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ABSTRACT 

This work seeks to simulate subsurface fluid flow and heat 
transport within a deformable porous medium. Previous 
work indicates that it is imperative to consider the in situ 
spatial fluctuations recorded in well-log and well-core data 
to achieve accurate numerical flow simulations for non-
deforming porous solids.  The consideration of in situ spatial 
property fluctuations naturally gives rise to preferential 
pathways of fluid flow and heat transport. Provision for 
solid deformations offers a logical step forward to allow for 
stress-controlled fluctuation evolution of in situ properties. 
A sophisticated numerical model will be able to capture the 
growth and collapse of in situ voids, fractures, and fracture 
connectivity due to variation in fluid pressure and flow, 
faulting, and temperature as, say, induced at 
Enhanced/Engineered Geothermal System (EGS) projects. 

The relevant linear momentum, mass, and enthalpy balance 
equations have been coupled in a combined finite element 
and finite difference analysis. The governing differential 
equations and discretized set of equations are realized in 
preliminary results for 2D vertical planes in which one or 
more horizontal wellbores act as flow sources/sinks.  The 
model presented in this work is a critical first step toward 
full 3D EGS heat exchange reservoir development and fluid 
flow simulation.  

1. INTRODUCTION  

Traditionally, the true spatial variations of porosity and 
permeability are ignored in favor of their mean values (e.g., 
Sutter et al., 2011).  However, previous work indicates that it 
is imperative to consider true spatial fluctuations in 
‘poroperm’ properties.  Leary and Walter (2008) show that 
observed tight gas well production unpredictability is 
traceable to the false assumption that in situ flow in gas 
sands is quasi-uniform rather than spatially fluctuating.  On 
an economic note, Goldstein et al (2011) cite “insufficiently 
predictable reliability of geothermal reservoir performance 
(and in particular, the [un]predictable reliability of EGS 
reservoirs)” that is traceable to EGS models based on quasi-
uniform media. 
Quasi-uniform media are effectively assumed to have a 
‘white noise’ Fourier power-spectra in spatial frequency k, 
 

.~)( constkS  

Microresistivity and most other geophysical well-log data 
have, however, Fourier power-spectra that scale inversely 
with wave number by 

S(k) ~
1

k
 

over about 5 decades of the length scale from 10-2m to 103m. 
The specific well log properties that obey this law include: 
sonic wave speeds, electrical resistivity, soluble chemical 
species density, neutron porosity, and mass density. Also, 
via fracture-connectivity percolation, clastic rock well-core 
data show a close spatial fluctuation relationship between 
well-core permeability and well-core porosity n  

)log(~ n  

that governs how permeability spatially varies in situ. 

This work simulates subsurface fluid flow and heat transport 
within a 2-D deformable porous medium with power-law 
scaling fluctuations in porosity combined with the 
aforementioned relationship controlling permeability. Few 
available finite element codes are equipped to handle the full 
spatial variability in porosity and permeability that are 
necessary to accurately depict the physics of in situ flow and 
heat transport. Further, the codes that can handle this 
behavior do not solve for the fully coupled problem, but 
only consider fluid and thermal flow through non-
deformable media. Therefore, a new finite element code was 
written in C++ that is capable of modeling the above-
mentioned scenario.  

Section 2 details the boundary value problem and the 
governing coupled differential equations for the linear 
momentum balance, mass balance, and enthalpy balance. In 
Section 3, the finite element method is applied to yield a 
discretized linear system of equations where the unknowns 
are nodal values for solid displacements, pore fluid 
pressures, and temperatures. Section 4 outlines a benchmark 
problem and a specific trial numerical analysis for a 2D 
vertical section consisting of two horizontal wellbores 
cycling water in/out of an EGS volume.  Section 5 provides 
discussion of the preliminary results and the future work that 
is being undertaken for this analysis.  

2. GOVERNING EQUATIONS  

2.1 Linear Momentum Balance 

A suitable first step in acquiring the finite element system of 
equations is to consider the linear momentum balance: 

  g  0 

where  refers to the gradient operator,  is the Cauchy 

stress tensor, g is the gravity acceleration vector, and  is 

the average density of the entire matrix: 
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  1n   s  nw
, 

where s
is the density of the solid grains, w

is the 

density of the fluid (water) surrounding the grains, and n is 
the porosity defined as the volume of void space per unit 
volume.  The Cauchy stress can be expressed as a vector and 
split into two components, the effective stress component 

 ''and a pore pressure component as 

  ''mp, 

where  is a dimensionless constant between 0 and 1, m is 

related to the identity tensor, and p is the pore fluid 

pressure (Lewis and Schrefler 1998; Ingebritsen, Sanford, 
and Neuzil 2006). Assuming linear isotropic elastic 
behavior, the effective stress is calculated as 

 ''  D
e
 T  , 

where D
e

 is the standard elasticity tensor,  is the 

mechanical strain vector, and T is the thermal strain vector. 

In the effective stress equation,  

  Lu  

and  

T  m s
3 T  

where L  is a matrix of spatial derivatives, u is the 

displacement vector, m again is related to the identity 
matrix, s is the coefficient of thermal expansion of the solid 
matrix, and T  is the temperature.  

2.2 Mass Balance 

Consideration of both the fluid and solid mass balance 
equations gives: 

0   (1n)s nw  T

t
 1 n

Ks

 n
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 w
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

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Qp

 

where Sw is the fluid saturation and has been omitted for the 

fully saturated case, vs is the solid matrix velocity from the 

system elastic modulus,  is the permeability matrix, and 

Qp is fluid flow into the system.  

2.3 Enthalpy Balance 

Lastly, to fully couple thermal effects, we consider the 
enthalpy balance equation: 

wCw Css  T

t
 wCw


w

P g  T

  T   0

 

where Cw is the specific heat of the fluid, Cs is the specific 

heat of the solid grains, and   is related to the diffusivity 

of the medium. 

The thermal properties of solid and fluid are taken to be 
constant in space and time with the exception of fluid 
density, which has standard linearized temperature 
dependence. The assumption of constant fluid viscosity is 
disputable. In these simulations, the fluid viscosity for water 
at 200C was used (Table 1). The possibility exists to 
incorporate temperature-dependent spatial variations in fluid 
viscosity into the code (Figure 15). This is the subject of 
future work. Compared with spatial variation in fracture 
density and poroperm properties documented by well-log 
and well core data to vary significantly on all scale lengths, 
the thermal properties of rock constituents vary little in 
value and have few observable constraints to enter into the 
model equations. 

 

3. THE FINITE ELEMENT METHOD 

3.1 Boundary Value Problem 

Figure 1 depicts an arbitrary 2-D porous domain  with a 
boundary  that is subject to natural and essential boundary 
conditions on portions of  denoted h and g, respectively. 
Natural boundary conditions enforce forces on the system, 
such as external tractions, mass fluid flow, or temperature 
fluxes. Essential boundary conditions enforce known 
degrees of freedom, such as solid displacements, pore fluid 
pressures, and temperature. The domain is considered to be a 
fully saturated assemblage of rigid solid grains bonded by 
weak cements and having a spatially fluctuating density of 
fluid-filled void space between grains.  Void space fluids 
percolate between voids where grain-grain cement bonds are 
ruptured by tectonically imposed finite-strain of the bulk 
medium.  The controlling physical variable is grain-scale 
fracture density.  At a critical density of grain-scale 
fractures, long-range spatial correlations between grain-scale 
fractures arise, creating the observed power-law scaling 
properties of well log spatial fluctuations (Leary 2002).  

 

Figure 1: An arbitrary porous domain. 

The solid-fluid matrix is non-isothermal and grain 
assemblages are subject to small strains on all scale lengths. 
Therefore, the problem is evaluated as a coupled problem 
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involving temperature and fluid flow through a deformable 
porous medium.  

 

3.2 Discretization and Solution 

The first step in the application of the Finite Element 
Method (FEM) is to define the approximation spaces for the 
nodal values of the unknowns: displacement, pressure, and 
temperature. These functions are defined by: 

u* N u u  

p* N p p  

T* N T T  

where (.)* represents the exact solution of the unknowns, the 

N* are the finite element shape functions that are a vector in 

the case of the scalar unknowns and a 2nd order tensor in the 

case of the vector unknown (displacement). The vectors u , 

p , and T are the finite element approximations to the exact 

solutions. The shape functions are not necessarily the same 
order. There is evidence reported in the literature that higher 
order shape functions are required for the displacement 
degrees of freedom in the undrained limit state. This is 
called a “mixed method” and requires elements that satisfy 
the Babuska-Brezzi convergence criterion. Elements that use 
second-order interpolation functions for displacement 
degrees of freedom and first-order interpolation functions 
for pressure and temperature degrees of freedom satisfy this 
condition. These elements were implemented and used in 
this work. Each quadrilateral element contains 4 nodes for 
representing pressure and temperature degrees of freedom, 
but nine nodes to represent displacement degrees of 
freedom. The main advantage of mixed method elements 
reported by Lewis and Schrefler (1998) and Aboustit (1985) 
is a significant decrease in pressure field oscillations. The 
results reported in Section 4 utilize higher order mixed 
elements. 

Introducing the standard finite element discretization gives 
rise to the global system of equations to be solved: 

KuK
tt
T Q p  f u  
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Where  

  wCw n s  1 n  w
 I  

is the diffusivity tensor with solid and fluid diffusivities and 

I  is the identity tensor. The matrices B , N* , and D
e

are 

standard matrices used in finite elements. Their exact 
structure can be found in Lewis and Schrefler (1998) or 
Hughes (2000). The values of Young’s modulus, Poisson’s 

ratio (both in D
e

), s , s , w , Sw , n , Cs , Cw , 

 s ,  w , w , and  are material input parameters.  

K
t
 introduces a nonlinearity into the system of equations 

that must be solved using an appropriate technique, such as 
the Newton-Raphson iteration scheme. The final matrix 
system of equations that is solved can be constructed as: 
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This system can be re-written as: 

Ax B
dx

dt
 F  

and can be solved using a single-step finite difference 
operator such as in Lewis and Schrefler (1998) or 
Zienkiewicz and Taylor (2000). 

4. NUMERICAL IMPLEMENTATION/ANALYSIS 

The governing system of equations introduced in the 
previous section was solved using a C++ “in-house” finite 
element code. Preliminary investigations have been carried 
out on a 2D benchmark problem and a 2D EGS heat 
exchange volume. The EGS simulations show the potential 
capabilities of solving the fully coupled EGS heat exchange 
problem in a realistic poroperm medium. The numerical 
implementation is not complete in its current state. The 
details of future work and capabilities are important and will 
be discussed in Section 5. 

Table 1 shows the material parameters used in this work. 
The parameters are taken to be an approximation for an EGS 
volume from parameters given in the SUTRA user’s manual, 
Ingebritsen, et al. (2006), and Lewis and Schrefler (1998). 
These parameters and boundary conditions compose a 
representative parameter space intended demonstrate the 
potential capabilities of the FE code. More simulations will 
be run with more appropriate boundary conditions and 
material parameters in the future. Note that porosity and 
permeability are taken to be constants in the table. The 
constant presented is the mean value of data that fluctuates 
with 1/k spatial correlation sometimes called “pink noise.” 
This is consistent with the spatial fluctuation in well-log data 
in most EGS volumes.  Observed well-log and well-core 
spatial variation about the mean is of order ~ 5%-10%.  For 
permeability, it is understood that this fluctuation magnitude 
applies to the logarithm of permeability, hence leading to 
substantially greater variation of permeability per se.  

Table 2: Input Material Properties 
Symbol Parameter Value Units

E Young's modulus 72.9 Gpa

ν Poisson's ratio 0.14 ‐

βs
solid coefficient of thermal 

expansion
5.50E‐07 1/°C

ρs solid density 2600 kg/m
3

ρw fluid density 1000 kg/m3

Sw fluid saturation 1 ‐

n porosity 0.2 ‐

Cs solid specific heat 840 J/kg °C

Cw fluid specific heat 4182 J/kg °C

σs solid thermal conductivity 3.5 J/s m °C

σw fluid thermal conductivity 0.6 J/s m °C

μw fluid viscosity 0.0002 kg/m s

κ permeability 1.00E‐12 m2

βw
fluid coefficient of thermal 

expansion
2.02E‐04 1/°C

 

4.1 Benchmarking Procedures 

No analytical solutions to this coupled problem exist. To 
ensure that the code developed is working properly, the 
results can be compared to those presented in Lewis and 
Schrefler (1998) and Aboustit, et al. (1985). Both report the 

results of the same non-isothermal fully-saturated soil 
column consolidation problem. It is rather difficult to offer a 
direct comparison between the two problems because some 
of the material parameters used in this formulation are 
combined into “effective” parameters in the benchmark 
problem presented by the authors and it is not possible to 
exactly replicate their parameter space from the data they 
present. However, we will show that the trends in behavior 
are the same even with realistic EGS field parameters and in 
investigations not shown here, it is possible to reproduce the 
trends seen in Lewis and Schrefler (1998) by adjusting the 
material parameters. 

Figure 2 displays the mesh used in the benchmark 
consolidation problem for this work. The bottom surface of 
the geometry is fixed in the vertical direction, while the 
sidewalls are fixed from displacement in the horizontal 
direction. The top surface has a prescribed traction of 1000 
Pa applied, where the temperature is fixed at 50 C and the 
pore fluid pressure is set to be 0 Pa. The rest of the domain 
boundaries are fully insulated and sealed. In the outputs, we 
will analyze nodal values of displacement, pore fluid 
pressure, and temperature along all the nodes along the right 
sidewall boundary. The results are fully symmetric in the 2D 
(effectively 1D) problem, so either sidewall could be 
analyzed.  

 

Figure 2: Benchmark mesh for non-isothermal 
consolidation problem. Adapted from (Aboustit, et al., 
1985). 

In accordance with the discussion from Lewis and Schrefler 

(1998), the matrices R  and K
tt

were set to zero. This 

means that temperature changes are not deemed to have a 
significant impact on the deformation state of the material 
and the coupling of the pore fluid pressure to changes in 
temperature are also small compared to the rest of the 
effects. This may be true for the material parameter space 
chosen in the work of Aboustit, et al. (1985), but for realistic 
parameter spaces at EGS depths, this simplification should 
not be allowed. 

Figure 3 displays the displacement (consolidation) response 
of the medium from Lewis and Schrefler (1998) and Figure 
4 displays the consolidation result from this work. The 
magnitudes of the displacements are not important, since 
different choices of material parameters can affect this. Even 
the signs of the displacement can be affected by the 
parameters associated with the coupling matrices. It is 
possible to reproduce these magnitudes and even the peak 
displacement before consolidation by adjusting the 
parameter space. However, Lewis and Schrefler (1998) 
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report that this peak disappears when realistic values for the 
bulk moduli are used (as in this work as seen in Figure 4).  

 

Figure 3: Vertical displacement values for different 
nodes in benchmark problem, taken from Lewis and 
Schrefler (1998). 

 

Figure 4: Vertical displacement of different nodes for 
soil consolidation problem from this work.  

Figure 5 displays the pore fluid pressure evolution as a 
function of time from Lewis and Schrefler (1998). Figure 6 
shows the results of the same plot from this work. These 
trends are identical. It is not clear if the pressures have been 
normalized in Figure 5. An interesting observation of Figure 
5 is also that only 3 nodal values have been reported. This is 
most probably due to the oscillatory behavior of the pressure 
solution. Figure 6 shows the result of pressure for every 
node in the vertical direction and the oscillations are 
obvious, especially at early times. Both Aboustit et al. 
(1985) and Lewis and Schrefler (1998) report these 
oscillations in normalized data and they are apparent in these 
simulations as well. The oscillations are significantly 
reduced with the use of Babuska-Brezzi elements and mesh 
refinement. The trends in pore fluid pressure are identical to 
those shown in the benchmark problem presented by Lewis 
and Schrefler (1998). 

 

Figure 5: Pore fluid pressures for benchmark problem 
taken from Lewis and Schrefler (1998). 

 

Figure 6: Evolution of pore fluid pressures from this 
work. 

Figure 7 displays the nodal values of temperature over time 
from Lewis and Schrefler (1998) and Figure 8 displays the 
same variable from this work. Again, the exact trends are 
matched with the current model. The data of Figure 7 appear 
stretched compared to Figure 8, however, this is again due to 
the material parameter space. Adjustment of material 
parameters can give rise to the behavior seen in Figure 7.  

 

Figure 7: Nodal temperature evolution for benchmark 
problem taken from Lewis and Schrefler (1998). 

 

 

Figure 8: Evolution of nodal temperatures in this work. 

Comparing Figure 4 to Figures 6 and 8 offers interesting 
insight into the displacement behavior of the column. The 
problem is formulated to be quasi-static. Therefore, the 
system should be in static equilibrium at each time step. 
When a compressive traction load is placed on the top 
surface of the column, the column is compressed uniformly 
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near to the linear elastostatic solution. Figure 4 shows this 
result even at very small times. However, after pressure and 
temperature have roughly equilibrated, there is a noticeable 
consolidation effect on the column as the displacements 
further decrease. This result makes sense from a solid 
mechanics perspective, because pore pressure can be thought 
of as incompressibility in the medium. As the pressure is 
decreased, the magnitude of the displacements should 
increase. This is clearly demonstrated in Figure 4. 

To demonstrate the importance of the matrices R  and K
tt

 

when realistic material parameters for EGS volumes are 
used, the terms were included in the results generating the 
data of Figure 9. The figure displays the displacement 
behavior of the column in that case. 

 
Figure 9: Displacement evolution for fully coupled 
problem with appropriate EGS parameters. 
 

4.3 Double Borehole Simulation Set-up 

Figure 10 displays the double borehole simulation set up. 
The figure is colored by the porosity, which varies spatially 
with 1/k correlation. The domain size is 70 m wide by 40 m 
tall with 0.5 m borehole widths. The horizontal distance 
between the boreholes is 14 m. The external boundary is 
fixed with temperature set to 200C and pore fluid pressure 
set to 2 MPa. 100C fluid flows into the left borehole that is 
pressurized to 4 MPa. The simulation was performed with 
time steps of 500.0 s to a final time of 7000 s to reach 
equilibrium.  

 
Figure 10: Double borehole simulation mesh and 
porosity. 

 

 

 

4.4 Double Borehole Preliminary Simulation Results 

Figures 11 and 12 display the results for the primary 
variables of pore fluid pressure and temperature in the 
double bore simulations. 
  

 
Figure 11: Double borehole pore fluid pressure. 

 
Figure 12: Double borehole domain temperature. 

Figure 13 displays the result for shear stress in the double 
borehole simulations. Underground fractures often occur in 
regions of maximum shear stress. Therefore, shear stress in 
the domain could be used in future work incorporating an 
increase in fracture density. 

 
Figure 13: Double borehole shear stress. 

Figure 14 displays the result for the magnitude of the fluid 
velocity. There is a greater fluid velocity around the 
pressurized borehole. However, the fluid velocity is not 
symmetric. This is due to differences in porosity and 
permeability around the borehole. The higher porosity 
results in a lower velocity on the left side of the borehole. 
This may result in a greater overall flow in that direction, but 
the outflow calculations have not yet been implemented into 
the C++ FE code.  
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Figure 14: Double borehole magnitude of fluid velocity. 

5. DISCUSSION/CONCLUSIONS 

5.1 Results 

The results in Section 4 are preliminary results intended to 
demonstrate potential modeling capabilities of FE codes 
applied to coupled thermo-poro-mechanical processes in 
realistic heterogeneous media such as EGS rock volumes. 
While the meshes represent relatively small domains and 
have very coarse levels of refinement, the physics of EGS 
flow is implemented and the potential exists to offer new 
insight into the understanding of in situ fluid flow, heat 
transport, and pressure-induced fracture evolution. 

It is imperative for long-term energy solutions that the 
coupled physics of EGS volumes are well understood. 
Simulations of this type and Figures 10-14 allow for the 
comparison of material and domain characteristics to 
resulting fluid flows and, potentially, fracture networks. 
Figure 14 clearly depicts fluctuations in small fluid 
velocities that are dependent upon the values of porosity and 
permeability within the domain. The temperature at a 
receiver well is important to consider as well as the outflow. 
From Figure 12, the temperature surrounding the outflow 
wellbore is about 180 C.  

5.2 Future Work 

There is a significant amount of future work to perform for 
EGS simulations that used the C++ code from this work. It 
is highly desirable to determine the exact fluid mass outflow 
at boundaries (i.e., outflow wellbore boundaries). Taking the 
dot product of Darcy’s Law for fluid and the boundary of 
interest’s outward normal vector performs this calculation. 
This implementation is straightforward, but requires the 
robust and consistent determination of the outward normal 
vector at a boundary.  

As mentioned in Section 2, the temperature dependence of 
certain fluid properties (e.g., density and viscosity) needs to 
be accounted for. Over the range of these simulations (100-
200C), a linear dependence in fluid density is not a bad 
assumption. However, more complicated relationships can 
easily be incorporated into the code. Constant water 
viscosity at 200C was used in the borehole simulations of 
Section 4. Figure 15 displays water viscosity as a function of 
temperature. Like fluid density, it is straightforward to 
implement a temperature dependence of the fluid viscosity 
term into the code assuming that no fluid phase changes are 
present within the simulation.  

 

Figure 15: Temperature dependence of water viscosity. 

Solving for the stresses and strains in the domain allows for 
more robust consideration of fracture networks. Natural 
pathways for fluid flow (fracture networks) already exist in 
EGS volumes. These systems can be enhanced by borehole 
pressurization through an influx of fluid. The enhancement 
of natural fracture networks will be explored in this work. A 
working hypothesis indicates that when critical stresses or 
strains are reached within a portion of the domain, 
permeability and porosity in that portion of the domain will 
increase appropriately as a result of an increase in fracture 
density. This can allow for fluid flows to also increase 
appropriately in highly stressed regions.  

Further, these 2-dimensional analyses will be extended to 3 
dimensions for more complete representation of geothermal 
fields. This extension will require significantly more 
computational cost. The problems presented here already 
require a computational cost that is not insignificant. It was 
mentioned in Section 5 that these are relatively coarse 
meshes; therefore the simulations are relatively small. 
Memory availability limits the maximum size problems that 
can be computed. It is imperative for future work to 
implement the FETI method for parallel computation in 
finite element analysis on a MPI cluster located at the 
University of Auckland. Parallelization will allow for faster 
run time of large simulations as well as reduced memory 
requirements for individual CPUs. This will allow for full-
scale 3-D simulations with significantly refined mesh 
structures.  
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