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ABSTRACT 

This paper deals with the application of lumped parameter 
models (1-tank, 2-tank open/closed, 3-tank open/closed) to a 
field case. The models are used to match the long-term 
observed pressure behavior of Hofsstadir geothermal field 
which is a typical low-temperature liquid dominated 
geothermal system, in West Iceland. Once the parameters of 
the models are determined by history matching, future 
performance predictions are made under given 
production/reinjection scenarios by using the Randomized 
Maximum Likelihood method.  

1. INTRODUCTION 

Managing geothermal fields efficiently requires reliable 
prediction of geothermal reservoir potential. This can only 
be achieved by using the appropriate reservoir model which 
describes the change in reservoir pressure (or water level) as 
a function of time or cumulative fluid production.  

Simple analytical models as well as complex numerical 
models can be used to simulate geothermal system potential. 
A simpler approach is known as lumped parameter 
modeling. Lumped parameter models provide an attractive 
alternative to numerical modeling of geothermal reservoirs 
with fewer modeling parameters. Therefore, in this study 
lumped parameter models have been discussed to simulate 
reservoir behavior. 

In the lumped models considered in this work, the 
geothermal system is assumed to be composed of mainly 
three parts; the reservoir, the aquifer, and the recharge 
source, which are represented by different tanks having 
different properties. The models are used to match the long-
term observed water level or pressure response of a field to a 
given production history. For history matching purposes, an 
optimization algorithm based on the Levenberg-Marquardt 
method is used to minimize an objective function based on 
weighted least-squares, to estimate relevant aquifer/reservoir 
parameters. In addition, the parameters are constrained 
during the nonlinear minimization process to keep them 
within physically meaningful limits and compute statistics 
(e.g., standard 95% confidence intervals) to assess 
uncertainty in the estimated parameters. Moreover, the 
quality of the matches are evaluated through the Root Mean 
Square errors (RMS). 

Once the parameters of the model are determined by history 
matching, the future performance of the reservoir is 
predicted for different production/reinjection scenarios to 
optimize the management of a given low-temperature 
geothermal field.  

To provide sustainable production, it is very important to 
reflect the uncertainties that arises from errors (i.e. modeling 
and measurement errors, etc.) to the future predictions. 
Hence instead of dealing with a single deterministic 
response, one can analyze various possible outcomes of the 
future predictions. Therefore, in this study the Randomized 
Maximum Likelihood (RML) is used for predicting the 
uncertainty in future flow behavior predicted by lumped 
parameter models. 

2. LUMPED PARAMETER MODELING 

Lumped parameter models which have been reported in the 
literature (Whiting and Ramey, 1969; Castanier, Sanyal, and 
Brigham, 1980; Brigham and Ramey, 1981; Grant, 1983; 
Gudmundsson and Olsen, 1987; Axelsson, 1989; Sarak et 
al., 2003a and 2003b; Axellson et al., 2005; Sarak et al., 
2005) have been used extensively for predicting pressure (or 
water level) changes in low-temperature geothermal systems 
in Iceland, Turkey, The Philippines, China, Mexico, and 
other countries.  

Generally, in all lumped parameter models, a geothermal 
system is represented by only a few homogeneous tanks and 
is visualized as consisting of mainly three parts: (1) the 
central part of the geothermal system-reservoir; (2) outer 
parts of the geothermal system-aquifer, and (3) the recharge 
source. The first two are treated as series of homogeneous 
tanks with average properties. The recharge (or constant 
pressure) source can be connected to the other parts of the 
reservoir or directly to the central part of the reservoir and is 
treated as a “point source” that recharges the system. If there 
is no connection to the recharge source, the model would be 
closed, otherwise would be open. Three different open 
lumped-parameter models are depicted in Figure 1. 

In one-tank open lumped parameter model sketched in Fig.1 
(a), geothermal system is considered to be composed of a 
reservoir and a recharge source. The reservoir is produced at 
a net mass rate (wp,net) which is defined as the difference 
between production and reinjection rate, and the recharge 
source at a constant pressure of pi supplies water. 

The model shown in Fig. 1(b) represents a two-tank open 
lumped parameter model, where the first tank, in which 
production/reinjection occurs, represents the innermost part 
of the geothermal system (reservoir). The changes in 
pressure in this part are monitored and 
production/reinjection rates are recorded. In the second tank, 
representing the outer part of the system (aquifer) that is 
connected to the recharge source, there is neither production 
nor reinjection and it recharges the reservoir. Fluid 
production causes the pressure in the reservoir to decline, 
which results in water influx from the outer (aquifer) to the 
inner part of the system (reservoir). The recharge source 
represents the outermost part of the geothermal system. 
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(c) three-tank open lumped parameter model 

Figure 1: Illustration of three different lumped 
parameter models. 

In the three-tank open model (Fig. 1-c) the innermost part of 
the system is considered as a single reservoir tank and the 
outermost part of the system is considered as two 
interconnected aquifer tanks. The outer aquifer is connected 
to a recharge source at a constant pressure of pi. Thus the 
system is called open three-tank model.  

When using the lumped parameter models considered in this 
work (Fig. 1), the simulated model (output) response 
represents pressure or water level changes for an observation 
well for a given net production history (input). The number 
of model parameters increases as the number of tanks or the 
complexity of the lumped model increases.  

The lumped parameter models considered here are based on 
the conservation of mass only and hence are valid for low-
temperature liquid reservoirs under the assumption that 
variations in temperature within the system can be neglected 
(i.e. the simulated systems are assumed to be isothermal).  

Here and throughout,  represents the recharge constant 
between the tanks in kg/(bar-s),  the storage capacity (or 
coefficient) of a tank in kg/bar, and pi the initial pressure of 
the recharge source in bar. The geothermal system is 
assumed to be in hydrodynamic equilibrium initially; i.e., 
the initial pressure, pi, is uniform in the system. In cases for 
which the initial system pressure (or initial water level), pi, 
is known, pi can be eliminated from the unknown set of 
model parameter vector.  

Further details about the lumped-parameter models used in 
this study can be found in Sarak et al. (2003a, 2003b, and 
2005). 

3. PARAMETER ESTIMATION 

After a geothermal reservoir has been produced for a period 
of time, a lumped parameter model can be matched to 
observed pressure (or water level) data with the available 

production and reinjection rate history to obtain optimum 
parameters of a particular lumped model. As more data 
become available, more information can be obtained about 
the reservoir and the system.  

Fitting model parameters to the observed data requires 
accurate and fast approaches. The method of least squares 
fitting is a convenient one to apply. As is well known, the 
traditional (unweighted) least squares estimation is often 
unsatisfactory when some observations are less reliable than 
others and/or various measurements having disparate orders 
of magnitude are simultaneously used in estimation. In the 
former case, it is required that the parameter estimates will 
be more influenced by the more reliable observations than 
by the less reliable ones. In the latter case, it would like to be 
sure that any information contained in the data with small 
magnitudes is not lost because of summing together squares 
of numbers of such disparate orders of magnitude. 

Therefore, in this work, weighted least-squares fitting is 
considered so that the above mentioned disadvantages 
associated with the standard least squares fitting can be 
overcome. The weighted least-squares objective function 
(Eq. 1) is used for the parameter estimation.  
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Here, y refers to the vector of measured or observed pressure 
change data, and contains all Nd pressure change 
measurements that will be used for estimating the model 
parameters by nonlinear regression. Here f refers to the Nd-
dimensional vector of computed pressure-change data from 
a considered lumped model, for a given m . m represents the 
total number of unknown model parameters. d,j represents 
the error variance for each observed data. 

The lumped-parameter model responses are nonlinear with 
respect to the model parameters. Thus, Eq. 1 calls for 
nonlinear minimization techniques. The Levenberg-
Marquardt method which is a gradient based algorithm is 
used to minimize objective function (Eq.1). 

The details of optimization algorithm used in this study are 
given by Tureyen et al. (2010). 

When history matching problem is viewed, one can attach 
statistical measures to quantify the quality of a match as well 
as the uncertainty of the model parameters estimated. The 
standard statistical measures used for assessing the quality of 
a match and the reliability of estimated parameters are the 
root-mean-square error (RMS) and confidence (usually 95% 
percent) intervals. The value of RMS defined by Eq. 2 
shows the quality of fit quantitatively. 
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where m represents the optimized parameter vector. The 
lower the RMS value, the better the fit between field and 
computed data. This does not necessarily mean that the 
lumped model giving the smallest RMS value be the most 
appropriate model for the history-matched data and should 
give the most reliable predictions. While it is important to 
improve the overall match of available data, it is equally or 
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even more important that the history-matched model be able 
to predict reliably the uncertainty (from a statistical point of 
view) in predictions due to the fact that a certain amount of 
error (i.e., modeling and measurement errors, etc) will 
always be introduced into the estimated parameters from the 
history-matching process.  

Statistical confidence intervals are known as a useful tool to 
give a quantitative evaluation of model discrimination and 
assessment of uncertainty in the estimated parameters. In 
general, the larger the confidence interval, the higher the 
uncertainty in the estimated model parameters. 

There is a relationship between the confidence intervals and 
the RMS. This relationship could be complicated in the 
models having large number of model parameters and when 
the parameters show correlation among them. One may 
expect the uncertainty as reflected by the confidence 
intervals for some parameter estimates to increase with the 
increasing complexity of a model, while the value of RMS 
improves. However, as long as the lumped model selected is 
appropriate and there are sufficient observed data available 
to support the model, all parameters should have 
“acceptable” confidence interval ranges and the RMS value 
should be close to the standard deviation of measurement 
errors in observed pressure data. Then, one can accept the 
model. Otherwise, one rejects the model because confidence 
intervals do not support the model from a statistical point of 
view. In short, the best fitting lumped model is the one 
providing not only the smallest possible acceptable 
confidence intervals for all parameters but also the smallest 
possible RMS value among the lumped models used for 
history matching (Onur and Tureyen, 2006). 

4. PREDICTION OF FUTURE PERFORMANCE 

The ultimate goal in any geothermal reservoir study is to 
predict future performance and even more important to 
predict the uncertainty in future predictions under different 
management options. This is necessary to determine the 
production/reinjection practices that will provide sustainable 
exploitation of the geothermal system in consideration. 
Uncertainty in all future predictions of pressure changes is 
inherent due to (i) measurement errors or noise in observed 
data, (ii) modeling errors, (iii) span of the available observed 
data (pressure change data and production history), and (iv) 
nonlinear relationship between model parameters and 
observed response. 

It is very important to propagate these uncertainties 
(mentioned above) on the future performance predictions to 
provide sustainable production of geothermal energy from 
the system. In this study, to incorporate uncertainties both in 
the model and observed data to future performance 
predictions the Randomized Likelihood Method (RML) is 
performed.  

This method has been shown to be quite efficient for the 
assessment of uncertainty in performance predictions for 
nonlinear problems. Onur and Tureyen (2006) have shown 
its detailed application regarding lumped parameter 
modeling on synthetic examples. 

5. FIELD APPLICATION:HOFSSTADIR FIELD 

The Hofsstadir Geothermal Field, located in Iceland 
discussed in this paper is a typical liquid-dominated low-
temperature field. The hot water from Hofsstadir geothermal 
field is mainly used for district heating system.  

Two main feed zones are determined from results of cutting 
analysis and well logs, one is located at depth of 819m and 
other is at about 171-175m. The water temperature is 
between 86-87oC. 

In 1996, a production well, HO-01, was drilled to a depth of 
855 m. The average yearly production of the single 
production well (HO-01) since that time has been of the 
order of 18 kg/s. Since a continuous water level drawdown 
has been observed in the field, the reinjection was started in 
early 2007 by injecting the return water from heating system 
into reinjection well HO-02. 

The Hofsstadir geothermal field is discussed in literature by 
Gaoxuan (2008) and more recently by Axelsson et al. 
(2010). Axelsson (2010) used this field data to simulate the 
pressure response of the field and to estimate its production 
capacity. 

5.1 Available data of the field 

A continuous water level record (about 11 years) was 
available from HO-01. In addition to this, the production 
rate was also monitored. Unfortunately, the reinjection rate 
was not monitored properly during the first four months of 
reinjection started. Reinjection is started on 22.04.2007 and 
reinjection flow rate have been recorded since 29.08.2007. 

All observed data available for this field application is 
obtained from Gaoxuan (2008) and Axelsson et al. (2010). 
For the period of 19.03.1997 - 14.12.2007, the production 
and reinjection rate history of the field and observed water 
level history of well HO-01 are presented in Figures 2 and 3, 
respectively. 
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Figure 2: Production and reinjection rate history of 
Hofsstadir Geothermal Field. 
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Figure 3: Observed water level in well HO-01. 
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For the field application discussed below, all observed data 
obtained from literature were given in terms of water levels. 
Since lumped parameter models used in this study are 
derived in terms of pressure, all the observed water level 
data first converted to pressure equivalence and then used in 
regression algorithm. Thus, all parameter estimates are given 
in pressure units. However, all graphical results are 
presented in terms of water levels to be consistent with the 
published field data. 

5.2 Modeling of Hofsstadir Geothermal Field by Lumped 
Parameter Models 

In modeling studies, one-, two- and three-tank lumped 
parameter models are performed and results are compared 
with Axelsson et al. (2010) results. The RMS value for the 
match and 95% confidence intervals for the model 
parameters are used to determine the best appropriate model. 
Firstly, the flow rate and water level data until reinjection 
started (period of 19.03.1997-22.04.2007) are used in 
modeling studies. Then whole data (period of 19.03.1997-
14.12.2007) are used with some assumptions for the first 
four months of reinjection data that are missing. 

5.2.1 Modeling results for the period of 19.03.1997-
22.04.2007 

The modeling results of one-tank, two-tank open/closed, and 
three-tank open/closed models for the period of 19.03.1997-
22.04.2007 are shown in Figures 4, 5, and 6, respectively. 

Axelsson et al. (2010) described 3-tank closed model as a 
pessimistic model. Therefore, Axelsson’s match for 3-tank 
closed model is compared with our 3-tank closed model 
result. Axelsson’s match and our match look almost 
identical (Figure 6). 

Next, nonlinear regression analysis based on 1-, 2- and 3-
tank models are performed to estimate the model 
parameters. The best fit was obtained with the parameters 
given in Table 1. Here and throughout, the numbers given in 
parentheses represent the 95% confidence interval for the 
relevant parameters.  

A comparison of the results given in Table 1 and Figs. 4, 5 
and 6 indicates that the RMS value for 1-tank model (0.921 
bar) is the highest for all the models tried. A higher RMS 
value is the result of a greater deviation between the model 
and observed water level data. Therefore, 1-tank model is 
rejected because its RMS value is larger than that of other 
models tried, although it has acceptable confidence intervals 
for the parameters. 

Based on the definition an estimate of a parameter is 
acceptable if its confidence interval range is less than 95% 
of the estimated value itself, all the confidence intervals 
computed for all the parameters for 2-tank open/closed and 
3-tank open/closed models are acceptable (Table 1). 
Therefore, the RMS values will probably be the 
discriminating measure for the best model that represents the 
actual system. Since the 3-tank open model has the smallest 
RMS value (0.292 bar), it can be stated that 3-tank open 
model is the best appropriate model to represent the 
Hofsstadir geothermal field. 
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Figure 4: Simulation result of 1-tank open model. 
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Figure 6: Simulation results of 3-tank models and 
Axelsson result for 3-tank closed model. 

5.2.2 Modeling results for the period of 19.03.1997-
14.12.2007 

As it is mentioned above, the reinjection rate was not 
monitored properly during the first four months of 
reinjection started (22.04.2007-29.08.2007). Therefore, 
some modeling studies are performed to figure out the 
missing reinjection data. As a result of these modeling 
studies, the best match between the observed and simulated 
water level data is obtained for the cases of; 

Case 1: reinjection rate is fixed at 7.74 kg/s (≈ 8l/s), 
Case 2: reinjection is varied as 40% of the production rate, 

during the period of reinjection data (22.04.2007-
29.08.2007, Figure 7). The 3-tank open model is performed 
for the history matching purpose. The best parameters 
obtained are given in Table 2 and the history matching is 
plotted in Figure 8. 

 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 

 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 

 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 



5 
New Zealand Geothermal Workshop 2011 Proceedings 

21 – 23 November 2011 
Auckland,  New Zealand 

0

20

40

60

80

100

120

140

160

W
at

er
  l

ev
el

, 
m

Time, year

Observed Water Level

Inj. Flowrate=7.74 kg/s (= 8 l/s)

Inj. Flowrate=40% of production rate

Table 1: Parameters of the best fitting lumped parameters (19.03.1997-22.04.2007). 

 1-Tank 2-Tank Closed 2-Tank Open 3-Tank Closed 3-Tank Open 

a2 , kg/bar-s -- -- -- -- 
2.279         

(±0.107) 

a2 , kg/bar -- -- -- 
1.02x109 

(±1.42x108) 
2.10x108 

(±1.93x107) 

a1 (or a ), kg/bar-s -- -- 
2.029 

(±0.034) 
2.767      

(±0.167) 
6.683          

(±0.812) 

a1 (or a ), kg/bar -- 
6.45x108

(±2.41x107) 
1.89x108 

(±7.60x106) 
1.42x108

(±1.10x107) 
5.19x107 

(±1.31x107) 

r , kg/bar-s 
1.676 

(±0.025) 
3.137  

(±0.092) 
6.047 

(±0.215) 
6.764     

(±0.316) 
10.496        

(±1.825) 

r ,kg/bar 
8.43x107 

(±4.28x106) 
3.17x107

(±1.85x106) 
1.36x107

(±1.10x106) 
1.19x107

(±1.18x106) 
6.34x106 

(±1.85x106) 

RMS, bar 0.921 0.564 0.315 0.297 0.292 

 

 

 

 

 

 

 

 

 

 

Figure 7: Rate history used in modeling. 

 

 

 

 

 

 

 

 

 

Figure 8: Simulation results based on the assumption 
that the reinjection rate is fixed at a constant 
value and the reinjection is varied as 
proportional to production rate. 

 

 

 

 

 

Table 2: Parameters of the best fitting lumped 
parameters (19.03.1997-14.12.2007). 

 3-Tank Open 
 Case 1 Case 2 

a2 , kg/bar-s 
2.313         

(±0.101) 
2.286         

(±0.009) 

a2 , kg/bar 
2.12x108 

(±1.82x107) 
2.07x108

(±1.55x107) 

a1 (or a ), kg/bar-s 
6.518          

(±0.691) 
6.809          

(±0.707) 

a1 (or a ), kg/bar 
4.79x107 

(±1.08x107) 
3.99x107 

(±1.02x107) 

r , kg/bar-s 
10.856        

(±1.899) 
11.866        

(±2.629) 

r ,kg/bar 
6.61x106 

(±1.79x106) 
6.07x106 

(±1.93x106) 

RMS, bar 0.300 0.305 

 

Since, the smallest RMS value is obtained in Case 1, it can 
be stated that the best match is obtained in the case of 
reinjection fixed at a constant value of 7.74 kg/s (Table 2) 
for the period of missing reinjection. 

5.3 Future Performance Predictions of Hofsstadir 
Geothermal Field by RML 

Future performances of the Hofsstadir geothermal field are 
predicted by using 3-tank open model for the next 30 years. 
Three different production/reinjection scenarios are 
generated to predict the future performance: 

(I) Production rate is maintained as 19.34 kg/s (20 l/s) for 
the next 30 years without reinjection (Figure 9). 

(II) Production rate is maintained as 19.34 kg/s (20 l/s) for 
the next 30 years and 45% of production is injected in 
summer and 70% in winter period (Figure 10). 

(III) Production and reinjection rate used in Scenario II are 
increased by 5% each years for the next 30 years 
(Figure 11). 

The RML method has been performed on the 
production/reinjection rate data given in scenarios described 
above by using the 3-tank open model. For each model 100 
realizations are generated for each scenario and the results 
are compared. 

01/2007 12/2007 

0

10

20

30

40

R
at

e,
 k

g/
s

Time, year

Production Rate

Inj. Rate=40% of prod. rate

Inj. Rate=7.74 kg/s (8l/s)



 
New Zealand Geothermal Workshop 2011 Proceedings 

21 - 23 November 2011 
Auckland, New Zealand 

0

40

80

120

160

W
at

er
  l

ev
el

, 
m

Time, year

Observed Water Level

Realizations by RML-Scenario I

0

5

10

15

20

25

30

35

40

R
at

e,
 k

g/
s

Time, year

Production Rate

Reinjection Rate

0

5

10

15

20

25

30

35

40

R
at

e,
 k

g/
s

Time, year

Production Rate

Reinjection Rate

0

40

80

120

160

W
at

er
  l

ev
el

, 
m

Time, year

Observed Water Level

Realizations by RML-Scenario II

0

40

80

120

160

200

240

280

W
at

er
  l

ev
el

, 
m

Time, year

Observed Water Level

Realizations by RML-Scenario III

0

10

20

30

40

50

60

70

80

90

R
at

e,
 k

g/
s

Time, year

Production Rate

Reinjection Rate

The realizations of the observed data is obtained by adding 
random noise from a N(0,0.085264) distribution. Once the 
history matching is completed, future predictions are 
performed with the optimal model parameters for rate 
history given in Figs 9-11.  

Figures 12, 13 and 14 illustrate the history matching period 
and the future 30 year predictions for 3-tank open model for 
three different scenarios given above. 

 

 

 

 

 

 

 

 

 

Figure 9: Rate history for Scenario I. 

 

 

 

 

 

 

 

 

 

Figure 10: Rate history for Scenario II. 

 

 

 

 

 

 

 

 

 

Figure 11: Rate history for Scenario III. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Realizations of predicted water level 
generated by RML for Scenario I. 

 

 

 

 

 

 

 

 

 

Figure 13: Realizations of predicted water level 
generated by RML for Scenario II. 

 

 

 

 

 

 

 

 

 

Figure 14: Realizations of predicted water level 
generated by RML for Scenario III. 
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In the case of Scenario I (production rate is maintained as 
19.34 kg/s without reinjection), the water level is predicted 
in between 130m and 150m (Figure 12) at the end of 2037. 

For Scenario II (production rate is maintained as 19.34 kg/s 
and reinjection rate is 45% of production in summer and 
70% in winter) , the water level is predicted in between 55m 
and 70 m (Figure 13). 

In the case of that production/reinjection rates are increased 
by 5% in each year (Scenario III), the water level drops 
continuously for next 30 years. The maximum drawdown in 
water level is predicted in between 195 m and 255 m (Figure 
14). 

 

6. CONCLUSIONS 

On the basis of this study, the following specific conclusions 
can be stated: 

(i) The use of the RMS value for the fit and the 
confidence intervals for all model parameters are the 
important statistical measures to discriminate the best 
appropriate model to represent the field behavior.  

(ii) Due to its lowest RMS value the 3-tank open model 
seems to be the best appropriate model to represent the 
Hofsstadir geothermal field. 

(iii) The RML method is quite efficient method for the 
assessment of uncertainty in performance predictions 
for nonlinear problems. The main objective of this 
paper was to demonstrate RML application to a field 
data. The RML method has successfully been 
implemented to the Hofsstadir geothermal field data. 

(iv) The reinjection has a significant effect to maintain the 
pressure in the reservoir.  
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