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Buried rhyolite in the Kawerau Geothermal Field, Taupo Volcanic Zone, New Zealand:
sources of a rejuvenated geothermal system
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ABSTRACT

Fractured rhyolite lava domes and flows occur between 0
and 1000 m depth in the Kawerau Geothermal Field (New
Zealand), with several rhyolite bodies intersected by drilling.
Differentiating between the rhyolite lavas has helped resolve
an important part of the Kawerau stratigraphy, and enhanced
our knowledge of the geological history of the Taupo
Volcanic Zone. Onepu Rhyolite flows underlie the ~320 ka
Matahina ignimbrite and are composed of a series of flows
interspersed locally with rhyolite breccia, tuff and fluviatile
pumiceous sediments of Onepu Ash, particularly in
peripheral parts of the dome complex. The Caxton Rhyolite
has previously been inferred to be extruded from multiple
vents, and forms a large rhyolite complex interbedded with
Kawerau Andesite and ignimbrite units. Quartz porphyry
dikes occur in some wells (e.g. KA28, KA30 and KA31),
where they separate ignimbrite and andesite at depths
between ~500 and 1000 m.

Recent age determinations obtained from these rhyolite

groups using U-Pb dating of zircons has indicated a complex
magmatic (and structural) history at Kawerau. The Caxton
Rhyolite represent a common series of intrusions (rather
than surface flows) with inferred ages clustering around 410
ka. Some of these intrusions have ages similar to those of
the buried Onepu Rhyolite lava flows (~400 ka, from
stratigraphic relationships to the 320 ka Matahina
ignimbrite) and are inferred to be part of a feeder system for
the rhyolite. The ages provide insight into the temporal
evolution of rhyolitic magmatic activity at Kawerau, with
the intrusive complexes representing past heat sources that
are likely to have rejuvenated the geothermal system beneath
Kawerau.

1. INTRODUCTION

The Kawerau Geothermal Field is located in the northern
TVZ, near its eastern boundary (Figure 1). The geothermal
activity is at the southern end of the NE-trending Whakatane
Graben, in a zone where the NE-striking active rift of the
TVZ intersects the N-trending strike-slip faults of the North
Island Shear Belt (Nairn and Beanland, 1989; Mouslopoulou
et al., 2007). This graben structure is evident east of the
Kawerau Geothermal Field, where the 320 ka Matahina
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Figure 1: Location map of Kawerau Geothermal Field, with location of wells. Blue dashed line
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any one time. Some of the older wells are now used as
monitor wells.

As part of a field wide revision of the stratigraphy, samples
were collected for U-Pb dating of zircons from selected
units. Amongst these were samples of the Onepu and Caxton
Rhyolites. Here we present some of the U-Pb ages and the
implications these have on the field stratigraphy.

2. DATING

High degrees of hydrothermal alteration of rock units within
geothermal fields can obscure primary mineralogies and
lithological textures, and preclude direct dating by
radiometric techniques. Magmatic zircons are commonly
present in silicic volcanic rocks. Where zircon saturation
was achieved, zircons generally crystallise up to the point of
eruption. Young zircons are highly resistant to hydrothermal
alteration and can yield a record of their crystallization ages
in otherwise intensely altered rocks, allowing crystallization
ages of rocks to be inferred

Zircon crystallization-age spectra have been obtained by
SIMS techniques (SHRIMP-RG instruments at the joint
USGS-Stanford University facility and at the Australian
National University) from eight samples of core from Onepu
and Caxton rhyolite at different stratigraphic levels in
drillholes at the Kawerau Geothermal Field.

Age determinations used the techniques described in Wilson
et al. (2010). The presence of common Pb was evaluated by
monitoring for ?**Pb, and a correction applied using the
recorded 2°’Pb/?®Pb values and an average common Pb
isotopic composition for a bulk Earth value (**’Pb/?pb =
0.8357; Stacey and Kramers, 1975). Although all the Caxton
and Onepu samples contained large amounts of common Pb,
the best fit lines for data from individual samples formed
consistent linear arrays on inverse concordia plots. Raw ages
were corrected for initial 2°Th disequilibrium using the U
and Th concentrations in the zircon from the SIMS analysis
and a whole-rock value Th/U of 4.4 (Wilson and Charlier,
2009).

Summary histograms with the associated probability density
function (pdf) curves from Isoplot (Ludwig, 2003) are given
for 3 representative samples in Figs. 2 to 4. The other five
samples of Onepu or Caxton Rhyolite return peak PDF ages
within uncertainty of the same values as those for the two
KA36 samples.
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Figure 2: Cumulative probability density function curves
and histograms for zircons analysed from a -845
mRSL core sample in drillhole KA30. Peak PDF
age of 0.17+0.02 Ma.
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Figure 3: Cumulative probability density function curves
and histograms for zircons analysed from a -655
mRSL core sample in drillhole KA36. Peak PDF
age of 0.41+0.03 Ma.
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Figure 4: Cumulative probability density function curves
and histograms for zircons analysed from a -944
mRSL core sample in drillhole KA36. Peak PDF
age of 0.42+0.03 Ma.

2. STRATIGRAPHY

The stratigraphy encountered during drilling at Kawerau is
differentiated based on descriptions by Nairn (1977, 1982
and 1986), Grindley (1986), Christenson (1987) and Allis et
al. (1995). These authors differentiated the Onepu and
Caxton Rhyolite primarily on a basis of their stratigraphic
relationships.

Onepu Rhyolite lavas underlie the Matahina Formation
ignimbrite and are composed of a series of flows
interspersed locally with (probable dome-margin) breccia,
tuff and fluviatile pumiceous sediments of Onepu Ash,
particularly in peripheral parts of the dome complex. The
Caxton Rhyolite has been inferred to be extruded from
multiple vents, and forms a large rhyolite complex
interbedded with Kawerau Andesite and ignimbrite units.
Quartz porphyry dikes occur in some wells (e.g. KA28,
KA30 and KA31), where they separate ignimbrite and
andesite at depths between ~500 and 1000 m.

The zircon age estimates obtained from these rhyolite groups
using U-Pb dating indicate that the magmatic (and
structural) history at Kawerau for these units requires major
revision. The Caxton Rhyolites represent a series of
intrusions (rather than surface flows) with peak pdf ages
clustering around 400 ka (Figures 3 & 4) and one at around
170 ka (Figure 2). All but one of the samples of these
intrusions have ages which make them probable feeders to
the buried Onepu Rhyolite lava flows. The age of the Onepu
Rhyolite flows is estimated at ~400 ka, from stratigraphic
relationships to the overlying 320 ka Matahina Formation
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ignimbrite and an underlying pyroclastic unit which has a
weighted average corrected age of 0.43 Ma.

2.1 Petrography

The nomenclature used in the following petrographic
descriptions is based on the rhyolite names in the old
stratigraphy. Their positions in the revised stratigraphic
framework will follow in the discussion.

2.1.1 Onepu Rhyolite

The buried Onepu Rhyolite has two distinct petrographies.
The first has well developed flow banding and spherulitic
texture with minor (5%) phenocrysts of plagioclase and
quartz (Figure 5 [1A,B]). The phenocrysts are small and
generally have a diameter of <2 mm.

The second petrography, from a stratigraphically deeper unit
of the Onepu Rhyolite (separated by sedimentary units) is

gl

represented in KAL17 by a rhyolite breccia, with clasts of
spherulitic, flow banded and perlitic rhyolite lava. This is
distinct from the shallower Onepu Rhyolite flow and has a
moderate phenocryst content (Figure 5 [2A,B]) (15%) of
quartz (3%; <4 mm diam.), plagioclase and rare mafic
minerals (amphibole?). The quartz crystals have deep
embayments.

2.1.2 Caxton Rhyolite

The Caxton Rhyolite material has three distinct
petrographies. The first petrography, represented by the
material dated from KA36 (Figure 5 [3A,B]), has minor
(5%) phenocrysts of quartz (<2 mm diam.) and plagioclase
(<1 mm diam.). Phenocrysts are hosted in a recrystallized
groundmass that has diffuse flow banding.

The second petrography (Figure 5 [4A,B]) contains a
moderate phenocryst content (15%) of quartz (typically <2

Figure 5: 1A. Photomicrograph, KA21, -418 mRSL; cross polarised light. Flow banded rhyolite lava with a quartz
phenocryst (qtz). 1B. Hand specimen of flow banded rhyolite lava. 2A. Photomicrograph, KA17, -408 mRSL; cross
polarised light. Brecciated rhyolite, with a clast of perlitic rhyolite (outlined in dashed yellow). Phenocrysts are of gtz
and plagioclase (pl). 2B. Hand specimen of rhyolite breccia. 3A. Photomicrograph, KA36, -655 mRSL; cross
polarised light. Fine-grained rhyolite with minor phenocrysts of qtz and pl. 3B. Hand specimen of poorly porphyritic,
flow banded rhyolite. 4A. Photomicrograph, KA28, -631 mRSL; cross polarised light. Rhyolite with moderate
phenocryst content of embayed and fractured qtz and altered pl. 4B. Hand specimen of porphyritic rhyolite.
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mm, but up to 4 mm; embayed, fractured), plagioclase (<2
mm length) and amphibole (<1 mm long). Phenocrysts are
hosted in a devitrified groundmass with diffuse flow
banding.

The third petrography (Figure 6) has abundant phenocrysts
of plagioclase and quartz (together ~30% of the rock),
amphibole (~5-10%), pyroxene and magnetite. Quartz
crystals are embayed, fractured and subrounded (0.5 - 5 mm
diam.). Plagioclase crystals frequently form glomerocrysts.
Phenocrysts are set in a crystalline groundmass including
laths of plagioclase, amphibole and quartz. Xenolithic
agglomerates of plagioclase, amphibole and pyroxene are a
minor component.

Figure 6: A. Photomicrograph, KA30, -845 mRSL; cross
polarised light. Rhyolite with abundant large
phenocrysts of quartz (gtz), plagioclase (pl) and
amphibole (am). B. Hand specimen of strongly
porphyritic rhyolite.

3. DISCUSSION

Petrographic assessment of the rhyolite bodies dated in the
Kawerau Geothermal Field represent several episodes of
magmatic activity, whereas the zircon age dating implies
that the majority of these differing magmas were erupted
over a time period that is within the uncertainties of the
dating method (i.e. a few tens of thousands of years).
Consequently, we can now recognise two distinct time
periods of magmatic activity at Kawerau.

The older period of magmatism is characterised by a series
of rhyolite bodies with ages close to ~400 ka. These are
represented by the buried Onepu Rhyolite and a series of
Onepu intrusive bodies (diagrammatically reported on
Figure 7) previously mapped as Caxton Rhyolite (Grindley,
1986; Allis et al., 1995). Both the Onepu Rhyolite (extrusive
lavas) and the intrusives belonging to this Onepu Group of
rhyolite correlate with the first two of the petrographies
described in the previous section. These are the crystal poor
variant (Figures 5[1] & 5[3]) and moderately crystal rich
variant with mafic minerals (Figure 5[2] & 5[4]). The
intrusive units are inferred to be part of a feeder system for
the two buried rhyolite lava bodies.

The younger intrusive rhyolite is dated at 170 ka (Figure 7,
KA30 well track) and is nominally called the Caxton
intrusives. This rock is petrographically distinct from all
other dated rhyolites bodies at Kawerau, with abundant
phenocrysts and containing xenoliths, forming the third
petrographic variant described above (Figure 6). This unit,
however, is also texturally and petrographically similar to
the intrusive units encountered in the greywacke basement in
PK8, KA28, and KA42.

The surficial domes to the northwest of the Kawerau
Geothermal Field are composed of petrographically similar
rhyodacite lavas. The lavas are flow banded, with
plagioclase, minor quartz, amphibole, pyroxene, biotite and
magnetite. The lavas pre-date the Rotoiti Formation (61 ka;
Wilson et al., 2007; Cole et al., 2010), but post-date the
Matahina Formation ignimbrite. No tephrochronological age
is available for young pyroclastics that overlie the domes, so
the upper age limit of the surface Onepu domes is unknown.
Grindley (1986) suggested the rhyodacites represent the
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Figure 7: NW-WE geological 2-D cross section of the Kawerau Geothermal Field, based on well logging. The
approximate location of this cross section is given in Figure 1. The geology has been simplified to allow for easier
interpretation.
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youngest domes of the Onepu Rhyolite dome complex. We
infer that the ‘Caxton Rhyolite’, dated from KA30 at ~170-
200 ka, is part of a feeder system for this dome complex,
though further dating and petrographic work needs to be
undertaken to confirm this hypothesis.

The existence of buried rhyolite complexes is consistent
with local, shallow rhyolite magmatic heat sources, which
have underlain the Kawerau area for >400,000 years.
Putauaki volcano is younger than the Kawerau geothermal
system, with field studies pointing to the Putauaki area being
the likely (present-day) heat source for the Kawerau
geothermal system. The ages provide insight into the
temporal evolution of rhyolitic magmatic activity at
Kawerau, with the intrusive complexes representing past
heat sources that are likely to have rejuvenated the
geothermal system beneath Kawerau in a previous
incarnation reported by Browne (1979). The state of the field
between these two episodes of local magmatic heat flux has
yet to be determined.
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