimization of the 
triangulated grid from Figure 2c is shown in Figure 4. 

 

Figure 4: Optimized triangular local refinement 

This optimization scheme has been implemented as part of 
the PyTOUGH Python scripting library (Croucher, 2011; 
Wellmann et al., 2012) for TOUGH2.  It makes use of the 
‘leastsq’ routine from the SciPy library (www.scipy.org), or 
optionally the parameter estimation software PEST 
(Doherty, 2010), to do the optimization, and can carry out 
horizontal optimization of layer/ column grids.  The user can 
also include, with appropriate weighting, other grid quality 
measures in the optimization (aspect ratio and skewness). 

The optimization scheme could also be extended, with little 
effort, to arbitrary unstructured 3-D grids.  The formulation 
would be essentially the same, but the calculation of the 
connection angle θ would be slightly different. 

6. TEST PROBLEM 

A test problem was formulated to illustrate the importance 
of maintaining orthogonal connections in TOUGH2 grids, 
the performance of different local refinement approaches 
and the effect of the grid optimization scheme described 
above.  The problem consists of a very simple isothermal, 
one-dimensional uniform flow caused by a constant pressure 
gradient in the x-direction.  In this flow a square grid is 
located, which can be rotated about its centre to various 
orientations with respect to the flow direction.  As the grid 
orientation angle φ varies, the boundary conditions on the 
grid are adjusted so that the underlying solution stays the 
same (see Figure 5). 

The parameters of the problem are given in Table 1.  
Neglecting any variation of fluid density or viscosity with 
pressure, a simple application of Darcy’s Law yields the 
analytical solution for the pressure P at any position x,y : 

P(x, y) = P0 – μ q x / (ρ k) 

Pressure boundary conditions, given by the analytical 
solution, are applied on the upstream boundaries via inactive 
blocks connected to the boundary.  Fluid is extracted via 
sink terms from the blocks on the downstream boundaries, 
so that the total mass extracted from the top and right-hand 
side boundaries is q h l sin(φ) and q h l cos(φ) respectively.  
(Top and bottom boundary conditions are not applied for φ = 
0 or 90°.)  

Starting from the 36-block φ = 0 grid, all 18 blocks to the 
right of the grid centre were refined by a factor of two in 
each direction, using four different local grid refinement 
approaches (simple, Voronoi, triangular and optimized 
triangular).  The steady-state problem was then solved 
numerically using TOUGH2 for all angles φ between 0 and 

90°, in 5° increments.  The pressure and flow results in each 
case were compared with the analytical solution.  The 
PyTOUGH scripting library was used to set up, run, and 
post-process all 76 TOUGH2 models from a Python script. 

TOUGH2 strictly does not give the modelled pressures at 
particular points, but rather the average pressure over each 
block.  Hence, in comparing modelled pressures with an 
analytical solution, the average of the analytical solution 
over each block should be computed, via e.g. Gaussian 
quadrature, and used for comparison.  For the present 
problem the pressure varies only linearly in space, so the 
averages can be computed exactly using only a low-order 
Gaussian quadrature scheme. 

 

Figure 5: Test problem configuration 

 

Parameter Value 

Grid side length l 6000 m 

Grid depth h 100 m 

Unrefined grid block size 1000 m 

Permeability (k) 10-13 m2 

Porosity 0.1 

Fluid flux in x-direction (q) 0.5 × 10-5 kg m-2 s-1 

Pressure at x = 0 (P0) 5 bar 

Temperature (constant) 20 °C 

Fluid viscosity  μ 1.0017 × 10-3 kg m-1 s-1

Fluid density  ρ 998.44  kg m-3 

Table 1: Test problem parameters 
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Figure 6: Test results for simple refinement, φ = 0° 

 

Figure 7: Test results for simple refinement, φ = 45° 

 

Figure 8: Test results for simple refinement, φ = 90° 

 

Figure 9: Test results for Voronoi refinement, φ = 0° 

 

Figure 10: Test results for Voronoi refinement, φ = 45° 

 

Figure 11: Test results for Voronoi refinement, φ = 90° 
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Figure 12:  Test results for triangular refinement,  φ = 0° 

 

Figure 13: Test results for triangular refinement, φ = 45° 

 

Figure 14: Test results for triangular refinement, φ = 90° 

 

Figure 15: Test results for optimized triangular 
refinement, φ = 0° 

 

Figure 16: Test results for optimized triangular 
refinement, φ = 45° 

 

Figure 17: Test results for optimized triangular 
refinement, φ = 90° 
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7. RESULTS 

Figures 6 – 17 show the results for φ = 0, 45° and 90°, for 
each of the four types of local grid refinement.  In each case 
the pressure error in each block is shown, together with the 
block-averaged mass flux vector (calculated from the 
connection mass flows).  The exact solution for the flux is a 
constant vector of length q in the x-direction. 

 

Figure 18: Maximum absolute pressure errors as a 
function of orientation angle φ, for four 
refinement types 

Figure 18 shows the maximum absolute pressure error over 
the grid as a function of orientation angle φ, again for each 
of the four types of local grid refinement. 

8. DISCUSSION 

The results for simple refinement (Figures 6 - 8) show 
pressure errors in the transition zone increasing in 
magnitude to nearly 0.1 bar (5%) for the φ = 90° case.  
These errors are solely an artefact of the non-orthogonal 
connections in the transition zone, and have an alternating 
pattern between adjacent blocks along the edge of the zone.  
Figure 19 shows the effect of this pressure distribution on 
the mass flows through the block connections.  The 
oscillating pressures give rise to mass flows of alternating 
sign, forming small flow loops in and out of the transition 
zone.  This effect shows up in Figure 8 as an oscillation in 
the block-averaged mass fluxes.  It has also been observed in 
real reservoir models using simple refinement. 

The simple refinement scheme does not, however, introduce 
any pressure errors for φ = 0.  Again, this can be understood 
by considering the connections between the refined part of 
the grid and the transition zone.  As pointed out by Pruess 
and Garcia (2000), a line from the centre of a refined block 
perpendicular to its connection interface with a transition 
block does not pass through a transition block centre, but 
rather through a point some distance above or below it.  
Hence, in calculating the pressure gradient at the interface 
from the pressures at the block centres, the position of the 
transition block centre is effectively incorrect only in its y-
coordinate.  However, when φ = 0 this does not matter, 
because the pressure for this problem does not depend on the 
y coordinate. 

 

Figure 19: Connection mass flows around the transition 
zone for simple refinement, φ = 90° 

Figures 9 - 11 show that using a Voronoi grid to regain 
orthogonal connections practically eliminates the errors seen 
in the case of simple refinement.  All the block-averaged 
mass fluxes are aligned with the x-axis and have the correct 
magnitude of 0.5 × 10-5 kg m-2 s-1, and the pressure errors 
are close to zero. 

There are again obvious pressure errors when triangular 
refinement is used (Figures 12 - 14).  When φ = 0, all blocks 
downstream from the transition zone have pressures nearly 
0.1 bar too high.  For intermediate angles, the magnitude of 
the pressure error reduces somewhat and takes on an 
alternating pattern, like that of the simple refinement case, 
which again causes oscillations in the mass flows.  
Interestingly, the downstream errors are near zero for the φ = 
45° case, indicating that some of the errors introduced in the 
transition zone have fortuitously cancelled each other out.  
However, as φ increases further to 90° the errors increase 
again in magnitude (though reversed in sign) to nearly 0.1 
bar, and are larger at the downstream end of the grid. 

Figures 15 - 17 show that optimizing the triangular 
refinement grid is sufficient to regain correct performance, 
with near-zero pressure errors and correctly aligned mass 
fluxes. 

Finally, Figure 18 shows that the error behaviour is similar 
for intermediate orientation angles.  The errors for the 
simple refinement scheme increase steadily with the angle φ, 
while those for the triangular scheme are lowest at around φ 
= 40°.  Pressure errors for the optimized triangular scheme 
are practically zero at all angles, while those for the Voronoi 
scheme are small but still detectable, particularly at larger 
angles.  A closer analysis of the grids reveals that the 
connection angles (θ) in the Voronoi grid are not all exactly 
90° (as would be expected in theory), but depart from this by 
up to 1°, possibly from loss of precision when the grid data 
were written to file.  By comparison, the connections in the 
optimized triangular grid are all within 0.4° of being 
orthogonal, while the worst connections in both the simple 
refinement and triangular grids are 18.4° from orthogonal. 

9. CONCLUSIONS 

As previous authors have stated (but is sometimes 
overlooked), it is important to use TOUGH2 grids with 
connections that are as close to orthogonal as possible.  
Rectangular grids (regular or irregular) automatically satisfy 
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this requirement, but local grid refinement even on a regular 
rectangular grid can result in non-orthogonal connections, 
depending on the refinement approach used. 

TOUGH2 solutions on grids with non-orthogonal 
connections will usually contain pressure errors.  The test 
problem used here to demonstrate this is very simple, but 
representative of the general situation of pressure gradients 
causing flow at various angles to any computational grid. 
The nature of the pressure errors will depend on the 
refinement approach and the orientation of the flow with 
respect to the grid.  Even relatively small pressure errors can 
lead to unphysical flow patterns, e.g. flow loops at the edge 
of the refinement area. 

To avoid these problems, it is recommended to use either 
Voronoi grids for local refinement, or the optimized 
triangular scheme presented in this paper.  (Optimized 
simple refinement is essentially the same as Voronoi 
refinement.)  Both approaches give grids with very nearly 
orthogonal connections.  Grids with Voronoi local 
refinement have somewhat fewer blocks than those created 
using the optimized triangular scheme: 90 blocks instead of 
102 for the test problem shown here.  More generally, when 
refining a rectangular grid by a factor of two in each 
direction, over a rectangular area of interest, the number of 
extra blocks created by the optimized triangular scheme is 
twice the number of transition zone blocks in the 
corresponding Voronoi grid.  However, the optimized 
triangular approach gives block sizes that vary less abruptly 
across the transition zone. 

The optimization scheme also avoids the problem of the 
very small connection faces often created by Voronoi grid 
generators.  Also, with optimized triangular refinement, 
blocks with more than four horizontal faces are not needed, 
which can be advantageous for interfacing with finite-
element based auxiliary software.  The optimization scheme 
could be extended to local refinement of unstructured 3-D 
TOUGH2 grids. 
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