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ABSTRACT 

The natural state model of a geothermal reservoir 
numerically represents the state of the reservoir prior 
exploitation. Starting with an existing natural state model 
that gives a generally good match between simulated and 
measured down-well temperatures, inverse modeling is 
conducted to further improve the model. The inverse 
modeling software PEST is used to automatically calibrate 
the model. PEST utilizes advanced regularization and 
singular value decomposition techniques to ensure the 
numerical stability of the inversion process. 

Permeability values of the reservoir rock are used as 
parameters that PEST automatically adjusts so that the 
difference between the measured and the simulated 
temperature is reduced. Significant improvement in the 
match to the measured temperatures is achieved after 
several optimization runs.   

1. INTRODUCTION  

The manual calibration of a reservoir model is a 
complicated and time-consuming task. Recently, automatic 
model calibration has been made possible with the 
implementation of inverse modeling techniques in codes 
such as iTOUGH2 (Finsterle and Pruess, 1999) and PEST 
(Doherty, 2010). 

The inverse modeling technique involves estimation of 
model parameters by fitting the simulated model response 
to data measurements. In applying inverse modeling to the 
calibration of a geothermal reservoir model, the typical 
parameters are rock permeability, porosity, amount of mass 
and heat injected in the reservoir and productivity indices of 
the wells. Adjustments to these parameters are made until 
the model response matches the measured data, e.g. down-
hole temperature, enthalpies or pressures. In this study the 
only model parameters used for calibration are the rock 
permeabilities which are automatically adjusted such that 
the simulated temperature closely matches the measured 
temperatures.  

Finsterle and Pruess (1999) presented an optimization code 
called iTOUGH2 that allows estimation of any input 
parameter for a model based on the TOUGH2 reservoir 
simulator (Pruess, 1999). The computationally intensive 
inversion process involves many forward runs; however, as 
the runs are independent of each other, the process can be 
parallelised. There have been several applications of 
iTOUGH2 to the calibration of geothermal models (e.g.: 
White, 1995; Finsterle et al., 1997; Kiryukhin et al., 2008; 
Kumamoto et al., 2008). 

Cui et al. (2006) used a mathematical method called 
Markov chain Monte Carlo to automate the calibration 
process for a geothermal model. They showed that sample 
based inference provided a robust but time-consuming 
calibration approach. 

There is not much published work on the use of PEST for 
geothermal model calibration. Shook and Renner (2002) 
coupled PEST with TETRAD, a reservoir simulator, to 
match the tracer and temperature histories of a hypothetical 
2D model. The study conducted by Omagbon & O’Sullivan 
(2011) used PEST for automatic calibration of a reservoir 
model, using AUTOUGH2 as the simulator, the version of 
TOUGH2 used at the University of Auckland (Yeh et al., 
2012). That study implemented a heuristic approach for 
model structure refinement (Omagbon & O'Sullivan, 2011).  

2. NATURAL STATE MODEL 

The natural state model numerically represents the state of 
the reservoir prior field exploitation. An existing natural 
state model that provides a generally good match between 
simulated and measured temperatures is used in this study. 
Selected temperature profiles generated from this baseline 
model are shown in the Appendix.  

The natural state model is configured such that the top of 
the model is set at the estimated depth of the water table. 
The maximum elevation of the model is 250mRSL. The 
thickness of the layers increases from 50m at the top of the 
model to 100m below -500mRSL. Below -1200mRSL, the 
thickness increases to 200m as shown in Figure 1. 

 

Figure 1. Vertical slice through the model grid 

The model has 27486 blocks including one block to 
represent the atmosphere. It is assumed that the model is a 
closed system and, thus, no mass recharge occurs through 
the lateral boundaries.  

3. MODEL CALIBRATION PROCESS WITH PEST 

Model calibration is a necessary step to improve the fit of 
the simulated model results with the measured data. 
Calibration is commonly done manually which is generally 
a time-consuming process. In principle the model 
calibration problem can be solved by inverse modelling 
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techniques that allow automatic calibration of parameters. 
However, in practice, many problems arise in inverse 
modelling. The present paper outlines a case study of the 
application of inverse modelling to a natural state 
geothermal model and discusses the problems that were 
encountered. PEST, rather than iTOUGH2, was used in this 
study as it provides greater flexibility in controlling the 
inverse modelling process. 

PEST is a model independent, inverse modelling code 
developed by Watermark Numerical Computing (Doherty, 
2010). Using PEST, the objective is to reduce the difference 
between the simulated model results (down-hole 
temperatures in this case) and the measured values. The 
weighted sum of squared differences between the simulated 
temperatures and the measured temperatures is called the 
objective function. The aim of a PEST simulation is to 
reduce the value of the objective function thus improving 
the fit of the model to the data. 

In order to use PEST for model calibration, several PEST 
text-based files are initially prepared: a template file, an 
instruction file and a PEST control file. 

During the model calibration process, PEST must be able to 
write parameter values to the model input file for every 
forward run of AUTOUGH2. This is achieved by setting up 
a model template file that identifies the locations for the 
parameter values that PEST will change during calibration. 

The results from a single forward run from AUTOUGH2 is 
written to a LISTING file. Using PyTOUGH (Croucher, 
2011), the simulated temperatures are extracted from the 
LISTING file and saved as a simpler DAT file. An 
instruction file is prepared to tell PEST the location of the 
simulated values in the DAT file that it must read to 
compare with the corresponding measured values. 

The parameter estimation process is controlled in the PEST 
control file. This file contains information such as the 
number of optimisation required, the complete list of 
parameters to adjust, the type of parameter transformation 
to use, parameter bounds, etc. Recommended values for 
many of the variables that must be supplied in the PEST 
control file can be found in the PEST manual. The detailed 
procedure for preparing the PEST files can be found in the 
PEST manual (Doherty, 2010) and at the PEST website 
(http://www.pesthomepage.org/). 

Potentially, the x, y, and z-permeability of each rock-type in 
the model could be included as parameters for optimisation, 
for our model giving a total of 372 parameters to be 
estimated by PEST (or 248 if the x and y permeabilities are 
taken to be equal). Such a large number of parameters may 
cause numerical instability in the optimisation process. A 
PEST option called regularisation is implemented in this 
study. Regularisation works by supplying supplementary 
information allowing simultaneous estimation of a large 
number of parameters without incurring numerical 
instability that normally accompanies parameter 
nonuniqueness (Doherty, 2010). The truncated singular 
value decomposition (truncated SVD), another method of 
inverse problem regularisation, is also implemented. It 
simplifies the inverse problem by estimating combinations 
of parameters rather than the parameters themselves. These 
two regularisation methods have strengths and weaknesses 
that are discussed in detail in the PEST manual  (Doherty, 
2010). 

The calibration of the model was carried out using the 
PEST utility called SVD-assist (SVDA) that combines the 
strength of the two regularisation methods and eliminates 
their weaknesses (Doherty, 2010). Using SVDA means the 
calibration process is based on “super parameters” that are 
linear combinations of the base parameters (the original 
rock-type permeabilities). A key feature of SVDA is that it 
keeps the group of super parameters that influence the 
objective function and discards the super parameters that do 
not influence the objective function (called the null space of 
the parameter space). Thus this PEST utility decreases the 
number of parameter to be varied and therefore the number 
of forward model runs required per iteration. 

The ability of PEST to be run in parallel decreases the time 
necessary to complete the calibration process. The model 
can be run in parallel using Beopest, which shares the 
source code of PEST across a network of processors. A 
multi-core computer was used to execute parallel PEST 
optimisations. Typically a forward run of the model took at 
least 3 hours to complete. The number of forward runs per 
optimisation iteration depends on the number of adjustable 
parameters. Thus, having 248 adjustable parameters 
requires to 249 forward runs which would have taken an 
impracticably large time to finish had we not run PEST in 
parallel .  

4. RESULTS AND DISCUSSION 

A total of 124 parameter groups are used in the model 
calibration with each group corresponding to a specific 
rock-type. The permeability in the y-direction is made the 
same as the permeability in the x-direction and thus the 
total number of adjustable parameters for this calibration is 
248. The field has 16 wells and the measured temperatures 
from each well are grouped into so-called observation 
groups. 

The number of optimisations to be carried out is initially set 
to zero, which terminates the process after only one forward 
model run. This enables a check of the PEST-model 
interface and provides the initial value of the objective 
function, including the contribution of each observation 
group to the objective function. Results showed that some 
observation groups dominate or contribute more to the 
objective function than other groups. A greater contribution 
to the objective function indicates a worse match between 
the simulated and the measured data. The contribution to 
the objective function is also dependent on the number of 
observation data (temperature data points to compare) for 
each observation group. The contribution of each 
observation group to the objective function can be made 
equal, irrespective of the number of observation data, by 
using the PEST utility PWTADJ1 and this option was 
applied in the present study 

The regularisation process requires a Jacobian file that 
contains the derivatives of each observation with respect to 
each parameters. This Jacobian file is calculated by setting 
the number of optimisations to -1. Regularisation is added 
by using the PEST utility ADDREG1 (Doherty, 2010). 
Another PEST utility called SUPCALC is used to 
determine the number of super parameters to be used in the 
optimisation. 

The value of the objective function prior to model 
optimisation with PEST was 16000. After five optimisation 
iterations, including SVDA, the objective function was 
reduced to 9030. Based on this reduction of the objective 
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function, it can be expected that the temperature matches 
are significantly improved. The optimisation results are 
recorded in the REC file. The PEST simulation took 5 days 
to run on a 32 processor Windows cluster of the Energy 
Development Corporation (EDC).  

Significant trial and error was involved before a successful 
PEST calibration was achieved. In the initial runs, only a 
few rock-types were used as parameters for optimisation. 
One trial used only two rock-types as parameters for 
estimation. In another trial, rock-types that are not 
frequently assigned to blocks were removed as parameters. 
After several trials, it was observed that for this particular 
model, using a few rock-types for optimisation did not 
significantly improved the temperature matches. Thus it 
was decided that all the rock-types in the model should be 
included as parameters for optimisation, even if it increased 
the time necessary to complete the calibration. However, 
Beopest was able to run the forward model in parallel and 
reduce the calibration time. 

Some initial trouble-shooting was required when the PEST 
files were being set up. The instruction file had to be 
revised a several times to ensure that it pointed to the 
correct location of the simulated values. The template file 
had to be reviewed prior to each trial to ensure that the 
required format for TOUGH2 was maintained and the 
correct TOUGH2 parameters for the model were used. It 
was also a tedious task making sure that all the variables in 
the PEST control file were properly filled in.   

The results of model calibration for a selected number of 
wells are shown in the Appendix. There is a clear 
improvement in the temperature matches of these wells.  

The measured temperature profile for Well 1 is similar to 
the simulated profile of the baseline model (Figure A-1). 
However, as shown in Figure A-2, the match is improved in 
the calibrated model, especially at -550mRSL where a 
temperature reversal is observed. The simulated 
temperature shows conductive heating from -1300mRSL 
down to the bottom of the well and corresponds to a 
decrease in permeability below -1500mRSL (Figure 2).  

 

Figure 2 Vertical slice of the calibrated model showing 
the horizontal permeability structure 

The temperature profile from the baseline model and the 
optimised model for Well 2 generally looks the same. 
However, when plotted against the measured temperature, 
the optimised model gives a better match.  

For Well 6, the baseline model gives a good match with the 
measured temperature above -500mRSL (Figure C-1). 
However, below -500mRSL, the simulated temperature 

starts to deviate from the measured data. The result of the 
optimised model for Well 6 shows an improved match 
(Figure C-2).  

Comparing the results for the baseline model with the 
optimised model for Well 7 (Figures D-1 and D-2) showed 
that a significant improvement in the temperature match is 
achieved between -275mRSL and -750mRSL after the 
optimisation. However, below -750mRSL, the measured 
increase in temperature is not captured by the model. The 
assigned rock types in this area must be reviewed. The rock 
type maybe split into sub-types and allow PEST to 
recalibrate the model. 

The optimised model gives a significantly better 
temperature match for Well 13 especially at -300mRSL to -
500mRSL as shown in Figure E-2.  

The baseline model resulted in a generally good match for 
the Well 14, especially at depths above -200mRSL. The 
simulated temperature from the baseline model, however, is 
much colder than the measured temperature from -
200mRSL to -1000mRSL (Figure F-1). The optimised 
model was able to improve the temperatures for this section 
of the well, as shown in Figure F-2, by tightening the 
permeability in the area and preventing colder fluid into the 
well. 

5. CONCLUSION AND RECOMMENDATIONS 

Based on the temperature matches from the optimised 
model, it has been clearly established that PEST can be an 
effective tool for model calibration. Although the optimised 
temperature profiles do not exactly match the measured 
data, they are a significant improvement on those from the 
manually calibrated baseline model. 

During model calibration, it was found that setting realistic 
lower and upper bound values for the parameters is very 
important. Initially a wide range of bounds was set and 
some permeability values became unrealistically low (e.g. 
~0.05mD). The range of permeability values and the 
resulting optimised permeability determined by PEST 
should be reviewed by the modeller to ensure that the 
results are consistent with the geological information. 

Based on the improvement in the natural state model, the 
next logical step to undertake is to proceed to production 
history matching. Although, experience tells us that a good 
natural state model does not necessarily mean we already 
have a good production model, the optimised natural state 
model is a good starting point for production history 
matching.  
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APPENDIX.  

Comparison of temperature profiles between the baseline natural state model and the PEST optimized natural state model  

 

Figure A- 1. Well 1 temperature profile from the baseline 
model 

 

Figure A- 2. Well 1 temperature profile from the PEST 
optimized model 

 

Figure B- 1. Well 2 temperature profile from the baseline 
model 

 

Figure B- 2. Well 2 temperature profile from the PEST 
optimized model 

 

Figure C- 1. Well 6 temperature profile from the baseline 
model 

 

Figure C- 2. Well 6 temperature profile from the PEST 
optimized model 

 



 

35th New Zealand Geothermal Workshop: 2013 Proceedings 
17 – 20 November 2013 

Rotorua, New Zealand 

Figure D- 1. Well 7 temperature profile from the baseline 
model 

Figure D- 2. Well 7 temperature profile from the PEST 
optimized model 

Figure E- 1. Well 13 temperature profile from the baseline 
model 

Figure E- 2. Well 13 temperature profile from the PEST 
optimized model 

Figure F- 1. Well 14 temperature profile from the baseline 
model 

Figure F- 2. Well 14 temperature profile from the PEST 
optimized model 

 


