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ABSTRACT

The natural state model of a geothermal reservoir
numerically represents the state of the reservoir prior
exploitation. Starting with an existing natural state model
that gives a generally good match between simulated and
measured down-well temperatures, inverse modeling is
conducted to further improve the model. The inverse
modeling software PEST is used to automatically calibrate
the model. PEST utilizes advanced regularization and
singular value decomposition techniques to ensure the
numerical stability of the inversion process.

Permeability values of the reservoir rock are used as
parameters that PEST automatically adjusts so that the
difference between the measured and the simulated
temperature is reduced. Significant improvement in the
match to the measured temperatures is achieved after
several optimization runs.

1. INTRODUCTION

The manual calibration of a reservoir model is a
complicated and time-consuming task. Recently, automatic
model calibration has been made possible with the
implementation of inverse modeling techniques in codes
such as iTOUGH2 (Finsterle and Pruess, 1999) and PEST
(Doherty, 2010).

The inverse modeling technique involves estimation of
model parameters by fitting the simulated model response
to data measurements. In applying inverse modeling to the
calibration of a geothermal reservoir model, the typical
parameters are rock permeability, porosity, amount of mass
and heat injected in the reservoir and productivity indices of
the wells. Adjustments to these parameters are made until
the model response matches the measured data, e.g. down-
hole temperature, enthalpies or pressures. In this study the
only model parameters used for calibration are the rock
permeabilities which are automatically adjusted such that
the simulated temperature closely matches the measured
temperatures.

Finsterle and Pruess (1999) presented an optimization code
called iTOUGH2 that allows estimation of any input
parameter for a model based on the TOUGH2 reservoir
simulator (Pruess, 1999). The computationally intensive
inversion process involves many forward runs; however, as
the runs are independent of each other, the process can be
parallelised. There have been several applications of
iTOUGH?2 to the calibration of geothermal models (e.g.:
White, 1995; Finsterle et al., 1997; Kiryukhin et al., 2008;
Kumamoto et al., 2008).

Cui et al. (2006) used a mathematical method called
Markov chain Monte Carlo to automate the calibration
process for a geothermal model. They showed that sample
based inference provided a robust but time-consuming
calibration approach.

There is not much published work on the use of PEST for
geothermal model calibration. Shook and Renner (2002)
coupled PEST with TETRAD, a reservoir simulator, to
match the tracer and temperature histories of a hypothetical
2D model. The study conducted by Omagbon & O’Sullivan
(2011) used PEST for automatic calibration of a reservoir
model, using AUTOUGH2 as the simulator, the version of
TOUGH2 used at the University of Auckland (Yeh et al.,
2012). That study implemented a heuristic approach for
model structure refinement (Omagbon & O'Sullivan, 2011).

2. NATURAL STATE MODEL

The natural state model numerically represents the state of
the reservoir prior field exploitation. An existing natural
state model that provides a generally good match between
simulated and measured temperatures is used in this study.
Selected temperature profiles generated from this baseline
model are shown in the Appendix.

The natural state model is configured such that the top of
the model is set at the estimated depth of the water table.
The maximum elevation of the model is 250mRSL. The
thickness of the layers increases from 50m at the top of the
model to 100m below -500mRSL. Below -1200mRSL, the
thickness increases to 200m as shown in Figure 1.

Figure 1. Vertical slice through the model grid

The model has 27486 blocks including one block to
represent the atmosphere. It is assumed that the model is a
closed system and, thus, no mass recharge occurs through
the lateral boundaries.

3. MODEL CALIBRATION PROCESS WITH PEST

Model calibration is a necessary step to improve the fit of
the simulated model results with the measured data.
Calibration is commonly done manually which is generally
a time-consuming process. In principle the model
calibration problem can be solved by inverse modelling
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techniques that allow automatic calibration of parameters.
However, in practice, many problems arise in inverse
modelling. The present paper outlines a case study of the
application of inverse modelling to a natural state
geothermal model and discusses the problems that were
encountered. PEST, rather than iTOUGH2, was used in this
study as it provides greater flexibility in controlling the
inverse modelling process.

PEST is a model independent, inverse modelling code
developed by Watermark Numerical Computing (Doherty,
2010). Using PEST, the objective is to reduce the difference
between the simulated model results (down-hole
temperatures in this case) and the measured values. The
weighted sum of squared differences between the simulated
temperatures and the measured temperatures is called the
objective function. The aim of a PEST simulation is to
reduce the value of the objective function thus improving
the fit of the model to the data.

In order to use PEST for model calibration, several PEST
text-based files are initially prepared: a template file, an
instruction file and a PEST control file.

During the model calibration process, PEST must be able to
write parameter values to the model input file for every
forward run of AUTOUGH?2. This is achieved by setting up
a model template file that identifies the locations for the
parameter values that PEST will change during calibration.

The results from a single forward run from AUTOUGH?2 is
written to a LISTING file. Using PyTOUGH (Croucher,
2011), the simulated temperatures are extracted from the
LISTING file and saved as a simpler DAT file. An
instruction file is prepared to tell PEST the location of the
simulated values in the DAT file that it must read to
compare with the corresponding measured values.

The parameter estimation process is controlled in the PEST
control file. This file contains information such as the
number of optimisation required, the complete list of
parameters to adjust, the type of parameter transformation
to use, parameter bounds, etc. Recommended values for
many of the variables that must be supplied in the PEST
control file can be found in the PEST manual. The detailed
procedure for preparing the PEST files can be found in the
PEST manual (Doherty, 2010) and at the PEST website
(http://www.pesthomepage.org/).

Potentially, the X, y, and z-permeability of each rock-type in
the model could be included as parameters for optimisation,
for our model giving a total of 372 parameters to be
estimated by PEST (or 248 if the x and y permeabilities are
taken to be equal). Such a large number of parameters may
cause numerical instability in the optimisation process. A
PEST option called regularisation is implemented in this
study. Regularisation works by supplying supplementary
information allowing simultaneous estimation of a large
number of parameters without incurring numerical
instability that normally  accompanies  parameter
nonuniqueness (Doherty, 2010). The truncated singular
value decomposition (truncated SVD), another method of
inverse problem regularisation, is also implemented. It
simplifies the inverse problem by estimating combinations
of parameters rather than the parameters themselves. These
two regularisation methods have strengths and weaknesses
that are discussed in detail in the PEST manual (Doherty,
2010).

The calibration of the model was carried out using the
PEST utility called SVD-assist (SVDA) that combines the
strength of the two regularisation methods and eliminates
their weaknesses (Doherty, 2010). Using SVDA means the
calibration process is based on “super parameters” that are
linear combinations of the base parameters (the original
rock-type permeabilities). A key feature of SVDA is that it
keeps the group of super parameters that influence the
objective function and discards the super parameters that do
not influence the objective function (called the null space of
the parameter space). Thus this PEST utility decreases the
number of parameter to be varied and therefore the number
of forward model runs required per iteration.

The ability of PEST to be run in parallel decreases the time
necessary to complete the calibration process. The model
can be run in parallel using Beopest, which shares the
source code of PEST across a network of processors. A
multi-core computer was used to execute parallel PEST
optimisations. Typically a forward run of the model took at
least 3 hours to complete. The number of forward runs per
optimisation iteration depends on the number of adjustable
parameters. Thus, having 248 adjustable parameters
requires to 249 forward runs which would have taken an
impracticably large time to finish had we not run PEST in
parallel .

4. RESULTS AND DISCUSSION

A total of 124 parameter groups are used in the model
calibration with each group corresponding to a specific
rock-type. The permeability in the y-direction is made the
same as the permeability in the x-direction and thus the
total number of adjustable parameters for this calibration is
248. The field has 16 wells and the measured temperatures
from each well are grouped into so-called observation
groups.

The number of optimisations to be carried out is initially set
to zero, which terminates the process after only one forward
model run. This enables a check of the PEST-model
interface and provides the initial value of the objective
function, including the contribution of each observation
group to the objective function. Results showed that some
observation groups dominate or contribute more to the
objective function than other groups. A greater contribution
to the objective function indicates a worse match between
the simulated and the measured data. The contribution to
the objective function is also dependent on the number of
observation data (temperature data points to compare) for
each observation group. The contribution of each
observation group to the objective function can be made
equal, irrespective of the number of observation data, by
using the PEST utility PWTADJL and this option was
applied in the present study

The regularisation process requires a Jacobian file that
contains the derivatives of each observation with respect to
each parameters. This Jacobian file is calculated by setting
the number of optimisations to -1. Regularisation is added
by using the PEST utility ADDREG1 (Doherty, 2010).
Another PEST utility called SUPCALC is used to
determine the number of super parameters to be used in the
optimisation.

The value of the objective function prior to model
optimisation with PEST was 16000. After five optimisation
iterations, including SVDA, the objective function was
reduced to 9030. Based on this reduction of the objective

35" New Zealand Geothermal Workshop: 2013 Proceedings
17 — 20 November 2013
Rotorua, New Zealand



function, it can be expected that the temperature matches
are significantly improved. The optimisation results are
recorded in the REC file. The PEST simulation took 5 days
to run on a 32 processor Windows cluster of the Energy
Development Corporation (EDC).

Significant trial and error was involved before a successful
PEST calibration was achieved. In the initial runs, only a
few rock-types were used as parameters for optimisation.
One trial used only two rock-types as parameters for
estimation. In another trial, rock-types that are not
frequently assigned to blocks were removed as parameters.
After several trials, it was observed that for this particular
model, using a few rock-types for optimisation did not
significantly improved the temperature matches. Thus it
was decided that all the rock-types in the model should be
included as parameters for optimisation, even if it increased
the time necessary to complete the calibration. However,
Beopest was able to run the forward model in parallel and
reduce the calibration time.

Some initial trouble-shooting was required when the PEST
files were being set up. The instruction file had to be
revised a several times to ensure that it pointed to the
correct location of the simulated values. The template file
had to be reviewed prior to each trial to ensure that the
required format for TOUGH2 was maintained and the
correct TOUGH2 parameters for the model were used. It
was also a tedious task making sure that all the variables in
the PEST control file were properly filled in.

The results of model calibration for a selected number of
wells are shown in the Appendix. There is a clear
improvement in the temperature matches of these wells.

The measured temperature profile for Well 1 is similar to
the simulated profile of the baseline model (Figure A-1).
However, as shown in Figure A-2, the match is improved in
the calibrated model, especially at -550mRSL where a
temperature reversal is observed. The simulated
temperature shows conductive heating from -1300mRSL
down to the bottom of the well and corresponds to a
decrease in permeability below -1500mRSL (Figure 2).

i
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Figure 2 Vertical slice of the calibrated model showing
the horizontal permeability structure

The temperature profile from the baseline model and the
optimised model for Well 2 generally looks the same.
However, when plotted against the measured temperature,
the optimised model gives a better match.

For Well 6, the baseline model gives a good match with the
measured temperature above -500mRSL (Figure C-1).
However, below -500mRSL, the simulated temperature

starts to deviate from the measured data. The result of the
optimised model for Well 6 shows an improved match
(Figure C-2).

Comparing the results for the baseline model with the
optimised model for Well 7 (Figures D-1 and D-2) showed
that a significant improvement in the temperature match is
achieved between -275mRSL and -750mRSL after the
optimisation. However, below -750mRSL, the measured
increase in temperature is not captured by the model. The
assigned rock types in this area must be reviewed. The rock
type maybe split into sub-types and allow PEST to
recalibrate the model.

The optimised model gives a significantly better
temperature match for Well 13 especially at -300mRSL to -
500mRSL as shown in Figure E-2.

The baseline model resulted in a generally good match for
the Well 14, especially at depths above -200mRSL. The
simulated temperature from the baseline model, however, is
much colder than the measured temperature from -
200mRSL to -1000mRSL (Figure F-1). The optimised
model was able to improve the temperatures for this section
of the well, as shown in Figure F-2, by tightening the
permeability in the area and preventing colder fluid into the
well.

5. CONCLUSION AND RECOMMENDATIONS

Based on the temperature matches from the optimised
model, it has been clearly established that PEST can be an
effective tool for model calibration. Although the optimised
temperature profiles do not exactly match the measured
data, they are a significant improvement on those from the
manually calibrated baseline model.

During model calibration, it was found that setting realistic
lower and upper bound values for the parameters is very
important. Initially a wide range of bounds was set and
some permeability values became unrealistically low (e.g.
~0.05mD). The range of permeability values and the
resulting optimised permeability determined by PEST
should be reviewed by the modeller to ensure that the
results are consistent with the geological information.

Based on the improvement in the natural state model, the
next logical step to undertake is to proceed to production
history matching. Although, experience tells us that a good
natural state model does not necessarily mean we already
have a good production model, the optimised natural state
model is a good starting point for production history
matching.
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APPENDIX.

Comparison of temperature profiles between the baseline natural state model and the PEST optimized natural state model

500 IWeII 1 Temperature‘

Well 1 Temperature

- 500 T
+— simulated e—e simulated
=—a measured =—m measured
0 1]
=500 =500
-l -
w wy
-4 4
E E
g -1000 .S -1000
K] o
> >
2 2
w w
-1500 -1500
-2000 —2000
-2500 -2500
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Temperature (* C) Temperature (" C)

Figure A- 1. Well 1 temperature profile from the baseline Figure A- 2. Well 1 temperature profile from the PEST
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Figure B- 1. Well 2 temperature profile from the baseline Figure B- 2. Well 2 temperature profile from the PEST
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Figure C- 1. Well 6 temperature profile from the baseline Figure C- 2. Well 6 temperature profile from the PEST
model optimized model
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Figure D- 1. Well 7 temperature profile from the baseline Figure D- 2. Well 7 temperature profile from the PEST

model optimized model
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Figure E- 1. Well 13 temperature profile from the baseline Figure E- 2. Well 13 temperature profile from the PEST

model optimized model
500 Well 14 Temperature 500 Well 14 Temperature
o—e simulated e—e simulated
=—= measured =—= measured
0 0
__ -500 __ -500
= =
wn wn
4 -4
E E
5 —1000 5 -1000
K] 7
> >
@ @
w w
-1500 -1500
-2000 -2000
~25007 50 100 150 200 250 300 25005 50 100 150 200 250 300
Temperature (° C) Temperature (° C)

Figure F- 1. Well 14 temperature profile from the baseline Figure F- 2. Well 14 temperature profile from the PEST
model optimized model
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