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ABSTRACT 
Modellers face two issues when they are increasing the 
complexity and size of models: memory limit and 
computational speed. 

TOUGH2/AUTOUGH2 users on 32-bit computer systems 
are limited to 2 GB of memory, the amount required for a 
3-D model with approximately 80,000 blocks.  We discuss 
here how this limit can be avoided by using a 64-bit 
computer architecture. We also discuss modifications to the 
AUTOUGH2 code to make memory use more efficient by 
making the memory allocation dynamic. 

The use of new compilers and new hardware helps to 
improve the speed of TOUGH2 simulations. One can 
achieve even more improvement by using the parallelised 
version, TOUGH2-MP.  We have tested the speedup of 
TOUGH2-MP on a variety of machines, and results are 
good. With the advancement of multi-core personal 
computers, great speed-up of TOUGH2 simulations by 
using a parallel simulator is now very practical and 
affordable. 

1. INTRODUCTION 
Larger, more complex models are often desired by 
modellers to obtain more accurate long-term predictions, 
higher spatial resolution and detailed local effects.  Often 
these improvements of the models require greater 
computational power, in terms of larger memory 
requirements and extended simulation time. 

Advancement of computer technology can help to tackle 
these issues.  However, it is not always easy to fully utilise 
new computer hardware and software systems.  This paper 
describes our recent experiences in speeding up the 
performance of TOUGH2.  In particular discussions are 
made on memory limits of 32-bit versus 64-bit versions of 
the simulator and computer operating systems and speeding 
up simulations with parallel code. 

The simulators described here are TOUGH2 [11] and two 
additional derived versions of it: AUTOUGH2 [7] and 
TOUGH2-MP [14].  TOUGH2 is a simulator that is widely 
used in the geothermal industry [10].  It is an integral finite 
difference or finite-volume code designed for multi-phase 
multi-component fluid flows in porous media.  
AUTOUGH2 (the University of Auckland version of 
TOUGH2) is a locally modified version with some 
additional capabilities such as faster thermodynamic 
calculations, a combined-EOS single executable, and a 
number of additional generator types useful for more 

complex boundary conditions and future scenario 
modelling.  TOUGH2-MP (Massively Parallel Version of 
TOUGH2) is a code that parallelised TOUGH2 to allow a 
single simulation to be run on multiple CPUs (central 
processing units) or multiple nodes in a cluster 
environment, hence shortening the simulation time by 
distributing the computational load. 

2. MEMORY LIMIT 
Even though the 64-bit computer architecture was 
developed a long time ago, the 32-bit architecture has still 
been dominant until recently.  It is difficult to obtain 
reliable statistics, but there are still a large number of 32-bit 
operating systems and applications in use, even on 64-bit 
capable hardware. 

One of the benefits of the newer 64-bit architecture over 
older 32-bit is the greatly increased memory limit.  For 
many applications, the 32-bit limit is still beyond the 
normal requirements, but this is, however, no longer the 
case for geothermal modellers.  The size limit of TOUGH2 
models under the 32-bit platform will be discussed and it 
will be shown that the implied limit on model size is no 
longer beyond routine requirements.  In the geothermal 
modelling group at the University of Auckland many 
current models of various geothermal fields are 
approaching that limit or exceed it. 

Model Year

Wairakei‐Tauhara 2010 9,011 26,179

Ohaaki 2011 22,817 66,999

Wayang Windu 2010 33,092 84,235

Taupo Reporoa Basin 2011 40,237 119,022

Wairakei‐Tauhara 2011 41,461 117,142

Palinpinon 2011 64,754 192,209

Blocks Connections

 
2.1 Memory explained 
Before looking at the limits of various hardware, OS 
(operating systems) and applications, it is important to 
understand terms used such as physical memory, total 
virtual memory and process address space.  Different 
hardware and operating systems use different terminology, 
and how they work can be slightly different.  What will be 
described here is based on mainstream PCs (personal 
computers), with Microsoft Windows or Linux OS. 

Physical memory is the easiest to understand.  It is simply 
the hardware RAM (random-access memory) that is 
installed on a given system.  On modern computers there 
are different amounts of maximum accessible RAM that 
different OS (either 32- or 64-bit) can utilise.  More RAM 
should result in overall better system performance.  
However in contrast to most people’s instincts, this may be 
largely irrelevant to the size of TOUGH2 model that can be 
run.  The key parameter is process address space. 
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Total virtual memory is the amount of memory that an OS 
can utilise, which is nearly always larger than the RAM 
installed.  In addition to the RAM installed, part of the hard 
drive (swap file in Linux and page file in Windows) is 
added to the total virtual memory.  Since computers 
typically now have relatively cheap and large hard drives, 
the size of total virtual memory is usually not a limiting 
factor.  This total virtual memory is what is actually 
available to be shared by all the applications running on an 
OS. 

Process address space is a portion of the total virtual 
memory that can be ‘seen’ by a single process/application.  
The OS dictates which parts of the total virtual memory a 
running application can access.  The limit on process 
address space directly affects how much memory a 
TOUGH2 simulation can use, and hence limiting the model 
size.  It is important to understand that even if an 
application uses more process address space memory than 
the actual RAM installed, it can still be run, as long as there 
is enough total virtual memory left.  However, there is a 
penalty on performance when the address space for a 
process is significantly larger than RAM, because some of 
the memory allocated to the process has to physically sit in 
the hard drive, which is very slow compared to RAM. 

2.2 Process Address Space Limits 
In general, 64-bit hardware can support either a 32- or 64-
bit OS.  A 64-bit OS allows both 64- and 32-bit 
applications to run.  But 32-bit hardware cannot support a 
64-bit OS.  Likewise, a 32-bit OS cannot run 64-bit 
applications.  Thus it is wise to choose 64-bit hardware and 
a 64-bit OS for flexibility. 

For running an application, the process address space is an 
array of memory that is accessible by memory pointers.  A 
32-bit application uses a 32-bit long pointer.  This allows a 
maximum of 2^32 bits, or 4 GB (gigabytes), of memory to 
be accessed. 

Theoretically 64-bit architecture allows a maximum of 2^64 
bits of process address space.  However, hardware available 
today currently limits it to 2^48 bits, or 256 TB (terabytes), 
by only using 48 bits memory pointers.  Some current OS 
even restrict this number further in their implementation.  
Nevertheless, these numbers are still significantly larger 
than the 32-bit limit. 

There is a further twist on these limits.  On 32-bit Windows 
and Linux, the 4 GB addressable space is further separated 
into user mode and kernel mode.  The kernel mode is 
directly controlled by the OS to provide system level 
services.  User mode is the actual memory space that an 
application, such as TOUGH2, can use freely.  The user 
mode limit is usually 2 GB.  With some applications and 
OS tweaks, the limit can be lifted to approximately 3 GB.  
In the case when a 32-bit application is running on a 64-bit 
OS, the OS kernel will run in 64-bit mode, making the 
whole 32-bit process address space of 4GB available to the 
application. 

Windows Linux Windows Linux

32‐bit App 2 GB1 2 GB1 4 GB 4 GB

64‐bit App ‐ ‐ 8 TB 128 TB
2

32‐bit OS 64‐bit OS

    1
 Expandable to 3 GB with special system configuration

    2 Varies with different Linux builds
 

The table above summarises the limits.  Running 64-bit 
applications on a 64-bit OS is obviously the better choice.  
It is also valuable to recognise the benefit of running 32-bit 
applications on 64-bit OS, if one is unable to recompile 
simulation codes into 64-bit executables. 

2.3 Static versus dynamic data 
There is a further memory issue inherent with the original 
code for TOUGH2, or AUTOUGH2.  All the variables used 
to store data such as blocks, connections, generators, and 
linear equation data are all declared with COMMON 
statements in the FORTRAN language.  These are stored as 
static data in the process address space.  Dynamic data has 
space allocated at run-time, but the static data of an 
application is fixed at compilation.  Due to the way process 
address space is managed, the maximum allowable static 
data is less than that available to dynamic data. 

On Linux, there are compiler options that can change the 
way the system arranges the process memory and therefore 
removes the 2 GB limit.  This is arguably less efficient but 
we have found no real performance impact.  On Windows, 
there is a fixed maximum of 2 GB of process memory, even 
if the code is compiled as a 64-bit executable.  In contrast, 
there is no such limit on dynamic data, which is simply 
bounded by the available memory in process address space 
at the time of allocation. 

In addition to the limits imposed on the static data memory, 
using static data has several other drawbacks.  The 
TOUGH2/AUTOUGH2 executable needs to be re-compiled 
each time a bigger model is required.  Static data is less 
efficient than dynamic data, which can allocate exactly the 
required amount at run-time. 

We have updated the AUTOUGH2 code to use dynamic 
memory allocation.  The exact memory size needed is only 
determined after processing the input file.  We had some 
concerns about the loss in performance that might be 
incurred by changing from static to dynamic memory 
allocation, but the effect is found to be insignificant.  A few 
seconds of additional time are required to determine the 
model size and allocate memory but there is no effect on 
the actual computation time at all.   

Lawrence Berkeley National Laboratory also used dynamic 
memory allocation when they parallelised the original 
TOUGH2 code into TOUGH2-MP.  The users of the 
original TOUGH2 are less fortunate, as the problem of the 
2 GB static data limit cannot be solved with a method that 
works across different platforms and compilers. 

2.4 Overcoming memory limits with 
parallelisation 
It is important to emphasise again that the 2 GB limit of 32-
bit systems only applies to a single application process.  
With parallelisation, it is possible to gain access to more 
memory by using multiple processes, each having its 2 GB 
limit. 

The parallel simulation code TOUGH2-MP achieved 
exactly this.  TOUGH2-MP divides a model up into sub-
domains, each running on a separate process.  Multiple 
processes together can deal with models that are multiple 
times larger.  Other benefits of TOUGH-MP, particularly 
the speed improvement, will be discussed in later sections. 
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2.5 Generalised model size limit 
So what does all this mean to a TOUGH2/AUTOUGH2 
modeller?  The simple solution is to compile dynamic code 
as a 64-bit application, and run it on a 64-bit OS.  It is 
interesting, however, to understand the approximate limit of 
32-bit TOUGH2/AUTOUGH2 in terms of actual model 
size, the number of blocks for example. 

A generalised case of a simple three-dimensional model can 
be used to demonstrate the approximate relationship 
between number of blocks in a model and the amount of 
memory required.  Here we assume the 3-D (three-
dimensional) model has a quadrilateral mesh with N blocks.  
The maximum number of connections, or element 
interfaces, is N x 3 theoretically.  We assume that the 
models may require complex boundary conditions, 
implemented through generators that include rainfall, 
surface discharge, basement heat and mass inflow, side 
boundary recharge.  Additional generators that have a time 
dependent values must also be included, e.g. time-varying 
rainfall, historic production data, and future makeup wells.  
We assume that there are N x 20 generator table entries for 
each model.  Note that it is difficult to generalise the 
number of generator table entries, but fortunately the 
memory requirement is significantly less dependent on the 
number of generators than on the number of blocks and 
connections. 

 

Figure 1:  Memory usage of AUTOUGH2 as a 
function of model size 

Figure 1 shows measured memory usage of AUTOUGH2 
as a function of model size.  These numbers were obtained 
using AUTOUGH2, which is slightly different from the 
original TOUGH2, but it should give a good estimate of the 
memory requirement for TOUGH2.  It is clear to see the 
memory requirement is linearly dependent on the model 
size.  With a 2 GB restriction, 32-bit AUTOUGH2 can only 
support models with approximately 80,000 blocks. 

2.6 Discussion 
The linear growth of memory requirement may seem 
reasonable.  However, refining the mesh of a three-
dimensional model usually means a four to eight fold 
increase in the number of blocks.  Thus it does not take 
many refinements to give a very large memory requirement.  
Furthermore, TOUGH2 models with MINC (multiple 
interacting continua) processing obviously requires far 
more memory as it is common to divide each of the original 
blocks into several smaller fracture and matrix blocks. 

Obviously, users of TOUGH2/AUTOUGH2 should be 
encouraged to move on to 64-bit systems if they wish to run 
larger models.  Upgrading the codes to use dynamic 
memory allocation will also bring benefits. 

3. SIMULATION SPEED AND 
PARALLELISATION 
Improving the speed of TOUGH2/AUTOUGH2 
simulations can be most simply achieved by upgrading to 
new and improved hardware.  However, some of the 
advancement in new hardware can only be utilised by using 
appropriately updated compilers.  This is because a lot of 
the recent improvements in CPU technology come in the 
form of new instruction sets.  These instruction sets are 
designed in the hardware to complete certain operations 
with less CPU clock cycles than was previously possible.  
Only with updated compilers that understand the new 
instruction sets, is it possible to fully utilise the capability 
of the new hardware.  This is especially true for 
applications like TOUGH2 which use a lot of floating point 
operations, which many of these new instruction sets are 
designed to carry out quickly. 

It is also important to note how CPU technology has grown 
in power in recent years.  Instead of increasing the CPU 
clock speed (more and more difficult for a number of 
reasons) to achieve higher performance, it is more common 
to increase the number of computation operations per clock 
cycle.  Apart from adding new instruction sets as mentioned 
previously, often performance is enhanced by adding more 
cores into one CPU, or more CPUs into one computer box.  
Then further improvements in speed can only be obtained 
by dividing the computation up and running it in parallel. 

Traditionally parallel computing was achieved by using 
large supercomputers, each containing many CPUs with 
dedicated interlinks, memory, specialised OS, and code 
specifically programmed to utilise multiple CPUs.  As the 
technology progressed, clusters began to be used, formed 
by linking many individual computers, to execute parallel 
simulations previously only possible on supercomputer.  
Multiple core/CPU PCs are also becoming more common.  
Both clusters and multi-core PCs are now very affordable.  
Standardisation of parallel programming has also played an 
important role in ensuring the portability of parallel 
simulation codes.  

3.1 TOUGH2-MP 
TOUGH2-MP is the result of a major effort by Lawrence 
Berkeley National Laboratory to parallelise the original 
TOUGH2 code.  TOUGH2-MP divides a given model into 
sub-domains, each treated like a smaller problem with the 
computation implemented on a single processor.  The 
integrity of model across the whole domain is kept by 
synchronising primary variables across the boundaries of 
sub-domains.  Since all of these sub-domain problems can 
be solved simultaneously by different processors, the total 
length of the simulation time can be cut down to the time 
required for each of the smaller sub-domains. 

We have tested TOUGH2-MP on a variety of machines: 
multi-core PCs, an HPC (high performance computer which 
is closer to supercomputers in the traditional sense), and a 
cluster.  Speed-up tests were carried out to see how much 
performance improvement is possible with the systems 
available to us. 
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3.2 Setting up TOUGH2-MP 
Unlike the original TOUGH2, getting TOUGH2-MP to 
work is not always easy, especially with different machines 
and OS.  Instead of simply compiling the TOUGH2-MP 
source code directly on the targeted platform, TOUGH2-
MP additionally requires users to ensure MPI (the Message 
Passing Interface) [1] works on the target system and it is 
compatible with the compilation of TOUGH2-MP source 
codes. 

MPI, an industry standard for parallel computation, is used 
by TOUGH2-MP to deal with the communications between 
processors (nodes in a cluster or cores/CPUs in a single 
computer box) while each processor runs a simulation 
similar to the original TOUGH2.  Among different 
implementations of MPI, Open MPI [2] works 
straightforwardly on Linux powered systems, while we 
have found it easier to use MPICH2 [3] on Windows 
machines. 

After setting up MPI, the compilation of TOUGH2-MP 
takes several steps.  It is relatively easy on Linux-based 
systems.  The code distribution comes with batch-
processing scripts and make files which greatly ease the 
process.  On Windows, however, users are provided with 
less help in compiling the two base libraries: METIS [9] 
and Aztec [12].  METIS is the domain partitioning 
software, while Aztec is a parallel linear equations solver.  
These steps can be difficult to follow if the user is not 
familiar with compiling complex codes.  It is especially 
tricky to deal with these codes, because they are designed 
for multiple platforms and written with mixed computer 
languages. 

3.3 Performance gains 
Of the computers on which we tested TOUGH2-MP, two 
were eight-core Dell Precision T5500 PCs running at 2.66 
GHz (gigahertz), one running Debian GNU/Linux 6.0 and 
one running Windows 7.  We had to use quite different 
setups to make each system work.  The default Open MPI 
and GCC compiler were used on Linux, and MPICH2, Intel 
Fortran, and Microsoft Visual C++ were used on Windows.  
The performance of these two machines is nearly identical, 
and so results from only one machine are shown. 

The HPC is two IBM Systems x3755 servers linked 
together, each running 4 dual-core CPUs at 2.6 GHz, 
totalling 16 cores.  The Red Hat Enterprise Linux OS is 
installed. 

BeSTGRID [4] is a cluster, or perhaps more appropriately a 
computing grid, that is composed of numerous 
computational resources from many universities and 
research organisations from New Zealand.  BeSTGRID can 
be accessed via a job management system.  Tools such as 
compilers and MPI are preloaded and users can compile 
TOUGH2-MP and upload the executable along with models 
to a job queue. 

The test problem we used is a 3-D model of the Palinpinon 
geothermal field (using EOS1 for pure water) with 64754 
blocks, 192209 connections, and a total well table length of 
4070.  Timing and speedup of the simulations is presented 
in Figure 2 and Figure 3.  All speedup factors are calculated 
by using the simulation time of the two processor case as 
the base case (TOUGH2-MP will not run on fewer than two 
processors).  The ‘ideal’ linear performance gain of 

doubling speed by doubling the number of processors is 
shown in the figure for comparison. 

3.4 Discussion 
Figure 3 shows that for this test problem, the speedup factor 
decreases as the number of processors increases, and is 
noticeably less than the linear ideal for all three platforms 
tested- that is, doubling the number of processors results in 
less than a doubling of speed.  Of these three, the HPC 
showed the best speedup behaviour (even though it was the 
slowest in terms of computer time) and the 8-core PC the 
worst.  These differences are, however, not great, and are 
likely due to differences in computer architecture and the 
way the processors are linked together, with the HPC and 
BeSTGRID being better optimized for parallel 
computation. 

 

Figure 2:  Simulation time on different computers. 

 

Figure 3:  Speedup on different computers. 

Previously published results for TOUGH2-MP [8, 13] have 
shown results closer to ideal linear speedup for other 
problems, but typically for very large models with over one 
million blocks.  Speedup results are very problem-
dependent, with the benefits of parallelization being greater 
for larger and more complex problems.  However, for the 
test problem here, which is of a size more typical of current 
geothermal models, a useful degree of speedup is seen even 
for a relatively modest numbers of processors.  Figure 3 
indicates that using larger numbers of processors on 
BeSTGRID would result in some further speedup for this 
problem, although there would likely be little gain in going 
beyond 32 or 64 processors. 
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In practice, the performance measure of most interest to 
modellers is not speedup so much as absolute simulation 
time.  Figure 2 shows that machines that give the best 
speedup do not necessarily give the shortest simulation 
time: for this problem, the 8-core PCs and BeSTGRID give 
similar simulation times for up to eight processors, while 
the HPC lags significantly behind both.  Here the HPC's 
slightly better speedup behaviour is overshadowed simply 
by the relative slowness of its individual processors.  The 
HPC was built in 2006, whereas the 8-core PCs were 
purchased in 2010 and have processors with only 
marginally higher clock speed but significantly updated 
instruction sets and other improvements. 

Larger parallel machines like BeSTGRID, with access to 
hundreds or thousands of processors, will likely become 
increasingly useful as model sizes continue to increase.  
However, there is no guarantee that simply using ever-
larger numbers of processors will give any benefit, as the 
speedup results will still depend on the problem being 
solved. 

4. FUTURE WORK 
A GPU (graphics processing unit) is a specialised circuit 
originally designed for assisting the output of graphics in a 
computer system.  In a modern PC, it is a crucial 
component for 3-D graphics rendering, video decoding, and 
many other floating point operations related to graphics 
output.  GPUs are becoming more powerful and highly 
optimised in recent years.  In many cases, a GPU is actually 
more suitable for floating point calculations than a CPU.  
Current GPUs may contain hundreds of computational 
cores, at a relatively low total cost. 

Some manufactures have started to allow GPUs to be used 
in general programming and to assist certain floating point 
operations that were done by CPUs before [5, 6].  This has 
moved into the field of scientific calculations.  We have 
started investigating this development.  At the moment, the 
GPU industry has not settled on widely accepted standards 
which are important to ensure the future portability of code.  
There are many issues that need to be looked at, but we 
think there is potential here to further improve the speed of 
the TOUGH2 code family by sharing some of the workload 
between CPUs and GPUs. 

5. CONCLUSIONS 
With the older 32-bit systems, TOUGH2/AUTOUGH2 
users will find the model size restricted by the 2 GB process 
memory limit.  This translates to a general three-
dimensional model of about 80,000 blocks.  To overcome 
the limit, it is advisable to move the simulations on to 64-
bit platforms, as 64-bit applications on 64-bit operating 
systems have a much greater memory limit.  We have also 
updated AUTOUGH2 codes to allocate memory 
dynamically which allows more efficient use of memory. 

To speed up the simulations, users should pay attention to 
updating compilers as well as upgrading computers.  To cut 
down the simulation time further, parallel simulation is 
needed.  TOUGH2-MP, a parallel version of the original 
TOUGH2, is able to bring a beneficial speed-up to many 
different platforms.  In our tests, TOUGH2-MP’s speed-up 
on PCs is not as good as on an HPC or cluster.  The 
affordability of multi-core PCs these days, combined with 
the ease of regularly upgrading hardware, makes running 
TOUGH2-MP on PCs very attractive. 
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