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ABSTRACT 
A numerical model is developed for simulating liquid/vapor 
two-phase coupled fluid and heat flow in porous media, 
particularly towards hydrothermal/geothermal reservoirs. 
The model is formulated as two nonlinear equations with 
pressure and enthalpy as the primary variables. Water 
thermodynamic properties are calculated using IAPWS-
IF97, the latest available industrial standard. Their 
derivatives with respect to pressure and enthalpy are also 
deduced from the above IF97 steam table functions. All 
seven material coefficients of the coupled equations show 
high nonlinearities with severe slope discontinuities at the 
liquid/vapor phase change. The coupled highly nonlinear 
equations are solved simultaneously using a Newton-
Raphson based nonlinear finite element technique. Different 
convergence criteria together with a phase change control 
module and an automatic time step size control module are 
employed to ensure convergence of the Newtonian iteration 
under various conditions. The above numerical model is 
applied to simulate the depressurising process of a coastal 
deep mining field with a high temperature zone. Numerical 
results show its potential usefulness in predicting the 
temperature decrease, pressure relief and steam liberation of 
a practical geothermal mining field. 

1. INTRODUCTION 
Non-isothermal flow in porous media is important in several 
practical areas, such as groundwater remediation techniques, 
underground mining processes, extraction of geothermal 
energy, and geotechnical technologies for waste isolation. 
Numerical modeling is necessary to evaluate the impact of 
coupling phenomena on overall system performance. Great 
efforts have been devoted to modeling multi-phase coupled 
fluid and heat flow in porous media for both immiscible 
fluid (e.g. the oil-water-air-gas system as shown in Aziz and 
Settari 1979, Kolditz and De Jonge 2004) and miscible fluid 
(e.g. those involving single or multiple solvents with single 
or multiple miscible fluids as shown in Bear 1972, Nield and 
Bejan 1992). Commonly employed numerical methods for 
modeling such coupled fluid and heat flow phenomena are 
the Finite Difference (see e.g. Ozisik and Czisik 1994), 
Finite Volume (see e.g. Patankar 1980), Finite Element and 
Boundary Elements (see e.g. Ibanez and Power 2002) 
techniques.  

The liquid/vapor two-phase non-isothermal system with 
phase change is widely observed but considerably different 
from the conventional cases above. This is because the two 
phases under consideration (i.e. liquid water and vapor) not 
only co-exist in the same volume (miscible), but also 
exchange mass during the phase change. Mass exchange 
between two phases with large density ratio (≈1000) makes 
numerical modeling extremely difficult. In addition, 

numerical modeling of such problems needs to account for 
incompressible or slightly compressible (liquid) and 
compressible (vapor) flows in the same computational 
domain. In fact, there are few reported simulations of 
liquid/vapor flows coupled with heat flow accompanied by a 
phase change with realistic physical properties in the 
literature. TOUGH2 is a finite difference based numerical 
simulator which can model liquid/vapor two-phase problems 
with phase change (Pruess 1991). TOUGH2 treats phase 
change by a primary variables switching technique (Pruess 
et al. 1999); i.e. the primary variables are switched from 
pressure and temperature to pressure and saturation when a 
phase change occurs. TOUGH2 has been widely used in 
geothermal industry with a focus on evaluation of long-term 
potential of steam production for power generation from a 
specific geothermal reservoir, rather than transient 
geothermal processes. Most recently, Muhieddine et al. 
(2011) developed a finite volume method based model to 
simulate the water forced evaporation in a porous saturated 
medium. By neglecting pressure variation to make the 
boiling point temperature constant and using smoothed 
physical properties, their model was simplified to a set of 
temperature/pressure formulated partial differential algebraic 
equations and applied to simulate heat diffusion and water 
steam flow.  

Finite element modeling of two phase flow problem is also 
found in the literature. Zyvoloski et al. (1999) proposed their 
Finite Element Heat and Mass transfer code (FEHM) with 
consideration of liquid vapor phase transition. Lewis et al. 
(1989) also proposed a finite element approach for solving 
two phase heat and fluid flow in deforming porous media. In 
both approaches pressure and temperature are used as the 
main variables for fluid flow and energy equations. Thus 
determination of the thermodynamic phase region (e.g. 
liquid, vapor and mixture) is a prerequisite to calculating 
thermodynamic properties in these models. Huyakorn and 
Pinder (1978) showed that this is not necessary when 
pressure and enthalpy are chosen as the primary variables, as 
these two variables uniquely define the thermodynamic state 
of the system and the temperature and phase saturation can 
be determined a posteriori when the solution is complete. 
However, in their model, the thermodynamic properties of 
water are simplified to several regression formulae. Thus far, 
the numerical/experimental study of liquid/vapor two-phase 
flow with phase change in geothermal systems remains 
challenging and is the subject of continuing research. 

This paper focuses on simulating the transient process in 
porous media with phase change by using a finite element 
method detailed below. The pressure and enthalpy based 
governing equations and auxiliary assumptions/equations 
involved in coupled liquid/vapor two phase fluid and heat 
flow in porous media are formulated using a nonlinear finite 
element method for solving multidimensional phase change 
problems. The latest IAPWS Industry Formulation 1997 
(IF97) for steam table equations (IAPWS 2007) is used to 
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describe material properties under various thermodynamic 
conditions. The detailed nonlinearities and slope 
discontinuities existing in the coefficients of the equations 
are investigated, and then several numerical techniques that 
deal with nonlinearities are proposed. These incluce 
automatic time step size control and specific numerical 
techniques used at phase change boundary. The model is 
applied to analyse pressure, temperature, and water 
saturation changes under varying production rates of a well 
in a coastal deep mining field with a high temperature zone. 

2. GOVERNING EQUATIONS 
Assuming thermal equilibrium exists among the liquid water, 
vapor and rock matrix, the general mathematical model for 
describing the conservation of mass and energy of a two-
phase reservoir is given by Faust and Mercer (1977):  
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where φ is the porosity; S is the phase saturation; ρ is the 
density [kg/m3]; v is the fluid velocity vector [m/s]; H is the 
specific enthalpy [kJ/kg]; λm is the thermal conductivity 
tensor of the porous medium [W/m·K]; T is temperature 
[°C]; qm and qe are source/sink of the total mass and energy 
respectively [kg/m3·s, kJ/m3·s]. The subscript p denotes the 
phases; i.e. p=w for liquid, p=s for vapor. Subscript p also 
implies summation convention over the two phases. The 
subscript r denotes the rock matrix. 

The two-phase Darcy’s Law for multiphase flow is used to 
describe the momentum balance: 

 ( )rp
p p p

p

Kk
v P g Dρ

µ
= − ⋅ ∇ − ∇   (3) 

where P is fluid pressure [Pa]; K is the intrinsic permeability 
tensor of the porous medium [m2], kr is the relative 
permeability of the phase; μ is the dynamic viscosity 
[kg/m·s]; g is gravity [m/s2], D is the depth [m]; 

Substituting the momentum equation (3) into the mass and 
energy conservation Equations (1-2), and using pressure (P) 
and enthalpy (H) as the primary variables, we obtain the 
following mathematical equations: 
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Other auxiliary assumptions and equations are listed as 
follows. 

1. Pressure. The pressure of each phase is equal; i.e. the 
capillary pressure is assumed negligible: w sP P= . 

2. Enthalpy. The enthalpy of the liquid/vapor mixture is 
defined as:  ( ) /w w w s s sH S H S Hρ ρ ρ= + . 

3. Temperature. The temperature and its derivatives with 
respect to pressure and enthalpy are functions of pressure 
and enthalpy, which are determined by the fluid 
thermodynamic property functions.  

4. Density and viscosity of the fluid. The density of the 
liquid/vapor mixture is defined as: w w s sS Sρ ρ ρ= + . The 
density and viscosity are functions of pressure and enthalpy 
according to the fluid thermodynamic property functions.  

5. Fluid saturation. The volume saturation of each phases 
sums to 1:  1w sS S+ = . In the pure liquid region, the liquid 
saturation is assumed to be 1, and in the saturated vapor 
region, it is assumed to be 0. In the two-phase region, phase 
saturations are derived and calculated by the density and 
enthalpy equations, so they are also functions of pressure 
and enthalpy. 

6. Porous media properties. The porosity, intrinsic 
permeability, rock density and specific heat are functions of 
spacial coordinates.  

7. Rock specific enthalpy is a linear function of temperature, 
given by r rH c T= , where rc  is the specific heat of the rock. 

8. Relative permeabilities. The relative permeabilities of the 
liquid and vapor are functions of phase saturation. We 
employ the following form of relative permeabilities 
(Huyakorn & Pinder, 1978):  

 2
rw wk S= , 2(1 )rs wk S= −    (6) 

Using pressure and enthalpy as primary variables, and 
combining the coefficients in Equations (4-5), the governing 
equations are rewritten in reduced parameter form as: 
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x x t t
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  (7) 
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in which τ , PC , HC , λ , β , PD , HD  are the seven 
nonlinear coefficients defined as follows. The source/sink 
terms in Equations (4-5) have not appeared in Equation (7-8) 
and are treated as boundary conditions. 
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where sat
wH  and sat

sH  are saturated liquid water enthalpy 
and vapor enthalpy under given pressure, respectively. 

The phase mobility is defined as  

 rp p
p

p

Kk ρ
τ

µ
=   (16) 

The elevation terms ( p g Dρ ∇ ) have been neglected for the 
sake of simplicity because the models in this paper handle 
only horizontal two dimensional domains. In a three 
dimensional model, this term cannot be neglected. 

3. FLUID THERMODYNAMIC PROPERTIES 
As previously mentioned, the fluid thermodynamic 
properties, such as temperature, density and viscosity, are 
determined from the fluid thermodynamic property 
functions, which are a set of so-called Equations-Of-State. 
The International Association for the Properties of Water 
and Steam (IAPWS) has taken responsibility for 
standardizing the thermodynamic properties of water. The 
updated formulations for several properties are available on 
the IAPWS web page (http://www.iapws.org/). The 
fundamental work in developing the regression equations for 
a wide range of temperatures and pressures is from the late 
1960s. Wagner et al. (2000) presented a comprehensive 
study on the evolution of thermodynamics formulations for 
the properties of pure water from the first formulation (IFC-
68) to the mostly accepted IF97 formulation for scientific 
use. Figure 1 shows the latest version of regions and 
equations of IAPWS-IF97, which are valid for the following 
range: 273.15K ≤ T ≤ 1073.15K, P ≤ 100MPa; and 
1073.15K<T≤2273.15K, P≤50MPa (IAPWS 2007). They 
also conducted a comparative evaluation study of the 
existing formulations and demonstrated the advantages of 
IF97 formulation in obtaining consistent values for the 
thermodynamic properties of water, even near the critical 
point of water (Wagner et al. 2000; Wagner and Pruß 2002).  

 

Figure 1: Regions and equations of IAPWS-IF97 
(IAPWS 2007) 

In this paper a full implementation of IF97 formulation is 
used to calculate water thermodynamic properties as 
functions of pressure and enthalpy. The derivatives of the 
thermodynamic properties with respect to pressure and 

enthalpy, i.e., T
P
∂
∂

, T
H
∂
∂

, 
P
ρ∂
∂

,
H
ρ∂

∂
, are also developed 

according to the original IF97 equations. For instance, in 
region 1 of IAPWS-IF97, which is defined by the 
temperature and pressure ranges (273.15K≤T≤623.15K, 
Ps(T) ≤P≤100MPa), the backward equation T(P,H) has 
the following form: 

 20*
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where *T =1K, *P =1MPa, *H =2500kJ/kg. The coefficient 
in  and exponents iI  and iJ  are given in Table 6 of the 

original IF97 document (IAPWS 2007). The derivatives of 
temperature with respect to pressure and enthalpy can be 
derived as  
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4. NUMERICAL PROCEDURES 

4.1 Nonlinear parameters 
The two variables, P and H, specified as the primary 
unknowns in Equations (7) and (8) uniquely define the 
thermodynamic state of the system. Once P and H are 
known, the nonlinear parameters can be calculated using the 
prescribed equations together with the fluid thermodynamic 
property functions. Typical plots of τ , PC , HC , λ , β , 

PD , HD  are shown in Figure 2. They demonstrate that 
these functions are highly nonlinear in the two-phase zone of 
the thermodynamic region. Furthermore, sharp 
discontinuities exist at the boundary of the two-phase and 
single-phase zones. These features make the two-phase 
problem very difficult to solve by conventional numerical 
methods when liquid and vapor phases coexist, and 
significant mass exchange between the two phases is 
occuring. 
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Figure 2: Variation of nonlinear parameters with 
pressure (H=1000kJ). Left area of the vertical 
dash line: liquid water zone, right area of the 
vertical dashed line: two phase mixture zone. 

4.2 Solution procedures 
The combination of high nonlinearities and slope 
discontinuities usually results in convergence difficulties 
and induces severe restrictions on time step size. 
Furthermore, the hyperbolic character of the two equations 
often leads to oscillatory behaviour of numerical results. The 
oscillations are unacceptable because they can become 
greatly amplified through calculation of the nonlinear 
parameters, especially on the phase change boundaries. This 
is the main reason that simulations of liquid/vapor flows 
coupled with heat flow and phase change with realistic 
physical properties are uncommon. To overcome these 
difficulties, we propose a finite element technique in which 
Equations (7) and (8) are firstly discretized via a general 
weighted residual formulation in space, and a second-order 
Crank-Nicolson differencing method in the time domain; 
then the resulting set of nonlinear algebraic equations is 
solved by a Newton-Raphson iterative scheme. 

A detailed finite element implementation process is 
proposed in Huyakorn and Pinder (1978). The model in this 
paper uses a similar derivation, but with a different 
treatment for the right hand side of the Equations (7) and (8), 
which result in four nonlinear parameters on the right hand 
side instead of two. This is for linearization purposes for the 
Newton-Raphson procedure. Furthermore, the proposed 
model use a second-order Crank-Nicholson differencing 
method for the temporal discretization instead of the explicit 
method introduced in Huyakorn and Pinder (1978) , which 
improves the accuracy of the solution. The thermodynamic 
properties of water are calculated by the IF97 formulation 
instead of simplified regression formulae. Model validation 
is reported in Xing et al. (2008) and Bringemeier et al. 
(2010). The final equation of the Newton-Raphson iteration 
can be derived as: 

 [ ]
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where the stiffness matrix  
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and the derivatives of the residuals m
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 can be derived from Equations (22) and (23). JN  and 

IW  are the basic shape functions and weighting functions 
(Huyakorn and Pinder, 1978). θ  is the implicitness factor of 
the Crank-Nicholson scheme, 0 1θ< < . t∆  is the time step 
size and P∆  and H∆  are pressure and enthalpy increments. 
The superscript t denotes the value from last time step. 

To calculate the nonlinear parameters’ derivatives with 
respect to pressure and enthalpy analytically, we consider 
not only the original parameter equations (i.e., Equations 
(11-17)), but also the secondary variables and their 

derivatives, such as wS , wS
P

∂
∂

, wS
H

∂
∂

, rwk , rwk
P

∂
∂

, rwk
H

∂
∂

, rsk , 

rsk
P

∂
∂

, rsk
H

∂
∂

. These algebraic derivation processes are treated 

carefully as they can introduce additional discontinuities to 
the final equations if their first derivatives with respect to 
pressure and enthalpy have slope discontinuities. 

4.3 Automatic time step size control 
Automatic time step control is essential for strongly 
nonlinear coupled equations. In this paper, the nonlinearity 
of the equations is severe and the parameters change rapidly 
at the phase change boundaries (Figure 2).  Small time steps 
are required for a stable computation and an accurate 
solution when the parameters change rapidly at phase 
change. To control the time step size at the moment of phase 
change, a simple but efficient algorithm is applied when 
phase change occurs. As shown in Figure 3, a relatively 
large time step size is used at the beginning of the simulation. 
If phase change takes place in certain time step, the 
proposed algorithm determines the number of phase change 
nodes (pc). If pc is greater than a threshold number of phase 
change nodes per time step (pcmax), the time step size has to 
be cut by a factor of α (0<α<1). The multiplier α is 
determined by the max value between 0.5 and pcmax/pc, 
which means the updated time step size is always greater or 
equal to 50% of the current time step size. The current time 
step is calculated with the updated time step size in a loop 
until the number of phase change nodes is equal or below 
the given limit.  
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Figure 3: Automatic time step size control algorithm 

4.4 Convergence control and phase change control 
Equation (20) is solved by the mentioned iterative 
procedures to convergence. Three criteria are applied to 
determine convergence of the proposed Newton-Raphson 
algorithm. The primary convergence criterion is that the 
infinity norms of the fluid mass residual rates and the energy 
residual rates for all the nodes are less than a given limits. 
Nodes with specified pressure and enthalpy boundary 
conditions are not included in the convergence test because 
their residuals do not decrease as the solution is approached. 
Their residuals determine the flow rates through the regional 
boundary faces. 

If phase change occurs in the current time step and three 
iteration steps have been taken, the secondary convergence 
criterion is applied. This requires that the infinity norms of 
the relative changes in pressure and enthalpy over an 
iteration are less than given limits.  

If phase change occurs in the current time step and four 
iteration steps have been taken, the third convergence 
criterion is applied, which is that the infinity norm of the 
absolute change in pressure is less than 1 kPa and the 
infinity norm of the absolute change in enthalpy is less than 
0.01kJ/kg. This criterion is used in the circumstances that 
the Newton-Raphson algorithm has become stable despite 
the residual rates exceeding the given tolerance. 

A phase change control module is used to help with 
convergence. For any nodes which have changed phase state 
during the iteration, the pressure and enthalpy are adjusted 
mandatorily to near the phase boundary. As shown in Figure 
4, assuming the old pressure and enthalpy are (P0, H0) and 
the newly calculated pressure and enthalpy are (P1, H1), the 
phase change control module employs the following 
algorithm: 

i. Calculate the pressure step increment δP and δH by 
dividing the pressure and enthalpy increment (i.e., P1-P0, H1-
H0) by 100, i.e., δP= (P1-P0)/100 and δH= (H1-H0)/100; 

ii. Let P2= P0 and H2= H0; 

iii Repeat step iv-v until the loop terminates; 

iv. P2= P2+ δP, H2= H2+ δH; 

v. For the first iteration, if phase state at (P2, H2) is different 
with that of (P0, H0), terminate the loop; for the second and 
the third iterations, if phase state at (P2, H2) is different with 
that of (P0, H0), P2= P2- δP, H2= H2- δH, terminate the loop; 

vi. (P2, H2) are the modified pressure and enthalpy for the 
phase change node after applying the phase change control 
module. 

The proposed algorithm with mandatory adjustment of 
pressure and enthalpy is to slow the phase change process 
and avoid irrational jumps of pressure and enthalpy during 
the phase change. It is implemented in the current finite 
element model and is useful for avoiding the convergence 
issues for solving nonlinear coupled heat and fluid flow 
equations with phase change. Its impact on the entire 
solution set is minor as it is only applied to very limited 
number of nodes with phase change and it does not include 
any mandatory convergence control. 

These convergence criteria are applied together with the 
phase change and time step size control modules to find a 
stable solution with acceptable accuracy for a given time 
step under a wide variety of pressure, enthalpy, temperature 
and phase conditions. 

 

Figure 4: Schematic diagram of the phase change control 
module for (a) The first iteration; (b) The second 
and the third iterations.  

5. NUMERICAL EXAMPLE 
Pump wells, geothermal discharge wells, and pressure relief 
wells are often employed in underground deep mining to 
ensure a dry pit and prevent inflows of high temperature 
geothermal fluids and steam outbursts. Here we develop a 
hypothetical model to study the temperature decrease, 
pressure relief and steam liberation in a coastal underground 
mining field with a high temperature zone. Figure 5 shows 
the model outline and the initial temperature distribution in 
the study region. The initial pressure is assumed to be 3.6 
MPa throughout the model domain. The seawall is located 
on the east boundary with constant pressure of 3.6MPa and 
temperature of 30°C. Due to the existence of the high 
temperature zone located at the left bottom corner (r≤100m, 
r = 2 2x y+ ), the initial temperature field is not uniform 
and is defined:  

 

2 4

240, 100

100 100240 160 80 , 100 300
200 200

300160 130 , 300 500
200

30, 500

r

r r r
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r r

r

≤


− −    − + < ≤       = 
− − < ≤


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  (24) 

Under initial pressure and temperature conditions, the entire 
region is saturated with liquid water as the boiling 
temperature of water at 3.6 MPa is 244.2°C. A production 
well located at (62.5, 62.5) is planned for pressure release 
and steam liberation before the mining process. Four 
different well production rate scenarios are analysed to study 
the well production scenarios: 0.5kg/s, 0.6kg/s, 0.7kg/s and 
0.8kg/s.  

Each scenario is simulated approximately 12 days after 
production commences. Parameters used in the simulation 
are listed in Table 1. Relative permeabilities are given by 
Equation (6). The region is discretized into a 40×40 
rectangle mesh; the minimum time step size for the 
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simulation is 3×104 seconds; the maximum number of phase 
change nodes per time step is 5. 

 

Figure 5: A coastal underground deep mining field with 
a high temperature zone. 

Table 1: Simulation parameters for the coastal 
underground deep mining field with a geothermal hot 
zone 

Parameter Value 
Reservoir permeability 1×10-12m2 
Reservoir porosity 0.3 
Rock thermal conductivity 1.0 W/(m·°C) 
Rock heat capacity 1.0 kJ/(kg·°C) 
Rock density 2500 kg/m3 
Initial pressure 3.6 MPa 
Initial water saturation 1.0 
 

Figure 6 shows variations of water saturation (Sw), pressure 
(P), enthalpy (H) and temperature (T) at the production well 
for the four different production rates.  

As shown in Figure 6a, for a production rate of 0.5kg/s, no 
phase change occures and the water remains in the liquid 
state (Sw=1) during the well production. This is because the 
production rate is too small to cause a sufficient pressure 
drop for vaporization. In the other production scenarios 
vaporization occurs immediately after well production 
(Sw<1). The lowest water saturations (marked by diamonds) 
are 0.753, 0.652 and 0.534 at 0.81, 2.43 and 2.66 days, 
respectively. As production continues, the high temperature 
zone temperature decreases, which terminates the 
vaporization process. It takes 3.70, 5.55 and 6.13 days for 
total liberation of steam (marked by stars), respectively. 

Figure 6b shows pressure evolution at the production well 
for the four scenarios. The pressures drop quickly at the 
beginning of the production and reach stable values after a 
period of production. For the production rate of 0.5kg/s, the 
pressure stabilizes in less than 1 day to 3.36MPa. For the 
scenarios with phase change (i.e. q=0.6, 0.7 and 0.8kg/s), the 
pressures stabilize at the end of the vaporization (the star 
marks), and reach 3.31, 3.26 and 3.21MPa, respectively.  

Figure 6c shows enthalpy evolution at the production well 
for the four scenarios. Due to the non-uniform temperature 
field of the domain and nonlinear thermodynamic properties, 
the enthalpy changes are not linear even for the case without 
phase change (q=0.5 kg/s). For the three cases with phase 
change, the enthalpies rise with the phase change, and reach 
a maximum value when the water saturation reaches a 
minimum value (the diamond marks), then start to decrease 

rapidly. After vaporization the rate of decrease in enthalpy 
slows and maintains constant rates.   

Figure 6d shows temperature evolution at the production 
well for the four scenarios. For the scenarios with phase 
change, the temperature drops rapidly at first and then stay 
nearly constant after the water saturation reaches a minimum 
value (the diamond marks), and then drops linearly after 
vaporization ends (the star marks). 
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Figure 6: Evolutions of water saturation (a), pressure 
(b), enthalpy (c) and temperature (d) at the 
production well for four different production 
rates (unit of q: kg/s). Diamonds () mark the 
lowest water saturation points; stars () mark 
the ending points of vaporization. 

Figure 7 shows pressure, temperature and water saturation 
fields of the phase change scenarios (i.e. q=0.6, 0.7 and 
0.8kg/s) when water saturation at the well reaches its 
minimum value (diamond points of Figure 6). The pressure 
of the hot zone decreases significantly (Figure 7a, d and g). 
The temperature also decreases in this area (Figure 7b, e and 
h). The pressure decrease lowers the boiling temperature 
below the local temperature, which causes phase changes in 
this area. The water saturation decreases to 0.694 and 0.663 
at the left bottom of the domain for q=0.7 and 0.8kg/s, 
respectively (Figure 7f and i). 

 

 

 

 

 

 

 

 

 

Figure 7: Pressure, temperature and water saturation 
fields for the phase change scenarios at the time the 
water saturation at the well reaches the minimum value. 
(a) Pressure, q=0.6 kg/s; (b) Temperature, q=0.6 kg/s; (c) 
Water saturation, q=0.6 kg/s; (d) Pressure, q=0.7 kg/s; 
(e) Temperature, q=0.7 kg/s; (f) Water saturation, q=0.7 
kg/s; (g) Pressure, q=0.8 kg/s; (h) Temperature, q=0.8 
kg/s; (i) Water saturation, q=0.8 kg/s. Pressure unit: Pa, 
temperature unit: °C. 
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6. CONCLUSION 
A finite element model is developed for simulation of 
liquid/vapor two-phase coupled fluid and heat flow in 
porous media with phase change. The governing equations 
are formulated in terms of the dependent variables pressure 
and enthalpy as these two variables uniquely define the 
thermodynamic state of the system. Water thermodynamic 
properties are calculated with IAPWS-IF97; their derivatives 
with respect to pressure and enthalpy are derived from the 
original IF97 functions. High nonlinearities and severe slope 
discontinuities exist in the seven coefficients of the 
governing partial differential equations and make it difficult 
to solve, especially with phase changes. A Newton-Raphson 
method is employed to solve the highly nonlinear coupled 
equations. Three convergence criteria, a phase change 
control module and an automatic time step size control 
module are employed to ensure the convergence of the 
Newton-Raphson iteration. 

The model is applied to simulate the temperature decrease, 
pressure relief and steam liberation of a coastal underground 
deep mining field with a high temperature zone. The results 
demonstrate that the pressure and temperature are reduced 
by the pressure relief well at the high temperature zone. By 
applying different production rates, the pressure decreases 
nonlinearly, while temperature decrease is not significantly 
different except during the early stages of phase change. 
Different total steam liberation time is also observed under 
different production rates. 
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