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ABSTRACT  
Population statistics of in situ permeability, trace element 
abundance, and ore grade data typically range from normal 
to long-tailed/lognormal distributions. A range of 
permeability statistics is simply expressed by κ = κ0 
exp(α(φ-φ0)), κ = permeability, φ = porosity (empirically 
normally distributed), with parameter α ratioing the standard 
deviation of logκ to the standard deviation of φ. For α small, 
permeability is normally distributed in accordance with φ; 
for α large, permeability is manifestly long-tailed/lognormal, 
logκ ~ αφ. Relation by κ = κ0 exp(α(φ-φ0)) derives from 
extensive well-log and well-core data. Well-log power-
spectra scale inversely with spatial frequency, S(k) ~ 1/k 
over five decades ~1/km < k < ~1/cm, characterizing long-
range spatially-correlated in situ grain-scale-density 
fluctuations. While grain-scale fracture densities are 
normally distributed, fracture-connectivity ranges from 
normal (low levels of connectivity) to lognormal (high levels 
of connectivity). Fracture connectivity ranges are attested by 
well-core poroperm data relating fluctuations in porosity φ 
to fluctuations in permeability κ, δ φj ~ δlogκj, j = 1….N, for 
δφj and δlogκj = zero-mean/unit-variance fluctuation 
sequences of well-core porosity and log(permeability). 
Naturally occurring fracture connectivity ranges in the crust 
thus explain the normal-to-lognormal range of statistical 
descriptions of well-core permeability, trace element 
abundance, and ore grade data. Expression κ = κ0 exp(α(φ-
φ0)) implies that for fixed porosity distribution φ increased 
permeability is associated with increased fracture 
connectivity of grain-scale fractures. Finite shear strain in a 
crustal volume inducing new grain-scale defects in 
association with existing grain-scale fracture porosity hence 
can create greater permeability through greater fracture 
connectivity. Naturally occurring finite-strain injection can 
explain the range of fracture-connectivity observed in 
normal-to-lognormal distributions for well-core 
permeability, trace element abundance, and ore body grades, 
from which we may infer that permeability enhancement for 
EGS heat-exchange volumes can be achieved through 
properly designed strain-damage-inducing wellbore 
pressurization. 

1. BACKGROUND 
The Ngawha geothermal outcrop near Lake Omapere in 
Northland is a highly accessible prototypal 
Enhanced/Engineered Geothermal System (EGS) resource.  
The site offers ten or so square kilometers of very shallow 
(500m) yet commercially hot (>200oC) low porosity (1%-
4%), low permeability basement (greywacke metamorphic) 
rock heated by molten intrusives below and insulated by 
impermeable sedimentary rock above (DSIR7 1981).  The 
greywacke basement has good potential for fracture 
permeability development needed by EGS projects: 
moderate to good fracture permeability (>20 Darcy-meter) at 
Ngawha in probable association with historic faulting 
(DSIR7), and  documented greywacke fracture permeability 

in the tectonically active Taupo Volcanic Zone (Wallis et al 
2012).  Active tectonics aside, in situ greywacke 
permeability appears likely to be that of metamorphic rock 
in general.  The defining feature of EGS potential is learning 
how to engineer low permeability basement such as the 
Ngawha greywacke into permeable heat exchange volumes.  
 
Ngawha’s fortuitously shallow basement heat resource 
provides a natural EGS laboratory in which to explore for 
scientific/engineering means by which to control in situ 
fracture permeability.  We advance here one such means 
based on evidence that in situ permeability is controlled by 
fracture-connectivity at all scale lengths.   Abundantly 
attested well-log and well-core spatial fluctuation 
systematics indicate that in situ permeability is physically 
defined by percolation along naturally occurring, spatially 
erratic fracture-connectivity pathways on scales from mm to 
Km.  The range of trace element and ore grade distributions 
in many rock types provide supporting evidence that 
spatially varying in situ permeability is due to spatially 
varying degrees of fracture connectivity at Dm-to-Km 
scales.  We propose to focus on controlling in situ fracture 
connectivity in a crustal volume as a means to achieve 
commercial grade EGS-capable permeability.   
 
The rewards for EGS capability are great.  Potential base-
load electrical power production for EGS sites worldwide far 
exceeds that of hydrothermal systems.  Western US 
hydrothermal resources are estimated at 3.7GWe 
existing/known hydrothermal capacity (with potential for 
7.9GWe), while EGS resources are estimated to be two 
orders of magnitude greater at 345GWe [USGS Fact Sheet 
2008-3082].  EGS geothermal power resources are also far 
more widely geographically distributed than hydrothermal 
power resources limited to active extensional tectonic 
regions. 
 
Despite the allure of large numbers, however, no attempts to 
realize EGS commercial power have succeeded.  One, 
possibly the main, reason for past EGS failures may have 
been inadequate understanding of fluid flow mechanics in 
fractured rock.  It is perhaps relevant to note that oil/gas 
reservoir modeling systematically overlooks fracture 
heterogeneity as a component of in situ flow, possibly in the 
belief that formation geological uniformity implies 
petrophysical uniformity.  Industry practice (e.g., Earlougher 
1977) that defines reservoir flow in terms of a single 
parameter ‘kh’ (the product of formation permeability k and 
height h) argues for such a belief.  While well-log spatial 
fluctuation data readily demonstrate its fallacy, the oil/gas 
industry business model continues to use a few spot core 
samples and associated spot-log data to infer the porosity 
and permeability of geological formations.  For spot 
physical sampling of geological formations to be statistically 
accurate, formation physical property spatial fluctuations 
must be uncorrelated; i.e., the spectrum S(k) of spatial 
property fluctuations must have the same value at all spatial 
frequencies k, S(k)  ~ 1/k0 ~ const.  In fact virtually all well-
log spatial sampling of rock physical property distributions 
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have spatial fluctuation power spectra that scale inversely 
with spatial frequency, S(k) ~ 1/k1 over five to six decades of 
scale length, ~1/km < k < ~1/cm.   
 
Possible influence by the oil/gas industry indifference 
towards evidence for in situ fracture/flow heterogeneity in 
favor of a kh reservoir uniformity concept would explain the 
steady expectation that large-scale EGS fracturing would 
provide spatial sequences of regularly-spaced geometrically-
discrete flow apertures (e.g., Tester et al 2006; Sutter et al 
2011).  The absence of such predictable wellbore-to-
wellbore flow, and the highly disseminated microseismicity 
distributions generated by EGS fracture stimulation efforts 
at Fenton Hill/US and Rosemanowes/UK (Tester at el 2006), 
and recently at Paralana in South Australia (Reid et al 2011), 
does not support such fracture enhancement uniformity.  
Additionally, EGS projects appear to have largely ignored 
field contemporaneous evidence for pervasive large-scale 
fracture permeability heterogeneity in generic crustal rock 
first advanced by Brace (1980), then extended to a wide 
range of scales by Neuman (1990) and Clauser (1992), and 
subsequently by many others (e.g., Neuman 1994; Schulze-
Makuck & Cherhauer 1995) .  The idea that EGS basement 
rock types systematically differ from oil/gas reservoir 
sedimentary rock types is easily refuted; it is clear that well-
log spatial fluctuation systematics do not distinguish 
between the fracture spatial distribution properties of 
crystalline and sedimentary rock types (Leary 2002). 
 
In light of scientific and engineering evidence against 
effective spatial uniformity for EGS crustal volumes, we 
turn to well-log and well-core spatial fluctuations evidence 
for systemic in situ fracture-induced permeability 
heterogeneity on all scales.  In particular, well-log/well-core 
fluctuation empirics can explain the observed range of 
lognormality skewness in permeability, trace element 
abundance, and ore grade and ore body size distributions.  
Such lognormality skewness is traceable to varying degrees 
of fracture connectivity within in situ fracture networks: the 
greater the connectivity, the greater the lognormal skewness 
of permeability distributions, and the greater the overall 
fracture permeability.  After briefly reviewing the in situ 
fracture empirics of crustal rock, we focus on this  potential 
to enhance in situ permeability via controlled stimulation of 
fracture connectivity in EGS heat exchange volumes at 
Ngawha and elsewhere. 

2. FRACTURE CONNECTIVITY AND IN SITU 
PERMEABILITY DISTRIBUTIONS 

Three wellbore-based empirical rules appear to define the 
main aspects of in situ fluid flow mechanics.  First, well-log 
data reveal a pervasive inverse power-law scaling rule for 
the physical-variable fluctuation Fourier transform power 
S(k) over five decades of spatial frequency k,  

S(k) ≈ 1/k,  ~1/km < k < ~1/cm.         (1) 

Equation (1) holds for a wide range geological settings and 
geophysical variables, and for both horizontal and vertical 
wells (Leary 2002).  The five-decade scale range runs from 
1cm wellbore sampling of microresistivity logs to multiple-
km sampling of spatial fluctuations in sonic velocity, 
neutron porosity, mass density, gamma activity and 
electrical resistivity. 

Second, well-core data from oil/gas field clastic reservoir 
formations establish a close relation on the scale of cm to 

dm between fluctuations in well-core porosity φ and the 
logarithm of well-core permeability κ,  

   δφ ≈ δlog(κ).          (2) 

Eqs (1)-(2) can be jointly interpreted to mean that in situ 
fracture systems are spatially-correlated grain-scale-fracture-
density networks through which in situ fluids can percolate 
on all scale lengths, with porosity having close spatial 
affinity to grain-scale density hence effectively controlling 
permeability through interconnectivity of grain-scale 
fractures (Leary 2002; Leary & Walter 2008). 

Recasting (2) as an explicit relation between two zero-
mean/unit-variance well-core sequences, 

(φi – 〈φ〉)/σ(φ) ≈ (log(κi) - 〈log(κ)〉)/σ(logκ),   i=1……n, 

we can integrate the sequence of dm-scale fluctuations to 
give log(κ) - log(κ0)  = α (φ – φ0), where α ≡ σ(logκ)/σ(φ) 
ratios the standard deviations of well-core sequences logκ 
and φ respectively, and φ0, κ0 are minimum values for 
porosity and log(permeability) sequences with log(κ0) ≡ 
min(log(κ)).  Writing the integrated form as an exponential 
gives in situ permeability as an empirical function of in situ 
porosity controlled by empirical parameter α over the Dm to 
Hm scale range, 

  κ ≈ κ0 exp(α(φ-φ0)),          (3) 

Empirically, porosity is almost always normally distributed 
physical variable with a tractable standard deviation and 
mean.  If a porosity sequence is renormalized as a zero-
mean, unit-variance variable n, and μ is the median of the 
log(permeability) sequence, (3) corresponds to the 
mathematical definition of a lognormal distribution,  

  κ ≈ exp(μ + σn),        (3a) 

with σ the lognormality skewness parameter.  The median 
value of (3a) occurs at the median value of n, which is zero, 
hence exp(μ) is the median value of κ.  The mean value of κ 
is exp(μ + σ2/2) showing how parameter σ strongly controls 
the skewness or long-tailed character of lognormal 
distributions.  The essential aspect of distributions (3) and 
(3a) is that many values are small while a few are large.   

Populations (3) or (3a) with small skewness parameter σ are 
themselves normal distributions because the exponent 
expands to a term linear in σn, exp(σn) ≈ 1 + σn.   
Populations with large σ are highly skewed so that many 
small values occur for every large value.  Because of the 
strong role played by spatial correlation (1) in the population 
of in situ grain-scale fractures, skewness σ takes on a 
physical role as proxy for spatial connectivity.  Small spatial 
connectivity is thus associated with normally distributed 
permeability of limited magnitude (small σn limit), while 
large spatial connectivity is associated with long-tailed 
permeability distributions with increasingly large net 
permeability.  We hence establish that the in situ empirics 
(3) of wide ranges of lognormality in populations of well-
core permeability, trace element abundances, and ore grade 
and ore body size are a manifestation of in situ fluid flow 
rules (1)-(2). 
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3 INTERPRETATION OF LOGNORMAL 
DISTRIBUTIONS IN IN SITU FLOW PROCESSES 

Figs 1-2 illustrate the mechanics of fracture-connectivity 
control of fluid flow pathways and overall permeability in 
2D realizations of crustal poroperm media following the 
empirics of (1)-(2).  The 2D poroperm media are based on 
spatially-correlated porosity fluctuations throughout the 
medium, for which a well log through the medium returns a 
fluctuation spectrum scaling inversely with spatial frequency 
as (1).  Permeability within the medium is associated with 
porosity by (2) and the degree of fracture connectivity by 
(3). 

Fig 1 realizes a sequence of permeability distributions κ ≈ κ0 
exp(α(φ-φ0)) associated with a fixed porosity distribution φ 
for an incrementing range of fracture-connectivity 
parameters α.  As α increases, the permeability distributions 
become more skewed, and the overall permeability of the 
medium increases as greater fracture connectivity allows 
readier passage of fluid. 
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Figure 1. Permeability population distributions (3) for κ 
≈ κ0 exp(α(φ-φ0)) for α = 2.5 to 30 for fixed normal 
porosity distribution φ.  As α increases, maximum 
permeability increases while the minimum permeability 
remain fixed, hence the frequency distribution becomes 
more ‘long-tailed’ (more lognormal). 

Fig 2 realizes the fluid flow distributions associated with the 
range of permeability distributions.  The left hand column 
displays a range of permeability distributions, from low 
skewness at the top to high skewness at the bottom.  The 
central and right-hand columns display the pressure and 
velocity fields generated by fluid issuing from a central 
wellbore.  The vertical sequence of pressure fields shows 
that pressure typically remains uniform to quasi-uniform 
about the central wellbore.  This degree of uniformity is not, 
however, observed by the fluid velocity field.  Rather the 
fluid flow becomes channeled by fracture connectivity that 
increases with increasing permeability distribution 
skewness.  Along with increasing skewness, the net medium 
permeability increases as quantified by the left-hand column 
histograms.  Flow simulation details are given by Leary & 
Malin (2011). 

Figs 1-2 invite us to understand that flow phenomena such 
as solute and heat transport are markedly affected by fluid 
channelization, generating a range of trace element 
abundance and ore grade distributions that reflect a flow 
property duality of high flow channelization and high rates 

of deposition.  Beginning with an illustration of the range of 
well-core permeability distributions, evidence for such flow 
transport duality is presented in the following sections. 

 
Figure 2. Growth of fracture-connectivity permeability 
for three increasing values of fracture-connectivity 
parameter α in permeability distribution (3) κ ≈ κ0 
exp(α(φ-φ0)).  Left column: Increase skewness of 
permeability distribution with increasing α.  Centre/right 
columns: pressure and fluid velocity distributions for 
fluid issuing from central wellbore into 2D poroperm 
media determined by (3).  Upper row: small α with little 
fracture connectivity.  Centre/lower rows: increasing α 
means increasing degrees of fracture-connectivity 
control of fluid pathways and greater overall 
permeability.   

4. WELL-CORE PERMEABILITY DISTRIBUTIONS 
 
A tendency for oil-field well-core permeability populations 
to be ‘long-tailed’ or ‘lognormally’ distributed has long been 
recognised (Law 1944; Bennion & Griffiths 1966; Freeze 
1975; Dagan 1989).  Figs 3-4 illustrate the range of 
lognormal skewness in the reservoir samples.  The effective 
value of lognormality parameter α is determined by plotting 
log(κ) against porosity φ. Because additional factors affect 
sample porosities, the straightforward relation of Fig 2 
between lognormality and α is absent. 
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Figure 3. Permeability distributions from a North Sea 
clastic reservoir.  Lower values of α associate with more 
normal distributions and higher values of α associate 
with longer-tailed distributions but additional factors 
complicate the relation. 
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Figure 4. Permeability distributions from a South 
Australia clastic reservoir.  As with Figure 3, other 
factors complicate the relation between measured α and 
degree of lognormality. 

The sample clastic formation well-core permeability data 
establish that lognormality is a common feature of reservoir 
rock.  Empirical relations (1)-(3) relate lognormality to the 
presence of fractures.  It is thus clear that, in 
contradistinction to standard industry assumption, fluid flow 
in reservoir rock is substantially influenced by the presence 
of fractures, and that in consequence fracture heterogeneity 
is likely to affect the production behavior of wells.  The 
evidence below is that the same phenomenology is in play in 
metamorphic and igneous rock with more obvious affinity to 
EGS basement rock. 

 

5. TRACE ELEMENTS DISTRIBUTIONS 

The general picture of trace element distributions in largely 
igneous rock is that some are normal while a large number 
are lognormal (Ahrens 1954a, 1954b, 1957, 1963).  Ahrens 
(1963) cites 32 instances of lognormal trace element 
distributions in granite against two of near-normal 
distribution; five instances are judged uncertain.   A 
snapshot summary of aspects of Ahrens (1963) trace element 
distributions in Figs 5-6 visually connects with the poroperm 
distribution systematics illustrated in Figs 1-4.  Figs 5 
illustrates that a skewed trace element abundance 
distribution (left) is properly lognormal (right) because the 
distribution of the log(abundance) is Gaussian.  
 

 

Figure 5. A trace element abundance distribution from 
Ahrens (1963) showing a lognormal distribution (left) 
and its normal log(abundance) distribution (right). 

 

 

Figure 6. Five trace element abundance distributions 
from Ahrens (1963) grading from near-normal (top left) 
to ‘lognormal’ (bottom right). 

Fig 6 illustrates a range of skewness for a sequence of trace 
element abundances in granite; the element abundances are 
for Na, Ca, Mg, P, and Mn. 

 

6. ORE GRADE DISTRIBUTIONS 
 
The ratio of the standard deviation to the mean of a 
population distribution, termed the ‘coefficient of variation’, 
is bounded by approximately ½ for the distribution to be 
normal or Gaussian.  If the coefficient of variation is larger 
than ~ ½ then the distribution can be lognormal.   
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Figure 7. (Left) Coefficient of variation for 30 
realisations of permeability for a top-to-bottom sequence 
of increasing skewness parameter α in (3).  (Right) 
Representative permeabiliity distributions for each value 
of α, from quasi-normal (top) to highly skewed 
lognormal (bottom). 
 
Fig 7 illustrates the coefficient of variation phenomenology 
in a sequence of realizations of poroperm distributions (3) 
for parameter α increasing from top to bottom.  The right 
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column shows the permeability distribution, from normal at 
top to lognormal at bottom; the left column shows that the 
coefficient of variation is uniformly below ½ for normal 
distributions, rising steadily above ½ to reach 2.5 as the 
distributions become more skewed.  Fig 8 shows a range of 
coefficients of variation determined by Koch & Link (1971) 
from trace element abundance data compiled by Hazen & 
Meyer (1966) from nearly 500 mineral deposits.  From Fig 7 
it is seen that elements with low abundances have 
coefficients of variation consistent with lognormal 
abundance distribution.   
 

 
 
Figure 8. Coefficients of variation for ore deposit data 
(after Koch & Link 1971).  Low abundance elements 
have high coefficient of variation values implying 
strongly lognormal abundance distributions – see Fig 7. 
 
Fig 9 shows copper ore grade distribution data from Clark & 
Garnett (1974) to be lognormally distributed. 
 

 
Figure 9. Histogram plot of copper ore grade data (after 
Clark & Garnett 1974). 
 
 
In Fig 10, Gerst (2008) analyses copper ore distributions by 
comparing quartile distributions of log(Ore Grade) data from 
a range of deposits types against a standard Gaussian 
quartile distribution.  The fact that  log(Ore Grade) data plot 
on a straight line of unit slope against a Gaussian normal 
distribution means the ore grade data are lognormally 
distributed.  
 

 
Figure 10. Plots of quartile distributions of log(Ore 
Grade) data on vertical axis against a standard Gaussian 
quartile distribution on the horizontal axis.  The straight 
line of unit slope means the log(Ore Grade) data are 
Gaussian distributed,  hence that ore grade distributions 
are lognormally distributed.  Plot after Gerst 2008. 
 
 

7. SUMMARY/CONCLUSION 

Figs 3-10 review well-core distributions of permeability, 
trace element abundance, and ore grade distributions for 
rock types spanning oil/gas reservoir clastic sands, to 
metamorphic deposition systems, to reef systems, to igneous 
intrusions.  In each case there is unambiguous evidence for 
logrnormal distributions, often as the dominant feature.  The 
general tenor of discussions accompanying the data is that 
lognormality is ‘the norm’ rather than a collection of 
statistical outliers.  In each case it is plausible that the data 
reflect in situ fluid flow regimes leading to many instances 
of poor flow against a few instances of rich flow.  This 
flow/deposit phenomenology is consistent with the flow 
systematics of Figs 1-2 and reprised in Fig 11 in the context 
of EGS. 

 
Figure 11. Wellbore-to-wellbore flow velocity 
distributions for degrees of fracture connectivity given 
by lognormality skewness parameter α in (3).  Flow in 
poroperm media with small skewness are essentially 
uniform flow media as often assumed for geological 
formations.  Large skewness leads to to filamentary flow 
along spatially-organised long-range-correlated high 
permeability fracture-pathways.  Evidence for lognormal 
distributions in reservoir rock, mineral deposition 
environments, and igneous instruction favors the right-
hand flow diagram as a model of in situ flow. 
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Fig 11 synopsizes the physical significance for EGS of well-
log/well-core fluid flow empirics (1)-(3) and associated 
flow/deposit phenomenology of Figs 3-10.  In a variation on 
Fig 2, Fig 11 contrasts two fluid velocity fields computed for 
2D flow from an entry wellbore to an exit wellbore.  High 
flow velocities near the wellbore (green), grade to lower 
velocities away from the wellbore (yellow to red).  The 
left/right panels compare velocity fields for low/high value 
of fracture-connectivity parameters α from (3).  The change 
in fracture-connectivity for the poroperm medium produces 
a substantial difference in flow distribution, from a 
poroperm medium on the left resembling the oil/gas industry 
standard concept of quasi-uniform flow through a quasi-
uniform permeability, to a quite different poroperm medium 
on the right that heavily involves fractures and fracture 
connectivityWe see that fluid flow spatial distributions in 
poroperm media conforming to empirical rules (1)-(2) are 
structurally controlled by lognormality skewness parameter 
α, indicating that fracture connectivity within a population of 
grain-scale cement-defects permits and promotes large-scale 
percolation pathways through long-range spatially-correlated 
connectivity of grain-scale defects. 

We further see that moderate to large lognormality skewness 
consistent with the right-hand diagram of Fig 11 is typical of 
hydrocarbon reservoirs and generally associated with 
significant trace element abundances and high grade ore 
bodies.  The wide-spread nature of clastic reservoir well-
core poroperm, trace element abundance, and ore grade 
distributions indicates that poroperm phenomenology (1)-(3) 
is a common feature of crustal rock.  We infer that such 
fracture-connectivity phenomenology can likely be exploited 
in interest of EGS permeability enhancement.  Pogacnik et al 
(2012) explore the detailed physics of this phenomenology.   

We conclude from the above data and discussion that a 
likely statement of the object of EGS fracture connectivity 
enhancement is to move EGS heat exchange volumes from 
the left-hand side of Fig 11 to the right-hand side. 
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