|l\/|ain Menu ||Programme || Author Index

RECENT EXPERIENCES WITH OVERCOMING
TOUGH2 MEMORY AND SPEED LIMITS
Angus Yeh, Adrian Croucher and Michael J. O’Sullivan
Department of Engineering Science
University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
cyeh015@aucklanduni.ac.nz

Keywords: geothermal, simulation, modelling, memory complex boundary conditions and future scenario

limit, speed, performance, parallel computing, TOUGH?2,
AUTOUGH2, TOUGH2-MP, Linux, Windows, 32-bit, 64-
bit.

ABSTRACT

Modellers face two issues when they are increasing the
complexity and size of models: memory limit and
computational speed.

TOUGH2/AUTOUGH2 users on 32-bit computer systems
are limited to 2 GB of memory, the amount required for a
3-D model with approximately 80,000 blocks. We discuss
here how this limit can be avoided by using a 64-bit
computer architecture. We also discuss modifications to the
AUTOUGH2 code to make memory use more efficient by
making the memory allocation dynamic.

The use of new compilers and new hardware helps to
improve the speed of TOUGH2 simulations. One can
achieve even more improvement by using the parallelised
version, TOUGH2-MP. We have tested the speedup of
TOUGH2-MP on a variety of machines, and results are
good. With the advancement of multi-core personal
computers, great speed-up of TOUGH2 simulations by
using a parallel simulator is now very practical and
affordable.

1. INTRODUCTION

Larger, more complex models are often desired by
modellers to obtain more accurate long-term predictions,
higher spatial resolution and detailed local effects. Often
these improvements of the models require greater
computational power, in terms of larger memory
requirements and extended simulation time.

Advancement of computer technology can help to tackle
these issues. However, it is not always easy to fully utilise
new computer hardware and software systems. This paper
describes our recent experiences in speeding up the
performance of TOUGH2. In particular discussions are
made on memory limits of 32-bit versus 64-bit versions of
the simulator and computer operating systems and speeding
up simulations with parallel code.

The simulators described here are TOUGH2 [11] and two
additional derived versions of it: AUTOUGH2 [7] and
TOUGH2-MP [14]. TOUGH?2 is a simulator that is widely
used in the geothermal industry [10]. It is an integral finite
difference or finite-volume code designed for multi-phase
multi-component fluid flows in porous media.
AUTOUGH2 (the University of Auckland version of
TOUGH2) is a locally modified version with some
additional capabilities such as faster thermodynamic
calculations, a combined-EOS single executable, and a
number of additional generator types useful for more

modelling. TOUGH2-MP (Massively Parallel Version of
TOUGH?2) is a code that parallelised TOUGH2 to allow a
single simulation to be run on multiple CPUs (central
processing units) or multiple nodes in a cluster
environment, hence shortening the simulation time by
distributing the computational load.

2. MEMORY LIMIT

Even though the 64-bit computer architecture was
developed a long time ago, the 32-bit architecture has still
been dominant until recently. It is difficult to obtain
reliable statistics, but there are still a large number of 32-bit
operating systems and applications in use, even on 64-bit
capable hardware.

One of the benefits of the newer 64-bit architecture over
older 32-bit is the greatly increased memory limit. For
many applications, the 32-bit limit is still beyond the
normal requirements, but this is, however, no longer the
case for geothermal modellers. The size limit of TOUGH2
models under the 32-bit platform will be discussed and it
will be shown that the implied limit on model size is no
longer beyond routine requirements. In the geothermal
modelling group at the University of Auckland many
current models of various geothermal fields are
approaching that limit or exceed it.

Model Year Blocks Connections
Wairakei-Tauhara 2010 9,011 26,179
Ohaaki 2011 22,817 66,999
Wayang Windu 2010 33,092 84,235
Taupo Reporoa Basin 2011 40,237 119,022
Wairakei-Tauhara 2011 41,461 117,142
Palinpinon 2011 64,754 192,209

2.1 Memory explained

Before looking at the limits of various hardware, OS
(operating systems) and applications, it is important to
understand terms used such as physical memory, total
virtual memory and process address space. Different
hardware and operating systems use different terminology,
and how they work can be slightly different. What will be
described here is based on mainstream PCs (personal
computers), with Microsoft Windows or Linux OS.

Physical memory is the easiest to understand. It is simply
the hardware RAM (random-access memory) that is
installed on a given system. On modern computers there
are different amounts of maximum accessible RAM that
different OS (either 32- or 64-bit) can utilise. More RAM
should result in overall better system performance.
However in contrast to most people’s instincts, this may be
largely irrelevant to the size of TOUGH2 model that can be
run. The key parameter is process address space.

New Zealand Geothermal Workshop 2011 Proceedings
21 - 23 November 2011
Auckland, New Zealand

Total virtual memory is the amount of memory that an OS
can utilise, which is nearly always larger than the RAM
installed. In addition to the RAM installed, part of the hard
drive (swap file in Linux and page file in Windows) is
added to the total virtual memory. Since computers
typically now have relatively cheap and large hard drives,
the size of total virtual memory is usually not a limiting
factor. This total virtual memory is what is actually
available to be shared by all the applications running on an
Os.

Process address space is a portion of the total virtual
memory that can be ‘seen’ by a single process/application.
The OS dictates which parts of the total virtual memory a
running application can access. The limit on process
address space directly affects how much memory a
TOUGH2 simulation can use, and hence limiting the model
size. It is important to understand that even if an
application uses more process address space memory than
the actual RAM installed, it can still be run, as long as there
is enough total virtual memory left. However, there is a
penalty on performance when the address space for a
process is significantly larger than RAM, because some of
the memory allocated to the process has to physically sit in
the hard drive, which is very slow compared to RAM.

2.2 Process Address Space Limits

In general, 64-bit hardware can support either a 32- or 64-
bit OS. A 64-bit OS allows both 64- and 32-bit
applications to run. But 32-bit hardware cannot support a
64-bit OS. Likewise, a 32-bit OS cannot run 64-bit
applications. Thus it is wise to choose 64-bit hardware and
a 64-bit OS for flexibility.

For running an application, the process address space is an
array of memory that is accessible by memory pointers. A
32-hit application uses a 32-bit long pointer. This allows a
maximum of 232 bits, or 4 GB (gigabytes), of memory to
be accessed.

Theoretically 64-bit architecture allows a maximum of 2764
bits of process address space. However, hardware available
today currently limits it to 248 bits, or 256 TB (terabytes),
by only using 48 bits memory pointers. Some current OS
even restrict this number further in their implementation.
Nevertheless, these numbers are still significantly larger
than the 32-bit limit.

There is a further twist on these limits. On 32-bit Windows
and Linux, the 4 GB addressable space is further separated
into user mode and kernel mode. The kernel mode is
directly controlled by the OS to provide system level
services. User mode is the actual memory space that an
application, such as TOUGH2, can use freely. The user
mode limit is usually 2 GB. With some applications and
OS tweaks, the limit can be lifted to approximately 3 GB.
In the case when a 32-bit application is running on a 64-bit
OS, the OS kernel will run in 64-bit mode, making the
whole 32-bit process address space of 4GB available to the
application.

32-bit 0S 64-bit 0S
Windows Linux Windows Linux
32-bit App 2 GB! 2 GB! 4GB 4GB
64-bit App - - 8TB 128 TB?

' Expandable to 3 GB with special system configuration
% Varies with different Linux builds

The table above summarises the limits. Running 64-bit
applications on a 64-bit OS is obviously the better choice.
It is also valuable to recognise the benefit of running 32-bit
applications on 64-bit OS, if one is unable to recompile
simulation codes into 64-bit executables.

2.3 Static versus dynamic data

There is a further memory issue inherent with the original
code for TOUGH2, or AUTOUGH?2. All the variables used
to store data such as blocks, connections, generators, and
linear equation data are all declared with COMMON
statements in the FORTRAN language. These are stored as
static data in the process address space. Dynamic data has
space allocated at run-time, but the static data of an
application is fixed at compilation. Due to the way process
address space is managed, the maximum allowable static
data is less than that available to dynamic data.

On Linux, there are compiler options that can change the
way the system arranges the process memory and therefore
removes the 2 GB limit. This is arguably less efficient but
we have found no real performance impact. On Windows,
there is a fixed maximum of 2 GB of process memory, even
if the code is compiled as a 64-bit executable. In contrast,
there is no such limit on dynamic data, which is simply
bounded by the available memory in process address space
at the time of allocation.

In addition to the limits imposed on the static data memory,
using static data has several other drawbacks. The
TOUGH2/AUTOUGH?2 executable needs to be re-compiled
each time a bigger model is required. Static data is less
efficient than dynamic data, which can allocate exactly the
required amount at run-time.

We have updated the AUTOUGH2 code to use dynamic
memory allocation. The exact memory size needed is only
determined after processing the input file. We had some
concerns about the loss in performance that might be
incurred by changing from static to dynamic memory
allocation, but the effect is found to be insignificant. A few
seconds of additional time are required to determine the
model size and allocate memory but there is no effect on
the actual computation time at all.

Lawrence Berkeley National Laboratory also used dynamic
memory allocation when they parallelised the original
TOUGH2 code into TOUGH2-MP. The users of the
original TOUGH2 are less fortunate, as the problem of the
2 GB static data limit cannot be solved with a method that
works across different platforms and compilers.

2.4 Overcoming memory limits with
parallelisation

It is important to emphasise again that the 2 GB limit of 32-
bit systems only applies to a single application process.
With parallelisation, it is possible to gain access to more
memory by using multiple processes, each having its 2 GB
limit.

The parallel simulation code TOUGH2-MP achieved
exactly this. TOUGH2-MP divides a model up into sub-
domains, each running on a separate process. Multiple
processes together can deal with models that are multiple
times larger. Other benefits of TOUGH-MP, particularly
the speed improvement, will be discussed in later sections.

New Zealand Geothermal Workshop 2011 Proceedings
21 - 23 November 2011
Auckland, New Zealand

2.5 Generalised model size limit

So what does all this mean to a TOUGH2/AUTOUGH?2
modeller? The simple solution is to compile dynamic code
as a 64-bit application, and run it on a 64-bit OS. It is
interesting, however, to understand the approximate limit of
32-bit TOUGH2/AUTOUGH2 in terms of actual model
size, the number of blocks for example.

A generalised case of a simple three-dimensional model can
be used to demonstrate the approximate relationship
between number of blocks in a model and the amount of
memory required. Here we assume the 3-D (three-
dimensional) model has a quadrilateral mesh with N blocks.
The maximum number of connections, or element
interfaces, is N x 3 theoretically. We assume that the
models may require complex boundary conditions,
implemented through generators that include rainfall,
surface discharge, basement heat and mass inflow, side
boundary recharge. Additional generators that have a time
dependent values must also be included, e.g. time-varying
rainfall, historic production data, and future makeup wells.
We assume that there are N x 20 generator table entries for
each model. Note that it is difficult to generalise the
number of generator table entries, but fortunately the
memory requirement is significantly less dependent on the
number of generators than on the number of blocks and
connections.

AUTOUGH2 Memary Usage

12,000
-
i 10000 #
= »
o y
£ 800 -
i
o© 7
2 /..
= 6,000 »
o -
b ¥
S 4000 | A
o Ll
o >
E 80,000 &
= 2000 F /.’
/"
L
o 100,000 200,000 300,000 400,000 500,000

Model Size (Number of Blocks)

Figure 1: Memory usage of AUTOUGH?2 as a
function of model size

Figure 1 shows measured memory usage of AUTOUGH?2
as a function of model size. These numbers were obtained
using AUTOUGH2, which is slightly different from the
original TOUGH2, but it should give a good estimate of the
memory requirement for TOUGH2. It is clear to see the
memory requirement is linearly dependent on the model
size. With a 2 GB restriction, 32-bit AUTOUGH2 can only
support models with approximately 80,000 blocks.

2.6 Discussion

The linear growth of memory requirement may seem
reasonable. However, refining the mesh of a three-
dimensional model usually means a four to eight fold
increase in the number of blocks. Thus it does not take
many refinements to give a very large memory requirement.
Furthermore, TOUGH2 models with MINC (multiple
interacting continua) processing obviously requires far
more memory as it is common to divide each of the original
blocks into several smaller fracture and matrix blocks.

Obviously, users of TOUGH2/AUTOUGH2 should be
encouraged to move on to 64-bit systems if they wish to run
larger models. Upgrading the codes to use dynamic
memory allocation will also bring benefits.

3. SIMULATION SPEED AND
PARALLELISATION

Improving the speed of TOUGH2/AUTOUGH?2
simulations can be most simply achieved by upgrading to
new and improved hardware. However, some of the
advancement in new hardware can only be utilised by using
appropriately updated compilers. This is because a lot of
the recent improvements in CPU technology come in the
form of new instruction sets. These instruction sets are
designed in the hardware to complete certain operations
with less CPU clock cycles than was previously possible.
Only with updated compilers that understand the new
instruction sets, is it possible to fully utilise the capability
of the new hardware. This is especially true for
applications like TOUGH2 which use a lot of floating point
operations, which many of these new instruction sets are
designed to carry out quickly.

It is also important to note how CPU technology has grown
in power in recent years. Instead of increasing the CPU
clock speed (more and more difficult for a number of
reasons) to achieve higher performance, it is more common
to increase the number of computation operations per clock
cycle. Apart from adding new instruction sets as mentioned
previously, often performance is enhanced by adding more
cores into one CPU, or more CPUs into one computer box.
Then further improvements in speed can only be obtained
by dividing the computation up and running it in parallel.

Traditionally parallel computing was achieved by using
large supercomputers, each containing many CPUs with
dedicated interlinks, memory, specialised OS, and code
specifically programmed to utilise multiple CPUs. As the
technology progressed, clusters began to be used, formed
by linking many individual computers, to execute parallel
simulations previously only possible on supercomputer.
Multiple core/CPU PCs are also becoming more common.
Both clusters and multi-core PCs are now very affordable.
Standardisation of parallel programming has also played an
important role in ensuring the portability of parallel
simulation codes.

3.1 TOUGH2-MP

TOUGH2-MP is the result of a major effort by Lawrence
Berkeley National Laboratory to parallelise the original
TOUGH2 code. TOUGH2-MP divides a given model into
sub-domains, each treated like a smaller problem with the
computation implemented on a single processor. The
integrity of model across the whole domain is kept by
synchronising primary variables across the boundaries of
sub-domains. Since all of these sub-domain problems can
be solved simultaneously by different processors, the total
length of the simulation time can be cut down to the time
required for each of the smaller sub-domains.

We have tested TOUGH2-MP on a variety of machines:
multi-core PCs, an HPC (high performance computer which
is closer to supercomputers in the traditional sense), and a
cluster. Speed-up tests were carried out to see how much
performance improvement is possible with the systems
available to us.

New Zealand Geothermal Workshop 2011 Proceedings
21 - 23 November 2011
Auckland, New Zealand

3.2 Setting up TOUGH2-MP

Unlike the original TOUGH2, getting TOUGH2-MP to
work is not always easy, especially with different machines
and OS. Instead of simply compiling the TOUGH2-MP
source code directly on the targeted platform, TOUGH2-
MP additionally requires users to ensure MPI (the Message
Passing Interface) [1] works on the target system and it is
compatible with the compilation of TOUGH2-MP source
codes.

MPI, an industry standard for parallel computation, is used
by TOUGH2-MP to deal with the communications between
processors (nodes in a cluster or cores/CPUs in a single
computer box) while each processor runs a simulation
similar to the original TOUGH2. Among different
implementations of MPI, Open MPI [2] works
straightforwardly on Linux powered systems, while we
have found it easier to use MPICH2 [3] on Windows
machines.

After setting up MPI, the compilation of TOUGH2-MP
takes several steps. It is relatively easy on Linux-based
systems. The code distribution comes with batch-
processing scripts and make files which greatly ease the
process. On Windows, however, users are provided with
less help in compiling the two base libraries: METIS [9]
and Aztec [12]. METIS is the domain partitioning
software, while Aztec is a parallel linear equations solver.
These steps can be difficult to follow if the user is not
familiar with compiling complex codes. It is especially
tricky to deal with these codes, because they are designed
for multiple platforms and written with mixed computer
languages.

3.3 Performance gains

Of the computers on which we tested TOUGH2-MP, two
were eight-core Dell Precision T5500 PCs running at 2.66
GHz (gigahertz), one running Debian GNU/Linux 6.0 and
one running Windows 7. We had to use quite different
setups to make each system work. The default Open MPI
and GCC compiler were used on Linux, and MPICH2, Intel
Fortran, and Microsoft Visual C++ were used on Windows.
The performance of these two machines is nearly identical,
and so results from only one machine are shown.

The HPC is two IBM Systems x3755 servers linked
together, each running 4 dual-core CPUs at 2.6 GHz,
totalling 16 cores. The Red Hat Enterprise Linux OS is
installed.

BeSTGRID [4] is a cluster, or perhaps more appropriately a
computing grid, that is composed of numerous
computational resources from many universities and
research organisations from New Zealand. BeSTGRID can
be accessed via a job management system. Tools such as
compilers and MPI are preloaded and users can compile
TOUGH2-MP and upload the executable along with models
to a job queue.

The test problem we used is a 3-D model of the Palinpinon
geothermal field (using EOS1 for pure water) with 64754
blocks, 192209 connections, and a total well table length of
4070. Timing and speedup of the simulations is presented
in Figure 2 and Figure 3. All speedup factors are calculated
by using the simulation time of the two processor case as
the base case (TOUGH2-MP will not run on fewer than two
processors). The ‘ideal’ linear performance gain of

doubling speed by doubling the number of processors is
shown in the figure for comparison.

3.4 Discussion

Figure 3 shows that for this test problem, the speedup factor
decreases as the number of processors increases, and is
noticeably less than the linear ideal for all three platforms
tested- that is, doubling the number of processors results in
less than a doubling of speed. Of these three, the HPC
showed the best speedup behaviour (even though it was the
slowest in terms of computer time) and the 8-core PC the
worst. These differences are, however, not great, and are
likely due to differences in computer architecture and the
way the processors are linked together, with the HPC and
BeSTGRID being better optimized for parallel
computation.

Simulation Time on Different Computers

Simulatian Time [seconds)

Mumber of Processors

—a—8-core PC —=—HPC ——BeSTGRID

Figure 2: Simulation time on different computers.

Speedup on Different Computers

20

Speedup against 2-Processor Run
\

Number of Processors

—+—&G-core PC —=—HPC ——Be5TGRID - - —Ideal(linear)

Figure 3: Speedup on different computers.

Previously published results for TOUGH2-MP [8, 13] have
shown results closer to ideal linear speedup for other
problems, but typically for very large models with over one
million blocks. Speedup results are very problem-
dependent, with the benefits of parallelization being greater
for larger and more complex problems. However, for the
test problem here, which is of a size more typical of current
geothermal models, a useful degree of speedup is seen even
for a relatively modest numbers of processors. Figure 3
indicates that using larger numbers of processors on
BeSTGRID would result in some further speedup for this
problem, although there would likely be little gain in going
beyond 32 or 64 processors.

New Zealand Geothermal Workshop 2011 Proceedings
21 - 23 November 2011
Auckland, New Zealand

In practice, the performance measure of most interest to
modellers is not speedup so much as absolute simulation
time. Figure 2 shows that machines that give the best
speedup do not necessarily give the shortest simulation
time: for this problem, the 8-core PCs and BeSTGRID give
similar simulation times for up to eight processors, while
the HPC lags significantly behind both. Here the HPC's
slightly better speedup behaviour is overshadowed simply
by the relative slowness of its individual processors. The
HPC was built in 2006, whereas the 8-core PCs were
purchased in 2010 and have processors with only
marginally higher clock speed but significantly updated
instruction sets and other improvements.

Larger parallel machines like BeSTGRID, with access to
hundreds or thousands of processors, will likely become
increasingly useful as model sizes continue to increase.
However, there is no guarantee that simply using ever-
larger numbers of processors will give any benefit, as the
speedup results will still depend on the problem being
solved.

4. FUTURE WORK

A GPU (graphics processing unit) is a specialised circuit
originally designed for assisting the output of graphics in a
computer system. In a modern PC, it is a crucial
component for 3-D graphics rendering, video decoding, and
many other floating point operations related to graphics
output. GPUs are becoming more powerful and highly
optimised in recent years. In many cases, a GPU is actually
more suitable for floating point calculations than a CPU.
Current GPUs may contain hundreds of computational
cores, at a relatively low total cost.

Some manufactures have started to allow GPUs to be used
in general programming and to assist certain floating point
operations that were done by CPUs before [5, 6]. This has
moved into the field of scientific calculations. We have
started investigating this development. At the moment, the
GPU industry has not settled on widely accepted standards
which are important to ensure the future portability of code.
There are many issues that need to be looked at, but we
think there is potential here to further improve the speed of
the TOUGH?2 code family by sharing some of the workload
between CPUs and GPUs.

5. CONCLUSIONS

With the older 32-bit systems, TOUGH2/AUTOUGH?2
users will find the model size restricted by the 2 GB process
memory limit. This translates to a general three-
dimensional model of about 80,000 blocks. To overcome
the limit, it is advisable to move the simulations on to 64-
bit platforms, as 64-bit applications on 64-bit operating
systems have a much greater memory limit. We have also
updated AUTOUGH2 codes to allocate memory
dynamically which allows more efficient use of memory.

To speed up the simulations, users should pay attention to
updating compilers as well as upgrading computers. To cut
down the simulation time further, parallel simulation is
needed. TOUGH2-MP, a parallel version of the original
TOUGH?2, is able to bring a beneficial speed-up to many
different platforms. In our tests, TOUGH2-MP’s speed-up
on PCs is not as good as on an HPC or cluster. The
affordability of multi-core PCs these days, combined with
the ease of regularly upgrading hardware, makes running
TOUGH2-MP on PCs very attractive.

ACKNOWLEDGEMENTS

Thanks go to everyone in the Geothermal Research Group,
at the Department of Engineering Science who use
AUTOUGH2 every day. Your struggles with memory
limits and long simulation times have been the driver for
this work.

REFERENCES

[1] Message Passing Interface Forum. (2011, 13th
October). The Message Passing Interface (MPI)
standard. Available:
http://www.mcs.anl.gov/research/projects/mpi/

[2] The Open MPI Project. (2011, 13th October). Open
MPI: Open Source High Performance Computing.
Available: http://www.open-mpi.org/

[3] Argonne National Laboratory. (2011, 13th October).
MPICH2 : High-performance and Widely Portable
MPI. Available:
http://www.mcs.anl.gov/research/projects/mpich2/

[4] Ministry of Research, Science & Technology
eResearch programme. (2011, 13th October).
BeSTGRID: Broadband enabled Science and
Technology GRID. Available:
https://www.bestgrid.org/

[5] NVIDIA Corporation. (2011, 13th October). CUDA.
http://developer.nvidia.com/category/zone/cuda-zone

[6] Khronos Group. (2011, 13th October). OpenCL - The
open standard for parallel programming of
heterogeneous systems.
http://www.khronos.org/opencl/

[7]1 Bullivant, D. P., O'Sullivan, M. J., and Zyvoloski, G.
A., "Enhancements of the MULKOM geothermal
simulator,” in Proceedings of 13th New Zealand
Geothermal Workshop, University of Auckland, 1991,
pp. 175-182.

[8] Elmroth, E., Ding, C., and Wu, Y.-S., "High
Performance Computations for Large Scale
Simulations of Subsurface Multiphase Fluid and Heat
Flow," J. Supercomput., vol. 18, pp. 235-258, 2001.

[9] Karypis, G. and Kumar, V., "METIS: A Software
Package for Partitioning Unstructured Graphs,
Partitioning Meshes, and Computing FillReducing
Orderings of Sparse Matrices Version 4.0,"
Minneapolis: University of Minnesota, Department of
Computer Science, 1998.

[10] O'Sullivan, M. J., Pruess, K., and Lippmann, M. J.,
"State of the art of geothermal reservoir simulation,"”
Geothermics, vol. 30, pp. 395-429, 2001.

[11] Pruess, K., Oldenburg, C., and Moridis, G.,
"TOUGH2 User's Guide Version 2.0," Berkeley,
California: University of California, 1999.

[12] Tuminaro, R. S., Heroux, M., Hutchinson, S. A., and
Shadid, J. N., "Official Aztec User's Guide Version
2.1" Albuquerque: Sandia National Laboratories,
1999.

[13] Wu, Y.-S., Zhang, K., Ding, C., Pruess, K., EImroth,
E., and Bodvarsson, G. S., "An efficient parallel-
computing method for modeling nonisothermal
multiphase flow and multicomponent transport in
porous and fractured media," Advances in Water
Resources, vol. 25, pp. 243-261, 2002.

[14] Zhang, K., Wu, Y. S., and Pruess, K., "User's Guide
for TOUGH2-MP - A Massively Parallel Version of
the TOUGH2 Code," Berkeley, California, USA:
Earth Sciences Division, Lawrence Berkeley National
Laboratory, 2008.

New Zealand Geothermal Workshop 2011 Proceedings
21 - 23 November 2011
Auckland, New Zealand

New Zealand Geothermal Workshop 2009 Proceedings
16 — 18 November 2009
Rotorua, New Zealand

	Main Menu
	Author Index
	Workshop Programme

	Button1:
	Button2:
	Button3:

