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ABSTRACT

Setting up TOUGH2 simulations of geothermal reservoirs
is still often carried out manually, by editing input files.
However, for complex simulations this process can be
labour-intensive and error-prone. Partly in response to this
problem, various graphical interfaces for TOUGH2 have
been produced. While these can reduce the likelihood of
input errors and make simple simulations easier, graphical
interfaces often limit the full capability of the TOUGH2
simulator. More importantly, neither manual nor graphical
methods lend themselves easily to automation, which is
desirable for more complex simulations.

A third approach, so far relatively unexplored, is that of
scripting. The PyTOUGH library has been developed to
enable the user to control potentially all aspects of a
TOUGH2 simulation (from grid generation and model
setup through execution, post-processing and analysis) via
simple Python scripts. This approach avoids the limitations
of both manual and graphical methods, and makes possible
complex simulations involving, for example, suites of many
model runs with varying parameters (including
permeabilities, heat inputs and levels of grid resolution).

Here the possibilities of the PyTOUGH scripting approach
are demonstrated using both idealized and real-world

TOUGH?2 applications.

1.INTRODUCTION

The TOUGH?2 simulator (Pruess, 2004) takes its input for a
geothermal reservoir model from a model input data file, a
fixed-format text file that is not designed primarily to be
human-readable. The positions of the data on each line are
important, so that the accidental insertion or omission of
even a single extra space or other character can mean the
difference between a correctly-running model and a fatal
error- or perhaps worse, a subtle error that goes undetected.

Despite this, TOUGH2 data files are still often prepared
manually via a text editor. More recently, graphical user
interfaces (GUIs) for TOUGH2, e.g. MULGRAPH
(O'Sullivan and Bullivant, 1995) and PetraSim (Yamamoto,
2008), have been written, partly to aid data file preparation,
as well as to provide graphical post-processing capabilities.
These can make TOUGH2 modelling significantly easier
and less error-prone, particularly for new users. However,
this convenience generally comes at a cost, as GUIs often
limit the full potential and flexibility of the simulator- e.g.
by not allowing graphical access to more advanced features
(some of which may simply not be well suited to graphical
control), or by limiting the types of model grids that can be
used.

Additionally, more complex simulations- for example,
numerous linked model runs carried out in batches, the
input for one run possibly being modified depending on the
results of a previous one- really require some degree of
automation. Neither manual nor GUI approaches lend
themselves readily to this.

There is, however, a third approach which has so far
remained relatively unexplored: that of scripting. A script
is a simple program written in a highdevel scripting
language, in which objects like model grids, data input files
or model output are treated as variables to be manipulated
by the script. Such a script can automate some or all of the
preparation, running, graphical post-processing and analysis
of a TOUGH2 model, eliminating the need for manual input
editing, while retaining full control of all simulation
features. Previously-prepared scripts can also be adapted
and re-used for new models, saving considerable time.

This paper presents PyTOUGH, a new scripting tool for
TOUGH2, and demonstrates some of its potential via
example applications.

2. PYTOUGH

2.1 Introduction

PyTOUGH uses the Python scripting language. Python is
versatile, powerful and easy to learn, and is freely available
under an open-source license on all major computing
platforms.  Python scripts, unlike traditional programs
written in e.g. Fortran or C/C++, do not need to be
compiled, which speeds development.

Python extension libraries are available for very diverse
tasks including science and engineering applications, for
which Python has become increasingly popular
(Langtangen, 2008). PyTOUGH makes use of the
Numerical Python library (http:/numpy.scipy.org/) to
enable efficient computation even for larger models.
PyTOUGH itself takes the form of an extension library,
which can be called from any Python script.

No other scripting approaches for TOUGH2 appear to have
been reported in the literature. Audigane et al. (2011) did
present a set of Fortran routines for pre- and post-
processing of TOUGH2 simulations, which has some
similarity to parts of PyTOUGH's functionality. However,
it is not based on a scripting language, and was not intended
to provide complete control of the simulation, and so is not
directly comparable.

PyTOUGH supports both standard TOUGH2 and
AUTOUGH2 (the University of Auckland version), which
uses slightly different input and output file formats.
PyTOUGH contains several modules for controlling
different aspects of TOUGH2 simulations, as described
below.
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2.2 Grid geometry

TOUGH2 uses a flexible finite-volume formulation, in
which the model grid is described only as a set of block
volumes and the connections between them. The blocks are
not referenced to any particular coordinate system. But for
grid generation and postprocessing of model results, a
coordinate system is usually needed.

Accordingly, AUTOUGH?2 is generally used in conjunction
with a separate ' MULGRAPH geometry file' which contains
a geometric description of the grid (O'Sullivan and
Bullivant, 1995). This can be used to generate a TOUGH?2
finite-volume grid or for post-processing of results. It
assumes a layered grid structure in the vertical, but allows
arbitrary unstructured columns in the horizontal. The
geometry file format was originally designed for use with
the MULGRAPH GUI, but can be used equally well by
other software.

Because Python is an object-oriented language, something
as complex as a grid geometry can be represented as a
single 'object', with its own 'properties' (variables) and
'methods' (functions it can carry out). Each object is an
instance of a 'class' which specifies how objects of that
class will work. PyTOUGH provides a mulgrid class for
representing the contents of a geometry file as an object in a
script.  This class has methods for generating simple
irregular rectangular 3-D grids, reading from and writing to
disk, importing from or exporting to other formats, and for
carrying out a range of grid operations including translation
and rotation, local grid refinement, error checking,
evaluating and optimizing grid quality and fitting
topographic data.

For example, the section of Python script below creates a
rectangular grid geometry from the grid size lists dx, dy
and dz, refines a central area of interest, rotates it
horizontally by 45° about its centre and fits surface
topographic data from a file. As can be seen, in Python the
methods (and properties) of an object are accessed using a
dot after the object's name.

geo=mulgrid() .rectangular (dx,dy,dz)
geo.refine (central columns)

geo.rotate (45)

surface data=np.loadtxt ('surface.dat')
geo. fit_surface (surface_data)

These few lines, together with some simple code to specify
the grid sizes and the location of the area to be refined, can
be used to produce 3-D TOUGH?2 grids such as the one

shown in Figure 1.

It should be noted that PyTOUGH does not require the user
to use MULGRAPH geometry files. Further modules could
easily be included in PyTOUGH to represent other desired
grid geometry formats and create TOUGH2 grids from
them. PyTOUGH can also be used independently of any
grid geometry pre-processing.

PyTOUGH also includes a separate geometry module
which contains functions for carrying out various useful
geometric calculations in 2-D, for example determining if a
point is in a given polygon, and performing linear
transformations (e.g. between different coordinate systems).

Figure 1: A rotated, locally refined rectangular
TOUGH2 grid with fitted surface (shaded by

elevation), generated using PyTOUGH

2.3 TOUGH?2 input

The PyTOUGH t2data class contains a complete
representation of the contents of a TOUGH?2 input data file.
This includes a 'grid' property (represented by a separate
t2grid class) which holds the TOUGH?2 finite-volume grid
data and contains properties for accessing the individual
grid blocks, connections and rock types. For convenience
these properties can all be accessed either by index or by
name. Further functionality includes error checking,
transferring rock types and generators from one TOUGH?2
model to another (e.g. when creating a refined model), and
calling TOUGH2 to run the model.

For example, the following lines read an existing TOUGH2
data file, replace its grid with one created from the
geometry defined above, write an updated data file and run
the model:

dat=t2data ('model.dat"')
dat.grid=t2grid() .fromgeo (geo)
dat.write('new model.dat"')
dat.run ()

PyTOUGH also includes a t2incon class for handling initial
conditions files, which have the same format as the final
'save' files produced at the end of a run.

2.4 TOUGH?2 output

TOUGH2's main output is to a 'listing file', which is also a
text file with a format particular to TOUGH2, and contains
tables for results at blocks, connections and generators.
PyTOUGH's t2listing class can represent a listing file as an
object in a Python script. Listing files can be read from
disk and (for transient simulations) navigated in time, and
results within the various tables can be accessed
individually or 'sliced’, to give e.g. all results at a particular
block, or an array of a particular quantity (such as
temperature) over all blocks. Additionally, time histories of
block, connection or generator quantities can be returned.
Other useful functionality includes the ability to check
convergence of steady-state runs by comparing results at
different times.

Graphical post-processing of TOUGH2 grids and results
can be carried out using PyTOUGH in two different ways.
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Firstly, the mulgrid class provides methods for producing
two-dimensional plots over grid layers or vertical slices, via
the Matplotlib Python plotting library
(http://matplotlib.sourceforge.net/). Arbitrary arrays can be
plotted. These are typically slices from tables in a t2listing
object, but could also be derived quantities calculated from
them. Simple one-dimensional plots over lines or polylines
(e.g. deviated well traces) in 3-D are also possible.

Secondly, PyTOUGH can also export TOUGH2 grids and
results to Visualization Toolkit (VTK) XML files
(http://www.vtk.org) for 3-D visualization using ParaView
(http://www.paraview.org/) or similar software. (Figures 1,
2 and 5-8 in this paper were created this way.)

2.5 Thermodynamics

PyTOUGH contains thermodynamic 'steam table' functions
for calculating the properties of water and steam within
Python scripts. Two versions are included: the IFC-67
formulation used by TOUGH?2, and the updated IAPWS-97
formulation used by the supercritical version of
AUTOUGH?2 (Croucher and O'Sullivan, 2008).

3. EXAMPLE APPLICATIONS

3.1 Convection in a 2-D confined aquifer

This example uses a relatively simple idealized model to
demonstrate the potential of PyTOUGH for automating all
stages of modelling, from grid generation and model setup
through execution, post-processing and analysis. The
model is a naturalstate 2-D vertical slice of a confined
aquifer with a localized heat source below, modelled with
TOUGH?2 using the EOS1 (pure water) equation of state.

3.1.1 Model setup, execution and post-processing

The model domain extends 15 km in the horizontal and is
1.5 km deep. The aquifer has isotropic permeability 10"
n? and is confined above and below by low-permeability
(107! n?) layers with thickness 250 m. There is a Gaussian
heat input distribution over the central 5 km of the base of
the model, with peak value 0.3 W/m’ and standard
deviation 750 m. Boundary conditions are no-flow at the
bottom and sides, and atmospheric temperature and
pressure at the surface.

Using the PyTOUGH mulgrid class, an irregular
rectangular grid for this problem can readily be set up, as
was done in section 2.2. A refined grid is used for the
central region above the heat source, outside which the grid
sizes increase progressively towards the lateral boundaries.
These grid sizes can easily be computed using functions
available from the Numerical Python library, then passed to
the rectangular () function as above to create the grid
geometry and hence the TOUGH2 grid. For this model
there are in total 221 columns and 60 layers. The script can
then define two rock types, for the aquifer and confining
layers, and loop over the grid blocks, assigning the
appropriate rock type to each (in this case simply based on
the elevation of each block).

The heat input distribution is represented in TOUGH2 by a
heat generator in the bottom block of each column in the
central region of the model, with heat flow rate determined
by distance from the centre. First, a list of the central
columns in the geometry geo is constructed:

cols=[col for col in geo.columnlist
if side_width <= col.centre[0]
<= side_width+centre_width]

and the bottom layer is identified by:

layer=geo.layerlist[-1]

(where in Python an index of -1 indicates the last element
of a list or array). The Gaussian distribution of heat flow
rates for these columns can be calculated from:

gmax, gsd=0.3,750.

x0=0.5* (cols[0] .centre[0]+
cols[-1].centre[0])

dxs=np.array([col.centre[0]-x0 for
col in cols])/gsd

gcol=gmax*np.exp (-0.5*dxs*dxs)

The generators can now be created and added to the t2data
object dat (representing the TOUGH2 data file) using:

for col,qg in zip(cols,qgcol):
blkname=geo.block name (layer.name,
col.name)
genname=' qg'+col.name
dat.add generator (t2generator (name=
genname, block=blkname,
type="HEAT',gx=g*col.area))

Initial conditions for the natural-state simulation (in this
case, just uniform atmospheric pressure and temperature in
all blocks) can be created using the PyTOUGH t2incon
class:

ptop, ttop=101.3e3, 20.

inc=t2incon ()

for blk in dat.grid.blocklist:
inc[blk.name]=(ptop, ttop)

All other simulation parameters can also be set up via the
script. (Often it is convenient to have the script open an
existing TOUGH2 data file and modify only what needs
changing for the new model.) The script can then execute
the simulation, open the resulting TOUGH?2 listing file and
export the results to VTK format for visualization using:

dat.run ()
lst=t2listing('model.listing')
lst.write vtk(geo, 'model.pvd',dat.grid)

Temperature (deg C)
40,90 80
N ]
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Figure 2: Temperature and mass flux in a confined
aquifer heated from below, simulated using

TOUGH2 via a PyTOUGH script
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Figure 2 shows the results of the simulation, plotted using
ParaView. The elevated temperatures and convection cells

in the aquifer above the heated area can be seen.

Hence, using PyTOUGH, the entire modelling process for
this problem, from grid generation to visualization of
results, can be carried out using a single Python script.

3.1.2 Grid refinement study

Part of any TOUGH2 modelling problem is the
determination of the appropriate model grid size. Generally
the optimal grid size is taken to be the largest one that will
resolve all the important features of the problem, giving the
most economical solution that is still accurate. This can be
determined using a grid refinement study, in which the grid
is progressively refined until the solution ceases to change
appreciably. In practice, grid refinement studies are often
omitted because of the extra work involved in setting up
multiple refined models using manual or GUI methods.

A grid refinement study is not difficult, however, if the
model grid is constructed using the scripting approach.
Generating results for a finer grid is simply a matter of
changing a few variables in the script. In fact, the whole
grid refinement study can itself be scripted as a loop.
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Figure 3: Effect of grid size on temperature profiles for
confined aquifer model

Figure 3 shows the results of a grid refinement study carried
out on the 2-D confined aquifer model. The plots (again
produced using a Python script) show temperature profiles
at the centre of the model for a range of different grid sizes,
and the differences between them. It can be seen that
refinement from 71x20 blocks (vertical grid size 75 m)
through 111x30 blocks (50 m) to the original 221x60 grid
(25 m) has a noticeable effect on the temperature profiles,
but further refinement to 331x90 blocks (16.67 m) does not
give appreciable improvement. Hence it can be concluded
that 221x60 is an appropriate grid resolution for this
problem.

3.1.3 Effect of aquifer permeability on peak heat flux

Using the scripting approach, it is also straightforward to
iterate over a range of values for a given model parameter
and investigate the effect on the model results. For
example, we may wish to know how the aquifer
permeability affects the peak heat flux at the ground
surface. The following script iterates over a logarithmic
range of aquifer permeabilities, runs the model for each

case, calculates the peak surface heat flux at the end of each
simulation and stores the results in a list:

kvalues=np.logspace(-12,-15,num=20)
icol=geo.num columns/2
area=geo.columnlist[icol].area
qtop=1[]
for k in kvalues:
dat.grid.rocktype['formn'].
permeability=[k]*3
dat.write ('model.dat"')
dat.run ()
lst=t2listing('model.listing")
lst.last ()
gm=1lst.connection['Heat flow'][icol]
gtop.append (-qm/area)
t2incon ('model.save') .
write ('model.incon')

The last line copies each set of final model results to the
initial conditions for the next run, to save simulation time
(so only the first run needs to start from 'cold' conditions).

The results are shown in Figure 4. For very low
permeabilities, heat flow in the system is mainly by
conduction and the peak surface heat flux is low. As the
permeability is increased, the convection cells form,
increasing the heat flow to the surface. The convection
cells increase in size as the permeability is increased, but
are constrained vertically by the confining layers, causing
them to spread out horizontally, thus causing the peak
surface heat flux to decrease again at high permeabilities.
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Figure 4: Effect of aquifer permeability on peak surface
heat flux

We can also make use of the many extension libraries
available for Python to carry out further analysis of the
model results. For example, the exact aquifer permeability
that gives the greatest peak surface heat flux can easily be
found using one of the non-linear optimization algorithms
from the Scientific Python library (http://www.scipy.org/).
All that is required is to write a small Python function (by
rearranging some of the code given above) that takes the
permeability and returns the peak surface heat flux, and
pass that function into the optimization routine. Doing this
shows that the peak surface heat flux is maximized when
the aquifer permeability is 0.83x10™" n?.
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3.2 Lihir gold mine model

The PyTOUGH library was recently used to model the
geothermal system in the Lihir gold mine, Papua New
Guinea. More details of the Lihir geothermal system and
the model can be found in O'Sullivan et al. (2011). The
Lihir system presents particular modelling challenges,
because the ground surface at the mine pit changes with
time as the pit is excavated.

TOUGH?2 has no explicit allowance for model domains or
grids that change with time, so the long-term evolution of
the system has to be simulated as a series of short periods
over which the model geometry is held constant. For this
study, the system was modelled from 1999 to 2023 in a
sequence of one-year simulations, with a subset of the
results of each yearly model run serving as initial
conditions for the next.

A complex model of this sort cannot easily be managed
using manual or GUI approaches. It requires at least some
of the modelling process to be automated, and hence is a

very suitable application for PyTOUGH.
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Figure 5: Lihir island, showing surface elevations,
extent of model grid and location of mine pit

The first stage of the modelling process was to prepare a 3-
D model grid geometry for each yearly model. An initial
irregular rectangular 3-D grid geometry was prepared for
the natural-state model, and this was used as the basis for
each yearly grid geometry. The horizontal grid structure
(shown in Figure 5) was kept constant, but at each year, the
surface elevations over the grid columns in the pit were
fitted anew to projected annual pit profiles provided by
Newcrest Mining Ltd. This can all be done straight-
forwardly in a few lines of Python script using a loop over
the simulation years. Surface fitting at each year was
carried out using the fit surface() method of
PyTOUGH's mulgrid class. This can fit scattered elevation
data to an arbitrary unstructured horizontal grid, made up of
triangular and/or quadrilateral cells, using least-squares
finite element fitting. The method includes the option of
applying Sobolev smoothing (Terzopoulos, 1986), which
penalizes large gradients or curvature in the fitted surface,
preventing the fitting process from either failing or

producing spurious results for clumped data sets with areas
of low data density.
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Figure 8: Modelled Lihir mine pit, 2023

Assembling the system of least-squares finite element
equations requires finding which grid column each surface
data point lies in. For large data sets and grids this
geometric search is the most time-consuming part of the
fitting process and has to be done as efficiently as possible.
PyTOUGH includes an accelerated search algorithm based
on a quadtree data structure, similar to that proposed by
Krause and Rank (1996). In addition, the
fit surface () method allows the user to fit subsets of
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the whole grid, so for the Lihir model the process can be
sped up further by only fitting columns within the mine pit.

The modelled mine pits for natural state, 2011 and 2023 are
shown in Figures 6-8. The remaining stages of the
modelling process consisted of:

e preparing a TOUGH2 grid and data input file for
each yearly model, from its respective grid
geometry- determining which blocks have been
removed by mining (or added to mining
stockpiles) and adjusting the heights of the
uppermost blocks to follow the surface profile

e running the sequence of linked yearly models,
with a subset of the results of each model being

used as initial conditions for the next

e  combining the results of all the yearly models into
longterm results over the entire simulation
period.

All of these stages were also carried out using PyTOUGH.
Details of them can be found in O'Sullivan et al. (2011).

4. CONCLUSION

The examples above demonstrate some of the potential of a
scripting approach to TOUGH2 simulations using the
PyTOUGH library, as an alternative to, or in conjunction
with, traditional manual or GUI approaches. Scripting can
make model setup simpler and less error-prone in many
cases (although it is of course still possible to make errors
in a script), without limiting the potential of the TOUGH?2
simulator. PyTOUGH also enables the user to perform
postprocessing and analysis of TOUGH2 results via a
range of other Python extension libraries.

The real power of the scripting approach, however, lies in
its ability to enable more complex modelling tasks that
would be difficult or impossible to carry out manually or
via a GUI- particularly running suites of models that have
different sets of parameters, or that are linked to each other,
with the input of one being determined by the output of
another.

Rather than presenting the user with a pre-determined set of
options, a scripting library like PyTOUGH provides a
'toolbox' of methods which can be combined, according to
the needs of the modelling problem at hand, in an almost
unlimited number of ways.

Some future applications of PyTOUGH that are envisaged
include using it to populate rock types in a TOUGH2 data
file by interfacing with geological modelling software.
Simple inverse modelling, similar to what can be done with
iTOUGH2 (Finsterle, 1999) could be done by coupling
PyTOUGH with available Python libraries for non-linear
optimization. Ensembles of models with stochastically
generated parameters (e.g. rock properties), sampled from a
distribution, could be run to perform sensitivity studies.
Creating similar scripting libraries for other simulators
would open up further possibilities, such as hybrid models
involving more than one simulator- e.g. combining

TOUGH2 with a rock mechanics code to model subsidence,
similar to what was done (via other means) by Yeh and

O'Sullivan (2007).
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