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ABSTRACT

This work seeks to simulate subsurface fluid flow and heat
transport within a deformable porous medium. Previous
work indicates that it is imperative to consider the in situ
spatial fluctuations recorded in well-log and well-core data
to achieve accurate numerical flow simulations for non-
deforming porous solids. The consideration of in situ spatial
property fluctuations naturally gives rise to preferential
pathways of fluid flow and heat transport. Provision for
solid deformations offers a logical step forward to allow for
stress-controlled fluctuation evolution of in situ properties.
A sophisticated numerical model will be able to capture the
growth and collapse of in situ voids, fractures, and fracture
connectivity due to variation in fluid pressure and flow,
faulting, and temperature as, say, induced at
Enhanced/Engineered Geothermal System (EGS) projects.

The relevant linear momentum, mass, and enthalpy balance
equations have been coupled in a combined finite element
and finite difference analysis. The governing differential
equations and discretized set of equations are realized in
preliminary results for 2D vertical planes in which one or
more horizontal wellbores act as flow sources/sinks. The
model presented in this work is a critical first step toward
full 3D EGS heat exchange reservoir development and fluid
flow simulation.

1. INTRODUCTION

Traditionally, the true spatial variations of porosity and
permeability are ignored in favor of their mean values (e.g.,
Sutter et al., 2011). However, previous work indicates that it
is imperative to consider true spatial fluctuations in
‘poroperm’ properties. Leary and Walter (2008) show that
observed tight gas well production unpredictability is
traceable to the false assumption that in situ flow in gas
sands is quasi-uniform rather than spatially fluctuating. On
an economic note, Goldstein et al (2011) cite “insufficiently
predictable reliability of geothermal reservoir performance
(and in particular, the [un]predictable reliability of EGS
reservoirs)” that is traceable to EGS models based on quasi-
uniform media.

Quasi-uniform media are effectively assumed to have a
‘white noise’ Fourier power-spectra in spatial frequency k,

S(k) ~ const.
Microresistivity and most other geophysical well-log data

have, however, Fourier power-spectra that scale inversely
with wave number by

S(k) %

over about 5 decades of the length scale from 10°m to 10°m.
The specific well log properties that obey this law include:
sonic wave speeds, electrical resistivity, soluble chemical
species density, neutron porosity, and mass density. Also,
via fracture-connectivity percolation, clastic rock well-core
data show a close spatial fluctuation relationship between
well-core permeability X" and well-core porosity N

on ~ olog(x)
that governs how permeability spatially varies in situ.

This work simulates subsurface fluid flow and heat transport
within a 2-D deformable porous medium with power-law
scaling fluctuations in porosity combined with the
aforementioned relationship controlling permeability. Few
available finite element codes are equipped to handle the full
spatial variability in porosity and permeability that are
necessary to accurately depict the physics of in situ flow and
heat transport. Further, the codes that can handle this
behavior do not solve for the fully coupled problem, but
only consider fluid and thermal flow through non-
deformable media. Therefore, a new finite element code was
written in C++ that is capable of modeling the above-
mentioned scenario.

Section 2 details the boundary value problem and the
governing coupled differential equations for the linear
momentum balance, mass balance, and enthalpy balance. In
Section 3, the finite element method is applied to yield a
discretized linear system of equations where the unknowns
are nodal values for solid displacements, pore fluid
pressures, and temperatures. Section 4 outlines a benchmark
problem and a specific trial numerical analysis for a 2D
vertical section consisting of two horizontal wellbores
cycling water in/out of an EGS volume. Section 5 provides
discussion of the preliminary results and the future work that
is being undertaken for this analysis.

2. GOVERNING EQUATIONS

2.1 Linear Momentum Balance

A suitable first step in acquiring the finite element system of
equations is to consider the linear momentum balance:

V-g+pg=0

where Y - refers to the gradient operator, O is the Cauchy

stress tensor, Jis the gravity acceleration vector, and pis

the average density of the entire matrix:
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p=(1-n)p*+np",

WherepS is the density of the solid grains, pWis the

density of the fluid (water) surrounding the grains, and Nis
the porosity defined as the volume of void space per unit
volume. The Cauchy stress can be expressed as a vector and
split into two components, the effective stress component

o "and a pore pressure component as
og=c"+amp,

where a is a dimensionless constant between 0 and 1, M is
related to the identity tensor, and [is the pore fluid

pressure (Lewis and Schrefler 1998; Ingebritsen, Sanford,
and Neuzil 2006). Assuming linear isotropic elastic
behavior, the effective stress is calculated as

¢"=D, (),

where De is the standard elasticity tensor, £is the

mechanical strain vector, and &y is the thermal strain vector.
In the effective stress equation,

and

& =m(ﬂ%)T

where L is a matrix of spatial derivatives, Uis the
displacement vector, m again is related to the identity

matrix, f is the coefficient of thermal expansion of the solid
matrix, and T isthe temperature.

2.2 Mass Balance

Consideration of both the fluid and solid mass balance
equations gives:

0:—((1—n)ﬂs+nﬂw)%+£l;—n+%jgt—p

S w

+V v+ V1 E [V pg] 1 -Q,

where SW is the fluid saturation and has been omitted for the
fully saturated case, V. is the solid matrix velocity from the
system elastic modulus, Kis the permeability matrix, and

Q, is fluid flow into the system.

2.3 Enthalpy Balance

Lastly, to fully couple thermal effects, we consider the
enthalpy balance equation:

(prw +Csps)%+,0wcw£(_zp+,09) VT

W

V-{g-vT=0

where Cwis the specific heat of the fluid, Csis the specific
heat of the solid grains, and Y} is related to the diffusivity

of the medium.

The thermal properties of solid and fluid are taken to be
constant in space and time with the exception of fluid
density, which has standard linearized temperature
dependence. The assumption of constant fluid viscosity is
disputable. In these simulations, the fluid viscosity for water
at 200°C was used (Table 1). The possibility exists to
incorporate temperature-dependent spatial variations in fluid
viscosity into the code (Figure 15). This is the subject of
future work. Compared with spatial variation in fracture
density and poroperm properties documented by well-log
and well core data to vary significantly on all scale lengths,
the thermal properties of rock constituents vary little in
value and have few observable constraints to enter into the
model equations.

3. THE FINITE ELEMENT METHOD
3.1 Boundary Value Problem

Figure 1 depicts an arbitrary 2-D porous domain Q with a
boundary T that is subject to natural and essential boundary
conditions on portions of I" denoted I', and Iy, respectively.
Natural boundary conditions enforce forces on the system,
such as external tractions, mass fluid flow, or temperature
fluxes. Essential boundary conditions enforce known
degrees of freedom, such as solid displacements, pore fluid
pressures, and temperature. The domain is considered to be a
fully saturated assemblage of rigid solid grains bonded by
weak cements and having a spatially fluctuating density of
fluid-filled void space between grains. Void space fluids
percolate between voids where grain-grain cement bonds are
ruptured by tectonically imposed finite-strain of the bulk
medium. The controlling physical variable is grain-scale
fracture density. At a critical density of grain-scale
fractures, long-range spatial correlations between grain-scale
fractures arise, creating the observed power-law scaling
properties of well log spatial fluctuations (Leary 2002).

Solid

luid

Figure 1: An arbitrary porous domain.

The solid-fluid matrix is non-isothermal and grain
assemblages are subject to small strains on all scale lengths.
Therefore, the problem is evaluated as a coupled problem
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involving temperature and fluid flow through a deformable
porous medium.

3.2 Discretization and Solution

The first step in the application of the Finite Element
Method (FEM) is to define the approximation spaces for the
nodal values of the unknowns: displacement, pressure, and
temperature. These functions are defined by:

u*=N,u
p*=N,p
T*=N,T

where (.)* represents the exact solution of the unknowns, the
N.. are the finite element shape functions that are a vector in
the case of the scalar unknowns and a 2" order tensor in the
case of the vector unknown (displacement). The vectors U,

p.and Iare the finite element approximations to the exact

solutions. The shape functions are not necessarily the same
order. There is evidence reported in the literature that higher
order shape functions are required for the displacement
degrees of freedom in the undrained limit state. This is
called a “mixed method” and requires elements that satisfy
the Babuska-Brezzi convergence criterion. Elements that use
second-order interpolation functions for displacement
degrees of freedom and first-order interpolation functions
for pressure and temperature degrees of freedom satisfy this
condition. These elements were implemented and used in
this work. Each quadrilateral element contains 4 nodes for
representing pressure and temperature degrees of freedom,
but nine nodes to represent displacement degrees of
freedom. The main advantage of mixed method elements
reported by Lewis and Schrefler (1998) and Aboustit (1985)
is a significant decrease in pressure field oscillations. The
results reported in Section 4 utilize higher order mixed
elements.

Introducing the standard finite element discretization gives
rise to the global system of equations to be solved:

ﬁu_ﬁttl—_gﬂziu

Hp+Q X g1
= =5 ot —ot —
and
c T+KT=1,
where

1-n

2=pCuno,+(1-n)a, |1

is the diffusivity tensor with solid and fluid diffusivities and
| is the identity tensor. The matrices B, N., and Qeare

standard matrices used in finite elements. Their exact
structure can be found in Lewis and Schrefler (1998) or
Hughes (2000). The values of Young’s modulus, Poisson’s

ratio (bothin D ), B, O, Py Sy N Cg, C,

o,, 0, M, and Kare material input parameters.

Kt introduces a nonlinearity into the system of equations

that must be solved using an appropriate technique, such as
the Newton-Raphson iteration scheme. The final matrix
system of equations that is solved can be constructed as:

K _9 ﬁn u g Q (:) u fu

=~ u gl T
0 H 0 4 Q" S R |— =¢ f
= = = E 2 = = dt E —Pp
0 0 K ||T 0 0C T f
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This system can be re-written as:

dx
Ax+B—=F
= T dt
and can be solved using a single-step finite difference
operator such as in Lewis and Schrefler (1998) or
Zienkiewicz and Taylor (2000).

4. NUMERICAL IMPLEMENTATION/ANALYSIS

The governing system of equations introduced in the
previous section was solved using a C++ “in-house” finite
element code. Preliminary investigations have been carried
out on a 2D benchmark problem and a 2D EGS heat
exchange volume. The EGS simulations show the potential
capabilities of solving the fully coupled EGS heat exchange
problem in a realistic poroperm medium. The numerical
implementation is not complete in its current state. The
details of future work and capabilities are important and will
be discussed in Section 5.

Table 1 shows the material parameters used in this work.
The parameters are taken to be an approximation for an EGS
volume from parameters given in the SUTRA user’s manual,
Ingebritsen, et al. (2006), and Lewis and Schrefler (1998).
These parameters and boundary conditions compose a
representative parameter space intended demonstrate the
potential capabilities of the FE code. More simulations will
be run with more appropriate boundary conditions and
material parameters in the future. Note that porosity and
permeability are taken to be constants in the table. The
constant presented is the mean value of data that fluctuates
with 1/k spatial correlation sometimes called “pink noise.”
This is consistent with the spatial fluctuation in well-log data
in most EGS volumes. Observed well-log and well-core
spatial variation about the mean is of order ~ 5%-10%. For
permeability, it is understood that this fluctuation magnitude
applies to the logarithm of permeability, hence leading to
substantially greater variation of permeability per se.

Table 2: Input Material Properties

Symbol Parameter Value Units

E Young's modulus 729 Gpa

v Poisson's ratio 0.14 -

B, solid cgefﬁcient of thermal 5.50E.07 1
expansion

o solid density 2600 kg/m®

Puw fluid density 1000 kg/m?

Sw fluid saturation 1 -

n porosity 0.2 -

G solid specific heat 840 J/kg°C

Cu fluid specific heat 4182 J/kg°C

O solid thermal conductivity 35 J/sm°C

Oy fluid thermal conductivity 0.6 J/sm°C

My fluid viscosity 0.0002 kg/ms

K permeability 1.00E-12 m?
fluid coefficient of thermal

Bu ) 2.02E-04 1/°C
expansion

4.1 Benchmarking Procedures

No analytical solutions to this coupled problem exist. To
ensure that the code developed is working properly, the
results can be compared to those presented in Lewis and
Schrefler (1998) and Aboustit, et al. (1985). Both report the

results of the same non-isothermal fully-saturated soil
column consolidation problem. It is rather difficult to offer a
direct comparison between the two problems because some
of the material parameters used in this formulation are
combined into “effective” parameters in the benchmark
problem presented by the authors and it is not possible to
exactly replicate their parameter space from the data they
present. However, we will show that the trends in behavior
are the same even with realistic EGS field parameters and in
investigations not shown here, it is possible to reproduce the
trends seen in Lewis and Schrefler (1998) by adjusting the
material parameters.

Figure 2 displays the mesh used in the benchmark
consolidation problem for this work. The bottom surface of
the geometry is fixed in the vertical direction, while the
sidewalls are fixed from displacement in the horizontal
direction. The top surface has a prescribed traction of 1000
Pa applied, where the temperature is fixed at 50° C and the
pore fluid pressure is set to be 0 Pa. The rest of the domain
boundaries are fully insulated and sealed. In the outputs, we
will analyze nodal values of displacement, pore fluid
pressure, and temperature along all the nodes along the right
sidewall boundary. The results are fully symmetric in the 2D
(effectively 1D) problem, so either sidewall could be
analyzed.

Figure 2: Benchmark mesh for non-isothermal
consolidation problem. Adapted from (Aboustit, et al.,
1985).

In accordance with the discussion from Lewis and Schrefler
(1998), the matrices B and ﬁtt were set to zero. This

means that temperature changes are not deemed to have a
significant impact on the deformation state of the material
and the coupling of the pore fluid pressure to changes in
temperature are also small compared to the rest of the
effects. This may be true for the material parameter space
chosen in the work of Aboustit, et al. (1985), but for realistic
parameter spaces at EGS depths, this simplification should
not be allowed.

Figure 3 displays the displacement (consolidation) response
of the medium from Lewis and Schrefler (1998) and Figure
4 displays the consolidation result from this work. The
magnitudes of the displacements are not important, since
different choices of material parameters can affect this. Even
the signs of the displacement can be affected by the
parameters associated with the coupling matrices. It is
possible to reproduce these magnitudes and even the peak
displacement before consolidation by adjusting the
parameter space. However, Lewis and Schrefler (1998)
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report that this peak disappears when realistic values for the
bulk moduli are used (as in this work as seen in Figure 4).
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Figure 3: Vertical displacement values for different
nodes in benchmark problem, taken from Lewis and
Schrefler (1998).
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Figure 4: Vertical displacement of different nodes for
soil consolidation problem from this work.

Figure 5 displays the pore fluid pressure evolution as a
function of time from Lewis and Schrefler (1998). Figure 6
shows the results of the same plot from this work. These
trends are identical. It is not clear if the pressures have been
normalized in Figure 5. An interesting observation of Figure
5 is also that only 3 nodal values have been reported. This is
most probably due to the oscillatory behavior of the pressure
solution. Figure 6 shows the result of pressure for every
node in the vertical direction and the oscillations are
obvious, especially at early times. Both Aboustit et al.
(1985) and Lewis and Schrefler (1998) report these
oscillations in normalized data and they are apparent in these
simulations as well. The oscillations are significantly
reduced with the use of Babuska-Brezzi elements and mesh
refinement. The trends in pore fluid pressure are identical to
those shown in the benchmark problem presented by Lewis
and Schrefler (1998).

Hede T 27 a7

Figure 5: Pore fluid pressures for benchmark problem
taken from Lewis and Schrefler (1998).
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Figure 6: Evolution of pore fluid pressures from this
work.

Figure 7 displays the nodal values of temperature over time
from Lewis and Schrefler (1998) and Figure 8 displays the
same Vvariable from this work. Again, the exact trends are
matched with the current model. The data of Figure 7 appear
stretched compared to Figure 8, however, this is again due to
the material parameter space. Adjustment of material
parameters can give rise to the behavior seen in Figure 7.

T

50
a0

30|

Figure 7: Nodal temperature evolution for benchmark
problem taken from Lewis and Schrefler (1998).
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Figure 8: Evolution of nodal temperatures in this work.

Comparing Figure 4 to Figures 6 and 8 offers interesting
insight into the displacement behavior of the column. The
problem is formulated to be quasi-static. Therefore, the
system should be in static equilibrium at each time step.
When a compressive traction load is placed on the top
surface of the column, the column is compressed uniformly
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near to the linear elastostatic solution. Figure 4 shows this
result even at very small times. However, after pressure and
temperature have roughly equilibrated, there is a noticeable
consolidation effect on the column as the displacements
further decrease. This result makes sense from a solid
mechanics perspective, because pore pressure can be thought
of as incompressibility in the medium. As the pressure is
decreased, the magnitude of the displacements should
increase. This is clearly demonstrated in Figure 4.

To demonstrate the importance of the matrices R and ﬁn

when realistic material parameters for EGS volumes are
used, the terms were included in the results generating the
data of Figure 9. The figure displays the displacement
behavior of the column in that case.

Modal Dispacements (m)

Time ()

Figure 9: Displacement evolution for fully coupled
problem with appropriate EGS parameters.

4.3 Double Borehole Simulation Set-up

Figure 10 displays the double borehole simulation set up.
The figure is colored by the porosity, which varies spatially
with 1/k correlation. The domain size is 70 m wide by 40 m
tall with 0.5 m borehole widths. The horizontal distance
between the boreholes is 14 m. The external boundary is
fixed with temperature set to 200°C and pore fluid pressure
set to 2 MPa. 100°C fluid flows into the left borehole that is
pressurized to 4 MPa. The simulation was performed with
time steps of 500.0 s to a final time of 7000 s to reach
equilibrium.

POROSITY
f.26932b

0.25

Figure 10: Double borehole simulation mesh and
porosity.

4.4 Double Borehole Preliminary Simulation Results

Figures 11 and 12 display the results for the primary
variables of pore fluid pressure and temperature in the
double bore simulations.

PRESSURE
4000000

3000000

2000000

Figure 11: Double borehole pore fluid pressure.

TEMPERATURE

Figure 12: Double borehole domain temperature.

Figure 13 displays the result for shear stress in the double
borehole simulations. Underground fractures often occur in
regions of maximum shear stress. Therefore, shear stress in
the domain could be used in future work incorporating an
increase in fracture density.

STRESS XY
60000

100000

0

-100000
-170000

Figure 13: Double borehole shear stress.

Figure 14 displays the result for the magnitude of the fluid
velocity. There is a greater fluid velocity around the
pressurized borehole. However, the fluid velocity is not
symmetric. This is due to differences in porosity and
permeability around the borehole. The higher porosity
results in a lower velocity on the left side of the borehole.
This may result in a greater overall flow in that direction, but
the outflow calculations have not yet been implemented into
the C++ FE code.
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Figure 14: Double borehole magnitude of fluid velocity.

5. DISCUSSION/CONCLUSIONS
5.1 Results

The results in Section 4 are preliminary results intended to
demonstrate potential modeling capabilities of FE codes
applied to coupled thermo-poro-mechanical processes in
realistic heterogeneous media such as EGS rock volumes.
While the meshes represent relatively small domains and
have very coarse levels of refinement, the physics of EGS
flow is implemented and the potential exists to offer new
insight into the understanding of in situ fluid flow, heat
transport, and pressure-induced fracture evolution.

It is imperative for long-term energy solutions that the
coupled physics of EGS volumes are well understood.
Simulations of this type and Figures 10-14 allow for the
comparison of material and domain characteristics to
resulting fluid flows and, potentially, fracture networks.
Figure 14 clearly depicts fluctuations in small fluid
velocities that are dependent upon the values of porosity and
permeability within the domain. The temperature at a
receiver well is important to consider as well as the outflow.
From Figure 12, the temperature surrounding the outflow
wellbore is about 180° C.

5.2 Future Work

There is a significant amount of future work to perform for
EGS simulations that used the C++ code from this work. It
is highly desirable to determine the exact fluid mass outflow
at boundaries (i.e., outflow wellbore boundaries). Taking the
dot product of Darcy’s Law for fluid and the boundary of
interest’s outward normal vector performs this calculation.
This implementation is straightforward, but requires the
robust and consistent determination of the outward normal
vector at a boundary.

As mentioned in Section 2, the temperature dependence of
certain fluid properties (e.g., density and viscosity) needs to
be accounted for. Over the range of these simulations (100-
200°C), a linear dependence in fluid density is not a bad
assumption. However, more complicated relationships can
easily be incorporated into the code. Constant water
viscosity at 200°C was used in the borehole simulations of
Section 4. Figure 15 displays water viscosity as a function of
temperature. Like fluid density, it is straightforward to
implement a temperature dependence of the fluid viscosity
term into the code assuming that no fluid phase changes are
present within the simulation.

Dynamic Viscosity of Water
4—Melting Point | i ]

Dynamic Viscosity [mPa-s]

220 300 350 400 450 500 550 600 620 70O 720 80

Temperature [K]

Figure 15: Temperature dependence of water viscosity.

Solving for the stresses and strains in the domain allows for
more robust consideration of fracture networks. Natural
pathways for fluid flow (fracture networks) already exist in
EGS volumes. These systems can be enhanced by borehole
pressurization through an influx of fluid. The enhancement
of natural fracture networks will be explored in this work. A
working hypothesis indicates that when critical stresses or
strains are reached within a portion of the domain,
permeability and porosity in that portion of the domain will
increase appropriately as a result of an increase in fracture
density. This can allow for fluid flows to also increase
appropriately in highly stressed regions.

Further, these 2-dimensional analyses will be extended to 3
dimensions for more complete representation of geothermal
fields. This extension will require significantly more
computational cost. The problems presented here already
require a computational cost that is not insignificant. It was
mentioned in Section 5 that these are relatively coarse
meshes; therefore the simulations are relatively small.
Memory availability limits the maximum size problems that
can be computed. It is imperative for future work to
implement the FETI method for parallel computation in
finite element analysis on a MPI cluster located at the
University of Auckland. Parallelization will allow for faster
run time of large simulations as well as reduced memory
requirements for individual CPUs. This will allow for full-
scale 3-D simulations with significantly refined mesh
structures.
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