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We designed the wireline program to provide information 
that would inform the construction and updating of 
conceptual, geomechanical, and reservoir numerical models 
– tools for resource management. It was, however, also set 
up to test a number of tools. The program therefore includes 
running a variety of standard temperature rated tools (150-
177°C), some of them for the first time in the Taupo 
Volcanic Zone (TVZ), as well as high-temperature tools 
such as pressure, temperature spinner (PTS) tools and Tiger 
Energy Service’s acoustic image tool (AFIT).  

2 LOGS COLLECTED IN NM8 

Schlumberger’s array induction, gamma-ray, dipole sonic 
and oriented caliper tools were run in NM8 from 1170 to 
1950m. All logs in this paper are presented in Measured 
Depth (MD) as measured along the well track from the drill 
floor (7.86 m above ground level). The intervals above 
1215m and below 1920m were excluded from analyses 
because, due to the length of the tool string not all logs cover 
the lower part of the hole record and in the upper part the 
borehole conditions were so poor log responses were 
deemed un-interpretable.  

Array Induction (Resistivity) 

The Array Induction (AI) tool measures formation 
conductivity. The principal outputs are electrical resistivity 
at nominal depths of investigation from the borehole (10”, 
20”, 30”, 60” and 90”). Where the drilling mud has a 
different resistivity to formation water, permeable rock can 
be identified by separation between deep and shallow (i.e., 
10” vs. 90”) reading measurements because of the mud 
filtrate invasion. Correspondingly, deep and shallow 
resistivity logs will overlay in impermeable rock because 
there is no mud filtrate invasion. It is important to note, 
however, that this log is sensitive to borehole size and 
therefore has to be considered along with a caliper log.  

Spontaneous potential (SP) is a detector included in the 
array induction tool which measures the naturally occurring 
electrical potential (voltage) in the borehole referenced to a 
surface electrode. Spontaneous potentials are usually caused 
by charge separation in clay or other minerals, by the 
presence of a semi-permeable interface impeding the 
diffusion of ions through the pore space of rocks, or by 
natural flow of a conducting fluid (e.g., salty water) through 
the rocks. SP may have use in delineation of bed boundaries 
and identification of zones with active fluid loss, but further 
work is required to understand this log response in the 
geothermal environment. 

Gamma Ray 

The gamma-ray (GR) tool measures gamma-ray radiation 
from the formation. Naturally occurring radioactive 
elements are potassium, thorium and uranium. In 
sedimentary rocks, high GR is typically associated with clay 
occurrence. In volcanic rocks many of the rock minerals are 
naturally radioactive due to the relatively high proportion of 
potassium bearing minerals (e.g., alkali feldspars). In a 
geothermal environment, where extensive secondary 
mineralization is present, the GR would detect a composite 
of the primary lithology and the alteration, particularly clays 
and adularia. GR response is typically used for stratigraphic 
correlation. However, this usage is complicated in 
geothermal because of the secondary mineralization.  

GR logs may have future applicability to mapping 
permeability in geothermal. Adularia, which is a common 
secondary mineral in geothermal associated with 

permeability, has a high (around 12.7) weight % of 
potassium (Serra 1990). Although most alkali feldspars have 
a similar level of potassium, a concentration of adularia in 
the formation should result in an increased GR response. 
However, further work is required to characterize log 
responses to hydrothermal alteration before it will become a 
useful predictive tool. Due to the systematic variation of 
potassium, uranium and thorium content in minerals, GR 
response can some cases be used for mineral identification. 
However, where mineral identification is a primary goal, 
spectral gamma is more typically run rather than a tool that 
just collects total gamma as has been used in NM8.  

Dipole Sonic 

The dipole sonic tool records the full sonic wave-form 
including compressional (Vp) and shear (Vs) waves. 
Transmitters in the tool generate a pressure pulse which 
radiates through the mud column where it is refracted along 
the borehole wall. The pulse wave-train is recorded by an 
array of receivers regularly spaced along the tool length. By 
matching the recordings from each receiver – slowness 
travel time coherence processing – the sonic velocity is 
determined. Shear velocity is determined in a similar 
fashion, but uses dipole transducers and receivers. These 
transducers focus and receive energy perpendicular to the 
borehole wall, thereby enhancing the shear wave signal. This 
tool can also be set to record the Stoneley wave, otherwise 
known as a tube wave, which is the high amplitude wave 
that travels along the borehole wall at the rock-fluid 
interface.  

Primary porosity can be estimated from Vp, but lithology 
specific transforms are required. These empirical 
relationships are commonly used for sedimentary rocks, but 
none have been located for silicic volcanics and work is 
underway to fill this gap (c.f., Wyering et al. this volume). 
Vp and Vs, particularly in conjunction with rock density, 
can be used to quantify the elastic moduli, including the 
relative rock stiffness (Young’s Modulus). These in turn can 
be applied to drilling optimization, fracture and well 
stimulation modeling, as well as wellbore stability studies. A 
number of algorithms exists for converting Vp and Vs data 
to unconfined compressive strength (Chang, Zoback and 
Khaksar 2006), but these conversions also suffer from being 
lithology specific and we have been unable to locate any for 
silicic volcanic rocks.  

Geological Logs 

In order to understand the log responses, we began with a 
detailed re-look at drill cuttings over the logged interval. The 
cuttings were re-logged taking note of changes in primary 
lithology, alteration and changes in the physical character of 
the cuttings. The latter was used to infer variation in the 
mechanical nature of the rock where bulbous and somewhat 
rounded cuttings are generally less indurated than those with 
a platy and angular morphology. Based on the re-log, we 
divided the logged interval into a number of physical units 
(PU) which could then be correlated to log responses (Figure 
2). The lithologic log in Figure 2 was constructed by the 
well-site geologists based on observations of the underlying 
lithology (Lewis et al. 2012).  

3 RESULTS OF COMPARISON BETWEEN 
GEOLOGY AND WIRELINE LOG RESPONCES 

The first half of this section will discuss log responses by 
depth broadly in three groups: PU0-3, PU4 and PU5, and 
finally PU6-16. The second half focuses more on picking 
out which physical groups and lithologies have district log 
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responses utilizing two kinds of cross-plot. There is a great 
amount of detail in these wireline logs that, due to space 
limitations, we cannot touch on here.  

Log responses by depth are presented in Figure 2 alongside 
two different kinds of formation log, the drilling fluid loss 
record, a normalized rate of drilling penetration (nROP) and 
a thermal gradient plot made from an injecting PTS run 
during the well completion testing. Despite the inevitable 
mixing of cuttings in the borehole, the interpreted physical 
units appear to generally match well (black dashed 
horizontal lines Figure 2). There are some refinements to the 
stratigraphic sequence which have been made and these have 
been represented on the strip log as red dashed lines (R1-R7 
in Figure 2). 

Physical Units 0-3 

These units, which are comprised of tuff breccia (lithology 
A in Figure 2), include a stepwise change around 1280 m, 
and a relatively consistent log response above and below this 
point. The stepwise increase in AI and sonic velocity, and 
decrease in GR, is accompanied by a visible change in the 
cutting morphology, from somewhat rounded (bulbous) to 
more plate-like cuttings, and a short period of increased 
nROP. Drilling fluid losses increase across PU2 and PU3, 
but there is little change in the thermal gradient over this 
interval. The absence change in thermal gradient in this zone 
may, however, be due to: (A) a large amount of drilling fluid 
exited the formation at this point during drilling and the 
zone had not re-heated when the completion testing was run 
or (B) the permeability in this zone is not great enough to 
have an impact on the temperature though casing during a 55 
t/hr injection rate test. A PTS profile that is planned for after 
this well has been shut for period will hopefully provide 
more information about permeability in this intermediate 
interval on NM8. 

Physical Units 4 and 5 

PU4 is very distinct because the material retuned to surface 
is dominantly comprised of fine grains of cubic pyrite, 
occasional well-formed euhedral grains of quartz and very 
rare, fine cuttings of tuff. The volume of tuff returned to 
surface increases toward the base of PU4 allowing the 
geologic identification of this unit as a tuff breccia. This 
sample also has a high proportion of lost circulation material 
(LCM) contamination because it coincided with operational 
efforts to plug losses to the formation. PU4 also coincides 
with the most distinct feature in the wireline log: very slow 
sonic velocities, very low resistivity and a kick followed by 
sudden decrease in GR. There are a number of factors that 
would influence these log responses including relatively 
high porosity (lowers velocity and resistivity and gamma), 
high clay content (lowers velocity, resistivity and gamma), 
poorly cemented tuff (lowers velocity), and the presence of 
abundant pyrite in parts (lowers resistivity). It’s difficult to 
distinguish, however, the relative contribution of each of the 
factors to the log response without closer analysis of the 
mineral abundance and further work is required here. The SP 
also shows a distinct increase over this zone which may also 
be explained by the differing electrical conduction 
mechanisms of high porosity/smectite/pyrite (i.e., ionic, 
cation exchange, electronic mechanisms respectively). 
Taken together, this log response indicates an increase in 
alteration and a history of persistent hydrothermal fluid 
flow.  

PU5 comprises welded ignimbrite. It has a gradational 
increase of sonic velocities toward the base which could be 
interpreted as a decrease of porosity perhaps due to an 
increase in welding, compaction or secondary mineralization 
in-filling pore spaces. This change is mirrored by in 
gradually increasing resistivity, either related to the porosity 
decrease or an increase in conductive minerals. There is no 
separation between the AI10’’ and AI90’’ log responses in 
PU5 (between R3 and R4) and the sonic log response is very 
fast. The resistivity in this interval is significantly lower than 
what would typically be expected from such fast rock. In a 
sedimentary basin environment this style of log response 
would be attributed to the presence of conductive framework 
minerals and interpreted as shale. In the NM8, this log 
response is coincident with a welded ignimbrite containing 
rare veining and rare jig-saw breccia that, as mentioned 
above, has a gradational change from top to bottom. Drilling 
fluid losses were relatively high throughout this interval 
despite operational efforts to heal losses LCM. This could be 
taken to indicate increased permeability. However, there is 
no significant increase in the thermal gradient in PU5. This 
miss-match in permeability indicators would be due to the 
reasons described for PU0-3.  

The exact depth of the contact between the welded 
ignimbrite and overlying tuff breccia is difficult to 
confidently locate based on cuttings alone. No cuttings were 
collected for 1415 m, most likely due to increased fluid loss 
to formation, and cuttings from 1395-1410 are extremely 
fine. The fine cuttings in this interval make it difficult to 
interpret without XRD or thin-section, and material collected 
has suspect depth control. Furthermore, drilling records 
show that the well tool a quick drink (i.e., a short, sudden 
increase in the losses of drilling fluids to the formation) at 
around 1425 m which would have temporarily changed the 
fluid dynamics inside the wellbore. This would have 
impacted the way cuttings are returned to surface and likely 
increased mixing of material in the well thus further 
decreasing cutting depth confidence. The log responses, 
however, tell a much clearer story because they are not 
susceptible to the depth uncertainty inherent in cutting 
analysis. We have therefore been able to confidently pick the 
top of the welded ignimbrite at 1410 mD (R3 in Figure 2).  

Physical Units 6-16 

PU6 to PU16 covers the lower part of the welded ignimbrite 
and a sequence of tuffs, volcaniclastics, and tuff breccias. 
Over-all this sequence consists of fast sonic velocity and 
high resistivity log responses, and both likely due to low 
porosities. From around 1590 m (base of PU9) there is 
separation between the AI10’’ and AI90’’ logs and at the 
interpreted top of the vein-tuff breccia (R5 in Figure 1) there 
is a stepwise increase in the magnitude of this separation. R5 
is also coincident with a step-wise change in GR. If the mud 
filtrate was more saline than the formation water then we 
could infer that formation below R5 has increased near well-
bore permeability because there has been mud invasion into 
the formation. However, in NM8 the drilling fluid had a 
similar salinity to the formation water, so it is not conclusive 
that mud invasion is the process causing the log separation. 
This uncertainty aside, the increased positive variation in the 
temperature gradient from R5 down supports our 
interpretation that this zone has increased permeability, as 
does the coincident increase in drilling fluid losses over this 
interval. 
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reduce confidence that a sample collected at surface 
represent a particular bit depth. 

Seven contact refinements have been identified here (Figure 
2: R1-7) with most changes in contact depth being around 
10-30 m. In MRP’s 3D geologic models a minimum of 50 m 
stratigraphic offset must occur between wells before the 
placement of an inferred fault is considered. Close 
refinement of stratigraphy and the identification of 
stratigraphic marker horizons within formations will allow 
us to construct more confident geologic and structural 
models. We have no doubt that a number of smaller contact 
refinements will be made from these logs as our 
understanding of log responses at Ngatamariki improves 
though acquisition of more logs and further analyses of the 
present data set.  

Inferring Geology and Alteration in Loss Zones 

In the interval presented here there were relatively good 
cuttings returns to surface. However, as production sections 
of geothermal wells are commonly drilled with water 
(underbalanced) and will usually encounter sufficient 
permeability to result in total loss of drilling fluid to the 
formation with no drill cuttings bought to surface. In the 
absence of cuttings, wireline logs will allow us to place 
contacts in the geologic sequence. As our understanding of 
the log responses in each formation type improves, we will 
also be able to infer which kind of rock was logged and 
perhaps even the type and extent of hydrothermal alteration.  

Constructing marker horizons in the Tahorakuri 

The Tahorakuri Formation is laterally extensive across the 
Ngatamariki reservoir and hosts the production horizon in 
the central part of the field. In NM8 it has been separated 
into seven different lithologies (Lewis et al. 2012), five of 
which were captured by the wireline logs presented here. 
Correlating lithologies in a pyroclastic sequence is 
challenging, particularly in the face of often poor cuttings 
returns to surface and the complexity of this kind of geologic 
sequence. Identifying and providing accurate depth control 
for correlatable marker horizons would significantly 
improve the confidence of 3D geologic and structural 
modeling at Ngatamariki. Construction of geophysical 
marker horizons has been undertaken in geothermal fields 
internationally. For instance, at Mak-Ban, gamma-ray logs 
have been used to identify two correlatable permeable 
horizons consisting of spherulitic rhyolite which have 
relatively high GR response (Vicedo et al. 2008). In Iceland, 
rare rhyolite occurrences in the dominantly basaltic reservoir 
stratigraphy are used as geophysical stratigraphic marker 
horizons (Danielsen 2010) most likely because they emit 
more GR than basalts.  

Bulk density is commonly used as a measure of the degree 
of welding in ignimbrites and density is easily measured 
directly with a formation density log or inferred from sonic 
velocity data. However, it is problematic to use degree of 
welding in a chronostratigraphic reconstruction because 
there is a significant amount of lateral variation both in 
degree of welding and unit thickness in a single ignimbrite 
(Wilson and Hildreth 2003). It follows that stratigraphic 
correlation in a pyroclastic sequence could perhaps be 
undertaken using repeating sequences, with not too much 
regard of their thickness, and laterally extensive marker 
horizons, such as paleosols and ash units. Once marker 
horizons are identified and correlated they will be used in 
3D geologic and structural modeling of the Ngatamariki 
reservoir.  

In NM8 the distinctive response of PU5 (grading sonic 
velocities and AI with consistent GR) is a possible marker 
candidate. As is the base of PU12 (1755-1765m) which, 
with its low GR response, may either be an ash unit (with no 
alkali feldspars and little clay alteration) or a highly 
quartz/pyrite veined unit. Close spacing XRD and thin 
section analysis, or perhaps some other kind of quantitative 
mineralogy study (e.g., spectral gamma), may help resolve 
the geologic reasons for log responses, and therefore assist 
with the creation of correlatable markers. Repeating logs in 
other wells is also critical, as without the logs no correlation 
can be undertaken.  

4.2 Other Wireline Log Applications 

The following outlines some of the applications discussed, 
adopted or discarded in the interpretation of logs to date. 
They are not intended to represent the gambit of possible 
applications, but instead to serve as a sampler of possible 
applications for logs collected at Ngatamariki and other 
analogous systems.  

Refining Conceptual Models of Permeability 

PTS is the indispensable and commonly deployed wireline 
tool for measuring permeability in a geothermal well. 
However, alone this tool cannot tell us if the permeability is 
hosted in fractures, formation contacts, primary porosity, 
breccias etc. An understanding of how permeability is 
hosted can be used in optimizing future well targeting 
activities, informing the numerical modeling of heat and 
mass transfer in the fields and guiding well stimulation 
activities. Comparing PTS logs with geologic data derived 
from drill cuttings or core will go some way to fill this 
information gap. However, as already discussed above, this 
material is commonly absent or has poor depth control. 
Through more accurate mapping of the geologic sequence 
and comparing this sequence with established permeability 
indicators (PTS) we will more accurately constrain 
conceptual models of reservoir permeability. 

Deriving Rock Properties from Wireline Logging Data 

Wireline logs can provide us a number of rock properties 
which may in turn be used in geomechanical and numerical 
models of geothermal reservoirs, or as part of drilling 
optimization studies. Rock properties may be derived 
directly from wireline log responses (e.g., density and 
porosity) or by inversion using either fixed physical 
relationships or empirical ones (e.g., elastic moduli and 
compressive rock strength respectively; Chang et al. 2006, 
Zoback 2007). The latter poses a particular problem for 
those of us working in an environment dominated by silicic 
volcanism because there is a paucity of published empirical 
relationships for this kind of rock.  

Fracture Evaluation beyond the Borehole Wall  

Hornby et al. (1989) proposed a method for detecting 
horizontal and inclined fractures, and determining their 
apparent aperture, using reflected Stonely wave (tube wave) 
arrivals detected with a dipole sonic receiver. More recently 
Vp and Vs wave arrival anisotropy has become a tool 
commonly applied to fracture analysis. Using sonic waves to 
investigate fracture orientations and apertures is desirable to 
those of us modeling fractures because it adds another 
dimension to the more commonly used acoustic or electrical 
images, which only map borehole wall or a few cm beyond 
respectively. We suspect that that drilling process results in 
significant enhancement of fracture apertures at the borehole 
wall though both unloading and thermal contraction, and 
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 Electric wireline logs will respond to lithologic 
variation in a phyllic altered pyroclastic sequence. 
Furthermore, they are sensitive to variation in 
secondary mineralisation. It follows that wireline logs 
can be used to (1) improve the accuracy of stratigraphic 
well logs, (2) make inferences about well stratigraphy 
when no rock cuttings were returned to surface during 
drilling, and (3) develop stratigraphically correlatable 
marker horizons with good depth control. 

 Rock properties, for use in geomechanical modelling, 
reservoir modelling and drilling optimisation studies, 
can be measured directly using wireline logs or derived 
from logs using direct or empirical relationships. Few 
empirical relationships have been found for silicic 
volcanic rocks so further work is required to build these 
relationships.  

 Improving depth control for the stratigraphic sequence 
in a well will allow us to compare these data with PTS 
and subsequently refine our conceptual models of 
permeability. With further work, log responses to 
secondary mineralisation may prove to be valuable 
predicative tools for mapping permeable zones.  

 The interpretation of magnetotellurics, a key tool in 
geothermal exploration and development, can be 
improved through comparison with wireline log 
responses, particularly array induction, when we are 
able to constrain the geologic reasons for those log 
responses.  
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