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SUMMARY - Analysis of the production history in developed geothermal fields has been used 
extensively to forecast the future life of the reservoir.  Mature reservoirs such as Wairakei offer 
a unique opportunity to take a retrospective look at how well reservoir engineering methods 
have been able to predict the future.  In general, reservoir models have performed adequately at 
describing the bulk volume-pressure behaviour of reservoirs such as Wairakei, however there 
are other significant production behaviours such as thermal breakthrough from injection wells 
that have been almost impossible to predict.  These fracture-dominated phenomena can still be 
modelled, however may need a different approach.  The use of data mining procedures that 
allow the reservoir to reveal its own internal dependencies can provide very good indications of 
future behaviour, even for such events as thermal breakthrough.  This paper will describe well-
to-well correlation techniques based on nonparametric regression.  The techniques have been 
applied successfully to real field histories. 

1 INTRODUCTION

The task of reservoir engineering is essentially to forecast the future performance of a reservoir 
based on measurements of its past performance.  Later in the life of a development, it is possible 
to take a retrospective look at how validly the forecasts predicted the reservoir behaviour.  It 
may even be said that the reservoir models will achieve a perfect prediction, of the past, on the 
day the plant is closed. 

Modelling is conducted at a range of levels, from “whole field” models during the feasibility 
studies when a go/no-go decision must be made, to well or regional models later in the field life 
when specific strategies or operational modifications need to be evaluated.  In musing on the 
first 20 years of production at Wairakei, Bixley (1980) opined that reservoir modelling had not 
been of particularly great value in predicting the life of the reservoir, and that specific well-by-
well phenomena had often been a surprise when they occurred.  Similar surprises still occur 
today.

10 years into the life of Wairakei, Bolton (1970) presented a rather famous view of the reservoir 
performance, a representation of which is replicated here in Figure 1.  This particular diagram 
was the focus of reservoir modellers throughout the 1970s, and the questions of whether 
Wairakei was in imminent danger of demise and/or what could be done about it were the cause 
of much wringing of hands in the geothermal community.  As observed later by Bixley (1980), 
few of the models told the field operators what they wanted to know, at the time they wanted to 
know it.  Fortunately, the demise of Wairakei was postponed at least 30 years further into the 
future, and has yet to occur (nor do we yet know when it will). 
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Figure 1: Early production history at Wairakei, from Bolton (1970). 

One of the philosophical underpinnings of reservoir modelling is the mental step of the creation 
of the model.  Herein lies a rich opportunity for misunderstanding, bias and wishful thinking.  
Sometimes the old adage “what’s the answer?” – “what would you like it to be?” creeps into the 
process.  Many forms of reservoir modelling, such as simulation, decline curve analysis, tracer 
test analysis, well test analysis, material balance analysis, etc., have a central set of physical 
assumptions explicitly or implicitly included into their underlying models.  The predictive 
effectiveness of the model will be constrained by the accuracy of its assumptions, even if the 
data are perfectly accurate and even if the model match is precise.  One of the principal reasons 
geothermal reservoir modelling is so difficult is that the reservoir behaviour is usually governed 
in important ways by the location and properties of fractures, neither of which is ever known 
clearly.

A different philosophical approach is to let the data define the model.  Individual wells and their 
hydraulic neighbours interact throughout their connecting fracture network, in ways that are 
characteristic of those fractures.  Relating the interwell connectivity provides a useful modelling 
tool for the understanding of at least regional behaviour of the reservoir.  Often such 
connectivity interpretations use models and are again constrained by model assumptions, 
however it is also possible to use nonparametric approaches, as will be described here, to avoid 
the definition of a model (or more correctly, to let the data define the model). 

It has been common to analyse the movement of fluids in the reservoir by monitoring the 
production of chloride, which changes as a function of time because the reinjected water is 
elevated in chloride concentration due to the separation of steam.  A classic paper that 
illuminated this approach was Harper and Jordan (1985), which quantified the rate of return of 
reinjection water at Palinpinon-I field by analysing chloride (among other variables). 

In 1991, Urbino (Macario) and Horne used a correlation method to relate the chloride histories 
of production and injection wells, for example the well pair shown in Figure 2.  This figure 
reveals a clear relationship between chloride injected at one location and the chloride produced 
at another.  One of the variations of the approach was to subtract a linear-with-time trend (a 
model) from the data, which was an attempt to decipher short-term fluctuations from well 
histories that show a continuously increasing chloride concentration.  The correlation approach 
was expanded further by Sullera and Horne (2001), who used wavelet decomposition to assist 
the illumination of the chloride fluctuations at different time resolutions, as seen in Figure 3.
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A distinction between the approaches of Macario and Sullera is that Macario assumed an 
underlying correlation model (which was a simple algebraic sum) whereas Sullera’s wavelet 
decomposition reveals well-to-well relationships directly from the data.  For example the gray 
boxes in Figure 3 show clear relationships between OK-7D production and PN-6RD injection in 
the later part of the diagram, and between OK-7D production and PN-9RD injection in the 
earlier part of the diagram.  A model was still needed to quantify the degree of well-to-well 
connectivity based on these observations. 
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Figure 2:  Example data from Palinpinon-I, showing chloride production in well OK-7 and injection rate of well PN-9RD, from Sullera and 
Horne (2001). 

These approaches were reasonably successful, and were shown to be qualitatively consistent 
with the results of tracer tests. Nonetheless, the philosophical difficulty with this style of 
analysis is the requirement to make assumptions of the mathematical form of the model (for 
example that background chloride increased linearly with time).  The reservoir physics may 
result in the relationships being something other than simple forms.  This is a weakness of the 
approach.
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Figure 3:  (a) Level 3 detail of OK-7D chloride - light line; level 3 detail of PN-6RD injection rate - dark line.  (b) Level 3 detail of OK-7D 
chloride - light line; level 3 detail of PN-9RD injection rate - dark line.  (c) PN-6RD injection rate.  (d) PN-9RD injection rate. From Sullera and 
Horne (2001). 
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In an attempt to address this weakness, Horne and Szucs (2006) investigated the use of 
nonparametric regression.  The fundamental idea of nonparametric regression is to match the 
data without making assumptions about the underlying form of the relationships.  In fact, a 
major advantage of the approach is that the nature of the relationship is revealed in the process.  
The magnitude of the connectivities can also be estimated, and these values are then useful for 
reinjection analysis and design. 

2 NONPARAMETRIC REGRESSION – ACE 

The ACE (alternating conditional expectation) method was presented by Breiman and Friedman 
(1985) as a nonparametric approach to modelling data without knowing the model in advance.   

The ACE method works by inferring a decomposition of the signal in the following form: 
p
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where e* is the remaining error not captured by the functional form, and which is assumed to be 
normally distributed.  It is important to note that g(y) and f(x) are not known in advance but are 
extracted as a result of the algorithm. 

It should be noted that the ACE method can be applied with more than one independent x
variable.  Hence it is a very suitable way of investigating the relationships between outputs (for 
example, chloride production at a well) and inputs (for example, injection rates at many other 
wells).  Horne and Szucs (2006) applied the ACE approach to analyse chloride production 
histories from Palinpinon field in the Philippines, and showed good success in predicting the 
independently measured tracer returns, as will be shown here. 

3 APPLICATION TO PALINPINON-I CHLORIDE DATA 

Having introduced the ACE approach, it is clear that this method offers advantages over the 
inherently “parametric” approaches used earlier by Urbino (Macario) and Horne (1991) and 
Sullera and Horne (2001).  It is no longer necessary to make any explicit or implicit 
assumptions about how the input and out variables depend on each other.  To compare the 
approaches, Horne and Szucs (2006) reexamined the same data set used in these two earlier 
studies, namely the production and injection histories of Palinpinon-I field over the period 
between 1983 and 1989. 

Typical results are shown for well OK-7 in Figures 4 and 5.  Figure 4 can be compared to the 
original data shown in Figure 2.  Looking first at Figure 4, which has been simplified by 
including only the functions due to time (red line) and due to well PN-9RD (pink squares), it 
can be seen that the ACE procedure extracts a simpler picture of the relationships between input 
and output signals.  Importantly, the time dependence is not linear, as was assumed in the earlier 
studies.  The details of the PN-9RD function are somewhat deceptive, as the well was not 
injecting for much of the time.  Hence it is the magnitude of the positive values of the transform 
function that indicate the degree of connection between this well and OK-7.  Figure 5 adds the 
transform functions for all of the injection wells – the relative sizes of their positive components 
shows their connectivity to well OK-7.   
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Figure 4:  Extracted model functions from OK-7 data (thin line), showing dependence on time (red line), and dependence on injection into PN-
9RD (pink squares).  From Horne and Szucs (2006). 
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Figure 5:  Extracted model functions from OK-7 data, showing dependence on time, and dependence on injection into all injection wells.  From 
Horne and Szucs (2006). 
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Figure 6:  Summary of “connection indices” based on ACE function magnitudes.  Total length of bars indicate impact on well of reinjection
returns.  Rightmost element represents time dependence.  From Horne and Szucs (2006). 

Based on the transform functions shown in Figure 5, we can compute a “connection index” for 
well-to-well connectivity.  Horne and Szucs (2006) experimented with different ways to do this, 
and eventually decided on an index defined as: 
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These indices are illustrated graphically in Figure 6.  Figure 6 includes the overall dependence 
on time, to reveal the size of the impact of reinjection at each production well (the total length 
of the bar).  Individual bar segments in Figure 6 indicate the strength of the connections from 
specific injection wells.  These same connection strengths are shown in Figure 7, allowing a 
quick visualization of the largest connections – the ones most likely to result in thermal 
breakthrough.
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Figure 7:  Summary of “connection indices” based on ACE functions, showing magnitude of well to well connections.  From Horne and Szucs 
(2006). 

4 COMPARISONS TO TRACER TESTS 

We can compute these connection indices using ACE, but do they have physical meaning 
compared to actual fluid movements in the reservoir?  One way this could be investigated was 
by comparing the indices to well-to-well connectivity measurements obtained by other 
approaches.  Fortunately, a series of tracer tests conducted at Palinpinon-I allowed Horne and 
Szucs (2006) to make such a comparison. 

During the early life of the field, PNOC-EDC conducted a number of tracer test campaigns at 
Palinpinon, as described by Urbino, Zaide, Malate, and Bueza (1986).  These tracer test records 
showed the transit time of the tracers from one well to another, as well as the total fraction of 
the tracer recovered.  Horne and Szucs (2006) used the reciprocal of the transit time as an 
indicator of the connectivity, based on the premise that a fast (short) transit time represents a 
strong connection. 

Figure 8 shows the results of the tracer test with injection into PN-1RD, compared to the 
connectivity from well PN-1RD estimated in the ACE analysis.  The results are very consistent. 
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Figure 8: Comparison of connection indices from injector PN-1RD, compared to results of tracer test into PN-1RD (reciprocal of arrival time).  
From Horne and Szucs (2006). 

5 CONCLUSION 

The application of the nonparametric ACE method to Palinpinon-I data of production well 
chloride as a function of reinjection well injection rate showed that the well-to-well connectivity 
indices computed in this way are consistent with tracer test results.  The advantage of inferring 
well connectivity by this approach is that it can be done with routinely measured production and 
geochemical data and does not require the expense and operational disruption that would be 
needed with a tracer test.  Attaining an understanding of local connections between wells is very 
useful in designing a strategy for reinjection, and predicting where thermal breakthroughs are 
likely to occur.  No modelling is involved. 

The message from these studies is that sometimes we need to let the reservoir speak for itself.  
Reservoir engineers and geoscientists will always require deep insight into the physical and 
chemical mechanisms taking place underground, and sometimes it is a mistake to assume that 
this insight has been embedded invisibly inside an intricate model. 

Geothermal energy production is effectively a mining exercise – we mine the heat energy of the 
earth, while simultaneously mining the data it provides to understand how to produce that 
energy as efficiently and effectively as possible. 
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