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ABSTRACT
We present two applications of the adaptive delayed
acceptance Metropolis-Hastings algorithm (ADAMH)
for the automated calibration of large-scale geothermal
reservoir models, within the framework of Bayesian in-
ference. ADAMH is a two step Markov chain Monte
Carlo (MCMC) algorithm that the uses adaptivity and
coarse scale models to enhance the sampling perfor-
mance. The first study case is a 1D well discharge test
model with synthetic data, and the second case demon-
strates an application on a 3D natural state model with
measured data. The latter consists of 10,000 model pa-
rameters and each model simulation takes more than
30 minutes. Compare to the standard MCMC algo-
rithms, ADAMH provides significant improvements in
the sampling efficiency.

1 INTRODUCTION
In setting up numerical models of geothermal reser-
voirs, the estimation of spatially distributed parameters
and the quantification of the associated uncertainties
are important topics for investigation. Because the pa-
rameters of interest such as porosity and permeability
are usually spatially distributed, highly heterogeneous
and anisotropic, and data are usually sparse, condition-
ing the parameters on data is an ill-posed inverse prob-
lem (Hadamard, 1902; Jaynes, 1984). This means that
there exist a range of feasible parameters that are con-
sistent with the measured data, and hence a range of
possible model predictions. Thus, the assessment of
parameters and model predictions require summarizing
information over this range of feasible parameters.

This problem can be naturally fitted into the Bayesian
inferential framework by constructing the posterior dis-
tribution over model parameters conditioned on mea-
sured data (Kaipio and Somersalo, 2004). The poste-
rior distribution quantifies the relative probability of a
set of parameters being correct, and hence robust model
predictions and uncertainty quantification can be calcu-
lated as expectations of desired quantities over the pos-
terior distribution. Because of the high dimensional-
ity of the parameter space and nonlinearity of the pos-
terior distribution for geothermal problems, the most
efficient way for computing expectations of summary
statistics is by Monte Carlo integration, using samples
distributed according to the posterior distribution. The
best technology currently for drawing such samples is
MCMC sampling. The role of Bayesian inference in
geothermal model calibration and preliminary studies
on this topic can be found in Cui (2005); Cui et al.
(2006).

Traditionally, this approach has been considered to be

computationally prohibitive for large scale problems
such as geothermal reservoir models. However, the
adaptive delayed acceptance Metropolis-Hastings al-
gorithm (ADAMH) developed by Cui et al. (2011)
allows us to apply MCMC techniques to the title
problem at a scale that has previously been infeasi-
ble. ADAMH enhances the computational efficiency
of the Metropolis-Hastings algorithm (MH) (Metropo-
lis et al., 1953; Hastings, 1970) by employing a coarse
scale model and state-of-the-art techniques in adap-
tive MCMC sampling (Haario et al., 2001; Roberts and
Rosenthal, 2007).

We first validate ADAMH on a 1D homogeneous
geothermal reservoir model with synthetic data. This
model consists of 7 parameters, and each model sim-
ulation costs about 2.60 seconds CPU time. ADAMH
shows a speed-up factor about 4.1 compare to the stan-
dard MH. Then, ADAMH is applied to the estimation
of the heterogeneous and anisotropic permeability dis-
tribution and the heterogeneous boundary conditions of
a 3D natural state model of a two phase geothermal
reservoir. There are about 104 parameters in the nat-
ural state model, and each model simulation requires
about 30 to 50 minutes of CPU time, which makes it
virtually impossible for the standard MH algorithm to
be applied. ADAMH achieves a speed-up factor about
7.7 compare to the standard MH. We are able to run
11,200 iterations in about 40 days. The sampling re-
sults show good agreement between the estimated tem-
perature profiles and the measured data.

The TOUGH2 computer package (Pruess, 1991) is
used to simulate the geothermal reservoir models pre-
sented in this study. For compactness, the govern-
ing equations and numerical methods are not discussed
here, and we refer the readers to Pruess (1991).

This paper is organized as follows: Section 2 gives dis-
cussions of the Bayesian inferential framework for in-
verse problems. Section 3 discusses the efficiency of
MCMC sampling, and presents the details of ADAMH.
In Section 4, we present a case study on an 1D well dis-
charge test model with synthetic data. In Section 5, we
present a study on 3D geothermal reservoir model with
measured data. Section 6 offers some conclusions and
discussion.

2 BAYESIAN FORMULATION
In a Bayesian framework, the unknown parameters x
are considered as random variables, and a posterior dis-
tribution π(x | d) over parameters x conditioned on
measurements d can be constructed using the proba-
bilistic model for various uncertainties associated with
the inverse problem. The commonly used stochastic
relationship is

d = F (x) + e, (1)
1
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where F : x → d is a deterministic TOUGH2 model
simulation, and e is a noise vector that represents all the
uncertainties associated with the map from parameters
to data, such as measurement noise and modelling er-
ror. Following Bayes’ theorem, the unnormalized pos-
terior distribution

π(x | d) ∝ π(d | x)π(x) (2)

is given as a product of the likelihood function π(d | x)
and prior distribution π(x). From (1) and the Gaussian
assumption about the noise e (Higdon et al., 2003), we
can deduce that the likelihood function has the form

π(d | x) ∝ exp

(
− 1

2σ2
e

‖d− F (x)‖2
)
, (3)

where ‖ · ‖ is the Euclidean norm.

The prior distribution π(x) quantifies the relative prob-
ability for a given set of parameters x in the absence
of field measurements (Jaynes, 1968). Formulating the
prior distribution for a subsurface modeling problem
usually consists of: (i) Choosing an appropriate rep-
resentation of the unknown parameters. As discussed
in Hurn et al. (2003), this is a composite part of prior
modeling since expressing certain types of knowledge
is simpler in some representations than others, and so-
lutions that cannot be represented are excluded. (ii) De-
riving the spatial statistics for the chosen parametriza-
tion by expert knowledge of allowable parameter val-
ues, previous measurements, modeling of processes
that produce the unknowns, or a combination of these.

3 MCMC SAMPLING
3.1 Standard Metropolis Hastings
To effectively solve the inverse problem, the posterior
distribution (2) is sampled by the Markov Chain Monte
Carlo (MCMC) method, and hence summary statistics
can be estimated from samples. MCMC algorithms
draw samples from the posterior distribution by gener-
ating a sequence, or “chain”, of solutions that have the
ergodic property, i.e, that allow expectations over the
posterior distribution to be replaced by averages over
the chain. Informally, we think of an ergodic chain as
one that spends time in each region of parameter space
proportional to the posterior probability of that region.
Almost all implementations of MCMC sampling em-
ploy Metropois-Hastings dynamics (MH) (Metropolis
et al., 1953; Hastings, 1970). At step n, given state
xn = x, one step of MH can be written as follows:

1. Generate a candidate state y by the proposal dis-
tribution y = q(x, ·).

2. With probability

α(x,y) = 1 ∧ π(y|d)

π(x|d)

q(y,x)

q(x,y)
, (4)

set xn+1 = y, otherwise xn+1 = x.

The symbol ∧ denotes the minimum of two factors.

MH generates a highly correlated random sequence of
parameters (or solutions), x1,x2, . . . ,xN having the

Markov property, with a limiting distribution equal to
the desired posterior distribution, i.e., xi ∼ π(x | d)
for large i. Hence xi and xi+1 will be very similar,
however for large lags, i.e. j � i, the parameter xi

and xj may be viewed as independent samples from
the posterior distribution. Because our goal is to es-
timate the expectation values of statistics of interest,
the performance of MCMC sampling is characterized
by the number of statistically independent samples that
can be drawn. The statistical efficiency of MH is quan-
tified by the number of iterations required to gener-
ate a statistically independent sample, which is calcu-
lated by estimating the integrated autocorrelation time
of some statistics of interest over the chain (Goodman
and Sokal, 1989).

Tuning the variables that control the scale and orienta-
tion of the proposal distribution is crucial for achiev-
ing statistical efficiency. One motivated example is the
commonly used multivariate Gaussian proposal, i.e.,
y ∼ N(x, γ2Σ), where Σ is the covariance matrix
and γ is the scale variable. Gelman et al. (1996);
Roberts et al. (1997); Roberts and Rosenthal (2001)
show that for a d-dimensional parameter space, the op-
timal choice of the scale variable is γ ≈ 2.38/

√
d given

several theoretical assumptions. They also showed that
the acceptance rate of about 0.23 gives the optimal sta-
tistical efficiency for a high dimensional target distri-
bution. Traditionally, the modeler has to adjust these
scale variables in a “trial and run” manner, which is
very time consuming for high dimensional problems.
Recent advances in adaptive MCMC sampling such as
the adaptive Metropolis algorithm (AM) (Haario et al.,
2001) automate the tuning process by using the sam-
pling history.

Apart from designing the proposals, computational dif-
ficulty arises in MCMC sampling mainly because MH
requires sequential evaluation of the posterior density
at each iteration, and many thousands or millions of
iterations are necessary to give sufficiently accurate
estimates. Hence, we have to consider the computa-
tional efficiency of MH in practice, i.e., the computing
time for generating a statistically independent sample
is used instead of the number of iterations. To im-
prove computational efficiency, it not only necessary to
design efficient proposals that adequately explore the
parameter space, but it also requires the reduction of
the computing time per iteration. ADAMH reduces the
computing time per iteration by using a computation-
ally fast coarse model.

3.2 ADAMH
Suppose we have a coarse model F (·) that is compu-
tationally faster than the accurate model F (·) used in
the likelihood (3). By employing the approximation er-
ror model of Kaipio and Somersalo (2007), Cui et al.
(2011) introduced an approximate posterior distribu-
tion

π∗
n(x|d) ∝ exp

{
−1

2
‖L[F ∗(x) + µB − d]T ‖2

}
π(x),

(5)
where LTL = (ΣB + Σe)−1. In the above formulae,
the mean µB and covariance ΣB define a multivariate
normal distribution which is used to capture the model
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reduction error between the coarse model and accurate
model. ADAMH empirically estimates µB and ΣB

from the past history of MCMC sampling.

At step n, suppose we have xn = x, One step of
ADAMH is given as follows:

1. Generate a proposal y from the adaptive proposal
distribution qn(x, ·).

2. Let

αn(x,y) = min

[
1,
π∗
n(y)qn(y,x)

π∗
n(x)qn(x,y)

]
.

With probability αn(x,y), accept y to be used
as a proposal for the standard MH. Otherwise use
y = x as a proposal.

3. Let

βn(x,y) = 1 ∧ π(y | d)

π(x | d)

π∗
n(x | d)

π∗
n(y | d)

.

With probability βn(x,y) accept y setting
xn+1 = y. Otherwise reject y setting xn+1 = x.
Note that the candidate y = x has acceptance
probability 1.

4. Update the approximation π∗
n(·) by updating the

mean µB and covariance ΣB .

5. Update the adaptive proposal qn(x, ·).

In the above algorithm, the adaptive proposal in step 1
and 5 has to be specified by the user. We use the mod-
ified block Metropolis update introduced by Cui et al.
(2011). In the first step of ADAMH, the approximate
posterior distribution is used to reject proposals that are
have lower acceptance probability α. If the approxi-
mate posterior distribution is close enough to the true
posterior, the first step should be able to eliminate most
of the “bad” candidates. Then the use of the second
step acceptance probability β ensures that the samples
are drawn from the correct posterior distribution. For
an accurate approximate posterior distribution, the sec-
ond step acceptance probability must close to 1. Since
the computing time of the approximation is lower than
the exact posterior distribution, the average computing
time per iteration in ADAMH is reduced compare to
standard MH, and hence the computational efficiency
is improved.

It is worth mentioning that the coarse model usually has
a non-negligible discrepancy with the forward model.
The approximate posterior (5) uses the enhanced error
model of Kaipio and Somersalo (2007) to capture this
discrepancy. As shown by Cui et al. (2011), this treat-
ment gives a more accurate approximate posterior dis-
tribution. Without using the enhanced error model, the
approximation solely based on the coarse scale model
would lead to a very low seconds step acceptance prob-
ability. The original enhanced error model requires a
large amount of off-line computing to estimate the ap-
proximation from the prior distribution. ADAMH sig-
nificantly saves computing time by estimating the ap-
proximation (5) on-line using adaptivity. This approach

also provides a more accurate estimation of the approx-
imation over the posterior distribution. Cui et al. (2011)
provides a detailed proof of the ergodicity of this algo-
rithm, and analysis on the speed-up factor of ADAMH
compared to the standard MH.

4 1D MODEL
We first validate ADAMH by a well discharge test
model with synthetic data. Based on assumption that
all flows into the well come through a single layer feed-
zone, An one dimensional radial symmetry forward
model with 640 blocks is built to infer the near-well
properties of the reservoir, as shown in the plot (a) of
Figure 1. A high resolution grid is used immediately
outside the wellbore and the thickness increases expo-
nentially outside this region, where the wellbores is lo-
cated in the centre of the models. The coarse model is
build by coarsening the grid of the forward model to
a coarse grid with 80 blocks, as shown in the plot (b)
of Figure 1. The CPU time of evaluating the forward
model and the coarse model are 2.60 and 0.29 seconds
on a DELL T3400 workstation.

The parameters of interest are the porosity, permeabil-
ity, initial conditions and the hyperparameters in the
van Genuchten-Mualem relative permeability model,
as well as the initial vapor saturation (Sv0) and ini-
tial pressure (p0) that are used to represent the initial
thermodynamics state of the two-phase system. These
make up the seven unknown parameters for the data
simulation:

x = (φ, log10(k), p0, Sv0,m, Srl, Sls) .

Note that the permeability k is represented on a base 10
logarithmic scale.

To test ADAMH, a set of synthetic data is generated
over 80 days with production rates varying smoothly
from about 4 kg/seconds to about 6 kg/seconds.
The forward model and the model parameters x =
(0.12, 1.5 · 10−15, 120, 0.1, 0.65, 0.25, 0.91) are em-
ployed to generate the synthetic data. The production
rate and the noise corrupted pressure and flowing en-
thalpy response are shown in plots (c)-(e) in Figure 1,
where the noise follow an i.i.d. Gaussian distribution
with standard deviations σp = 3 bar for pressure and
σh = 30 kJ/kg for the flowing enthalpy. This gives

Σe =

(
σ2

h In 0
0 σ2

p In

)
in the likelihood function (3), and observed data d =
(dh,dp)T comprises the observed flowing enthalpy and
pressure, and n is number of measurements. ADAMH
achieves a second step acceptance rate of 97%, and
the estimated IACT of the log-likelihood function is
145.87. This gives a speed-up factor about 4.1 com-
pare to the standard MH.

The model predictions and the 95% credible intervals
over an 80-day period are shown in Figure 2, with pres-
sure on the left and enthalpy on the right. For both
predictions, the means follow the observed data rea-
sonably well. The histograms of the marginal distribu-
tions of the parameter x (see first two rows of Figure
3) show skewness in porosity and two of the hyperpa-

3
New Zealand Geothermal Workshop 2011 Proceedings

21 - 23 November 2011
Auckland, New Zealand



Cui, Fox, and O’Sullivan

rameters of the van Genuchten-Mualem relative perme-
ability model (m and Srl). The scatter plots between
parameters show strong negative correlations between
the permeability (on base 10 logarithmic scale) and the
initial pressure, see the first plot of last row of Figure 3.
There also exists strong negative correlations between
the initial saturation and one of the hyperparameters of
the van Genuchten-Mualem (Sls), see the second plot
of last row of Figure 3.

5 3D MODEL
Next we apply ADAMH to a 3D natural state modelling
problem. We aim to estimate the large scale perme-
ability structure and boundary conditions from steady
state temperature distributions. The temperature mea-
surements are presented in Figure 6, manual calibration
results and trial runs of MCMC sampling suggest that
the model mis-fit has standard deviation σT = 7.5 ◦C.
Thus, Σe = σ2

TIn is used in the likelihood function (3),
where n is the number of observations.

The geological setting of the geothermal reservoir
model we demonstrate here is summarized in Cui et al.
(2011). The model covers a volume of 12.0 km by
14.4 km extending down to 3050 meters below the sea
level. Relatively large blocks were used in the outside
of the model and then they were progressively refined
near the wells to achieve a well-by-well allocation to
the blocks. The 3D structure of the forward model
has 26, 005 blocks, which is shown in plot (a) of Fig-
ure 4, where the blue lines in the middle of the grid
are wells drilled into the reservoir. To speed up the
computation, a coarse model with 3, 335 blocks is con-
structed by combining adjacent blocks in the x, y and z
directions of the forward model (see plot (b) of Figure
4). A coarser level of grid resolution is not used here
because further coarsening of the grid structure would
produce a model that cannot reproduce the convective
plume in the reservoir. Each simulation of the forward
model takes about 30 to 50 minutes CPU time on a
DELL T3400 workstation, and the computing time for
the coarse model is about 1 to 1.5 minutes (roughly 3%
of the forward model). The computing time for these
models is sensitive to the input parameters.

The permeabilities are represented by a pixel based
representation with the same resolution as the coarse
model. A first order Gaussian Markov random field
(GMRF) model (Rue and Held, 2005) is used to for-
mulate the prior distribution for each of the x, y, and
z direction of permeabilities. Thus, we have 10, 005
unknown permeabilities

{
k(x),k(y),k(z)

}
.

The top of the model is assumed to be “open”, which
allows the model to have direct connection with the at-
mosphere. Atmosphere pressure and temperature are
used as the boundary conditions at the top of the model.
The model covers a sufficiently large area so that the
flows through the side of the boundary are negligible
in the natural state modelling, and hence the sides of
the model are treated as no-flow boundaries. At the
base of the model, a distribution of very hot water is
injected to represent the upflow from depth, which also
has to be estimated. We parametrize this mass input by
a radial basis function (RBF) with the Gaussian kernel
function. The RBF representation uses an unknown 41-

dimensional weighting vector w to control the shape of
the distribution.

For compactness, we refer to Cui et al. (2011) for the
detailed derivation of the representation of unknowns.
Overall, we have the parameters

x =
{

k(x),k(y),k(z),w
}

to be estimated. We are able to sample the posterior
distribution by ADAMH for about 11, 200 iterations in
40 days. ADAMH achieves about 10% acceptance rate
in the first step, and 74% acceptance rate in the second
step. The estimated speed-up factor is about 7.7 com-
pared to the sandard MH algorithm.

The mean and standard deviation of the temperature
profiles are estimated as sample averages over model
realizations. We compare these estimations with the
measured data in Figure 6. The solid black lines are
the estimated mean temperatures, dashed black lines
are the 95% percent credible interval, and measured
data are shown as red crosses. The green and gray lines
represent outputs of the foaward model and the coarse
model for various realizations, respectively.

The temperature distributions are shown in Figure 7,
where (a) shows the mean temperature distribution, the
standard deviation of the temperature distribution is
shown in (b), and the temperature distributions of the
two realizations from the Markov chain (one from the
middle and another from the end) are presented in (c)
and (d). From these plots, we can observe that there is
one hot plume in the model, and the top and the bottom
of this hot plume have larger variations in temperature
than the rest of the model.

The mean distribution of the mass input shows that
most of the injected hot water occurs at the bottom
of the inner resistivity boundary. This corresponds to
the opinion of geologists that the major source of deep
hot water occurs at the intersection of two geological
faults in this area. The standard deviation and two re-
alizations of this distribution suggest that the variation
among the samples is very small.

The reasonably large variations in the reconstructed
permeability distributions suggest that there exists am-
biguities in the permeability distributions, and this may
be caused by the sparsely measured data. This effect
is more significant in the region close to the bound-
ary of the reservoir, where no measured data are avail-
able. We can either give more accurate quantifications
to these ambiguities by running the chain for a very
long time, or remove these ambiguities by imposing a
stronger prior distribution or using different parameter-
izations of the permeability distributions.

6 DISCUSSION
We applied the adaptive delayed acceptance
Metropolis-Hastings algorithm (ADAMH) to the cali-
bration of two geothermal reservoir models. ADAMH
demonstrates efficiency in both study cases. In the
calibration of the 3D geothermal reservoir model,
ADAMH offers a significant improvement compared
to the standard MH algorithm, which is a task that
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was not possible with existing MCMC methods. By
using adaptive approximations and adaptive proposal
distributions, ADAMH is a fully automated algorithm
and can be implemented for other problems without
modifying the existing code.

The approximate posterior distribution we used here
is based on the coarse scale models. However, other
methods of model order reduction could also be fitted
into ADAMH, such as the stochastic Galerkin (Mar-
zouk and Najm, 2009) and proper orthogonal decom-
position (Willcox and Peraire, 2002). These methods
potentially could offer a more accurate and computa-
tionally faster approximate posterior distribution. It is
also important that investigating strategies for design-
ing proposal distributions that traverse the parameter
space more efficiently.
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Figure 1: Finite volume grids used for well discharge test analysis and data sets used for well discharge test. (a):
the forward model (640 blocks), (b): the coarse model (80 blocks), (c): the production rate (kg/seconds), (d): the
pressure (bar), and (e): the flowing enthalpy (kJ/kg).
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Figure 2: Predictions for the synthesis data set. (a): pressure, (b): flowing enthalpy. The circles and the crosses
are the training data and validation data, respectively; the solid line and dashed lines are the mean prediction and
95% credible interval, respectively; and the shaded lines represent the predictions made by samples.
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Figure 3: Histograms of the marginal distributions and scatter plots between parameters, synthesis data set.
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Figure 4: The fine grid (left) and the coarse grid (right) used for natural state modelling.
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Figure 5: Distributions of mass input at the bottom of the model, unit in kg/s. (a): the mean realizations, (b):
standard deviations of realizations, (c): one realization from the Markov chain, and (d): another realization from
the Markov chain.
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Figure 6: Comparison of estimated temperatures and measured data. The solid black lines are the estimated
mean temperatures, dashed black lines are the 95% percent credible interval, and measured data are shown as red
crosses. The green and gray lines represent outputs of the foaward model and the coarse model various realizations,
respectively.
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Figure 7: Distributions of model temperatures, unit is oC. (a): the mean realizations, (b): standard deviations of
realizations, (c): one realization from the Markov chain, and (d): another realization from the Markov chain.

Figure 8: The permeability distribution on x direction, in base 10 logarithmic scale. (a): the mean realizations, (b):
standard deviations of realizations, (c): one realization from the Markov chain, and (d): another realization from
the Markov chain.
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Figure 9: The permeability distribution on y direction, in base 10 logarithmic scale. (a): the mean realizations, (b):
standard deviations of realizations, (c): one realization from the Markov chain, and (d): another realization from
the Markov chain.

Figure 10: The permeability distribution on z direction, in base 10 logarithmic scale. (a): the mean realizations,
(b): standard deviations of realizations, (c): one realization from the Markov chain, and (d): another realization
from the Markov chain.
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