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ABSTRACT 

The Waikite Wetland occupies approximately nine hectares 
close to the centre of the Waikite Geothermal Area.  
Several geothermal springs discharge into the wetland in 
the southeast corner providing a source of hot water into the 
wetland and an opportunity for a geothermal ecosystem to 
develop. 

The wetland area was developed in the 1930’s, and has 
undergone changes that include land clearing, grazing and 
altering the path of waterways. The Department of 
Conservation (DoC) embarked on restoring the Waikite 
Wetland in 2009 which included a land exchange with 
farmers, fencing, restoring water courses, plantings and 
weeding. 

This study presents the initial results of chemical, physical, 
microbiological and invertebrate monitoring at the wetland 
in response to the change in management of the wetland 
area. 

INTRODUCTION 

Rehabilitation of sensitive geothermal ecosystems that have 
been adversely impacted by development is an emerging 
area of research.  Some forms of development (e.g. land 
that has been cleared for farming) may be amenable to 
remediation measures that attempt to restore at least some 
of the pre-development ecosystem over short to medium 
time frames (years to decades). 

The Waikite Geothermal Field is located in the Waikite 
Valley, approximately 20 km south of Rotorua, New 
Zealand (Figure 1).  The geothermal field is characterised 
by up to 47 identified surface features  including hot 
springs, hot lakes, fumaroles, sinter deposits and streams, 
which range in temperature from 7.7°C to 98.4°C (Glover 
et al., 1992).  The wetland is in the geothermal area and has 
thermal springs discharging into the southwest corner.  This 
corner currently hosts a range of thermotolerant vegetation 
and thermophilic micro-organisms.   

The wetland area has undergone major hydrological 
changes in the last 80 years due to development of the land 
for grazing.  Land clearing, grassing, draining the wetland 
and diverting the Otamakokore Stream (Figure 1) around 
the wetland are some of the works carried out since the 
1930’s to increase the sheep grazing area. 

Since 2009, the Department of Conservation (DoC) has 
embarked on restoring the wetland area.  Actions to date 
include legal protection, invasive plant management, 
fencing, restorative plantings and restoring the 
Otamakokore Stream back through the wetland (June, 
2009). 

This study presents the initial results of physical, chemical 
and biological surveys in response to restoring the Waikite 
Wetland.  Geothermal inputs into the wetland are also 
estimated.  This study was developed to compliment the 
work been done by DoC. 

METHODS 

Ground Temperature survey 

Ground temperature sites were selected to be in an 
approximate grid pattern inside and outside of the wetland.  
Hydrological conditions restricted site access in some parts 
of the wetland.  A GPS location was taken at each site.  
Temperatures were measured at 1 m depths (where 
possible) at each site with a Yokogawa TX10 meter 
connected to type K thermocouple on 18/09/2009. 

Physical measurements 

Grab samples of water were collected from five sites 
(Figure 1) in August, September, November, and December 
2009 and in, January, February, April, June and October 
2010.  Samples were collected following the procedures 
outlined by Rosen et al. (1999).  Water samples were 
analysed at the Wairakei Analytical Facility.  Only chloride 
(Cl) data will be presented in this paper.  Chemistry data 
from Glover et al., (1992), Mahon (1965) and Waikato 
Regional Council (2010) was used to supplement the data 
collected.  The electrical conductivity was measured at each 
site with a Hach HQ40D conductivity meter.  The water 
temperature was measured using a K type thermocouple 
connected to either a Bontron or Yokogawa meter. 

Flow gaugings at sites along the Otamakokore Stream used 
an OSS-PC1 current meter with measurements made every 
10 cm across the stream (measurements were every 20 cm 
on 25/8/2010).  Data were processed using gLog™ 
software.    Flow gaugings at site WE1001 were taken from 
a small weir constructed with sandbags with a PVC pipe at 
the base of the dam.  The amount of time taken to fill a 15 l 
bucket with the water flowing through the PVC pipe was 
recorded five times.  An average of the five flow gaugings 
is reported. 
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Figure 3.  Chloride over time at the monitoring sites. 

 

Figure 4.  Flow rates over time at the monitor sites. 

Microbiological 

With the exception of WKR8 (Figures 1 and 5), no 
significant change in the microbial population was detected 
in any of the sampling sites. WKR8 was the only site that 
showed a major microbial population change across all 
types of analyses between 08/04/2010 and 28/09/2010.  The 
soil samples at this site in particular showed a distinct 
reduction in species diversity over time (Figure 5). The 
change in the microbial population corresponded to an 
increase of 8°C in the water temperature measured at this 
site during this time period.  The increase in water 
temperature at this site is probably caused by an increased 
water flow through a channel dug from the spring to the 
Otamakokore Stream between 10/06/2010 and 31/08/2010 
which lowered the water level in the spring by 
approximately 5 cm. 

Analyses of the water at WKR8 also showed significant 
decreases in microbial diversity and shifts in resident 
bacterial and archaeal species.  Overall, the microbial 
population shifted from a community of thermophilic 
bacterial and archaeal species to a community dominated 
by archaeal species with the temperature increases. This 
observation is consistent with thermophilic microbial 
ecology that Archaea predominate over Bacteria at near-
boiling temperatures.  No cyanobacteria were detected at 
this site over the duration of the study. The average 
temperatures of this spring and associated soils (81.9°C and 
85°C respectively) are too hot for photosynthetic  
 

 

Figure 5.  A scattergraph of all fragments recorded 
from amplification and subsequent digestion 
with MspI of total bacterial 16S rRNA genes 
found in soil at WKR8 over the study period. 

microorganisms and therefore would not have supported 
cyanobacterial growth. 

Macroinvertebrate 

Macroinvertebrate abundance at sites sampled along the 
Otamakokore Stream is shown in Figure 6.  Greatest 
abundance occurred at OT2 (7380/sample), OT3 
(6240/sample) and OT6 (2698/sample) in 2009.  In 1999 
highest numbers occurred at OT1 (3592/sample) and OT2 
(800/sample).  At all sites the high numbers resulted from 
the occurrence of the chironomid midge Tanytarsus. 

The macroinvertebrate fauna of the Otamakokore Stream 
was low in diversity, which is common with the 
macroinvertebrate fauna recorded from other geothermally-
influenced water courses.  The fauna comprised organisms 
that are common to non-geothermal waters as well as 
organisms found only in geothermal ecosystems. 

The macroinvertebrate community sampled in 2009 
comprised a greater proportion of species found commonly 
in geothermal waterways.  This is largely explained by the 
loss of macroinvertebrates that are less well-adapted to the 
characteristics of geothermal waters, rather than an increase 
in species that occur more commonly in geothermal waters.   
In part this result is a reflection of the taxonomic 
penetration at each sampling period.  However, it largely 
reflects the changing geothermal and habitat characteristics 
resulting from the stream reclamation. 

The macroinvertebrate communities dominated by 
Tanytarsus/Ephydrella occurring at Otamakokore Stream 
are consistent with the alkali-chloride and bicarbonate 
geochemical characteristic occurring elsewhere in the 
Taupo Volcanic Zone (Hunt and Bibby 1992, Boothroyd 
2009). 
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Figure 6.  Macroinvertebrate abundance (number per 
sample) at sites within the Otamakokore Stream 
1999 and 2009.  Site notation is matched for the 
same location. NS = not sampled. NB.  Log scale 
on y axis. 

CONCLUSIONS 

The three sources of water into the Waikite Wetland are 
identified; the Otamakokore Stream, small springs in the 
south east corner of the wetland, and the subsurface flows 
along the southern and eastern margins of the wetland.  
Geothermal water inputs from within the wetland are 
estimated to be ~ 14 l s-1. 

Monitoring data show that negligible changes in water 
chemistry and microbial populations have occurred in the 
wetland since monitoring began after management changes 
were implemented.  Comparisons of the macroinvertebrate 
populations between 1999 and 2009 show that there were 
less taxa and also an increase in species that occur more 
commonly in geothermal waters in 2009.  This is associated 
with redirecting the Otamakokore Stream back into the 
wetland. 
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