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SUMMARY – McKibbin (1989) began development of a mathematical model for hydrothermal 
eruptions.  Early work concentrated on modelling the underground process, while lately some attempts 
have been made to model the eruption jet and the flight and deposit of ejected material.  Conceptually, 
the model is that of a boiling and expanding two-phase fluid rising through porous rock near the ground 
surface, with a vertical high-speed jet, dominated volumetrically by the gas phase, ejecting rock particles 
that are then deposited on the ground near the eruption site.  Reported field observations of eruptions in 
progress and experimental results from a laboratory-sized model have confirmed the conceptual model.  
The quantitative models for all parts of the process are based on the fundamental conservation equations 
of motion and thermodynamics, using a continuum approximation for each of the components.  The three 
main zones of interest (underground flow, eruption jet and plume dispersion) may be connected to form 
an approximate, but complete, quantitative model of a hydrothermal eruption. 

 
1.  INTRODUCTION 
 
Hydrothermal eruptions occur in many geo-
thermal fields around the world.  Besides the rare 
reported witnessing of an eruption actually taking 
place, most evidence is based upon breccia 
deposits on the surface or subsurface formations 
that record historical eruptions. 
 
Hydrothermal eruptions are categorised as being 
natural or induced.  Natural eruptions include 
prehistoric and unexploited-field eruptions.  In 
New Zealand, prehistoric eruptions have occurred 
in many areas of the Taupo Volcanic Zone 
(TVZ).  Waimangu has more recently been an 
area of interest for large natural eruptions, the 
latest occurrence being in 1973.  Induced 
eruptions occur as a result of exploitation of 
geothermal fields.  These have taken place in the 
Tauhara and "Craters of the Moon" areas of the 
Wairakei Geothermal Field (Bixley & Browne, 
1988). 
 
Such eruptions are violent and can last from a 
matter of minutes to several hours.  Hydrothermal 
eruptions are distinct from geysers in that the 
former are non-cyclic in occurrence, take place 
without warning, and the ejected material is a 
slushy mixture of water and rock particles of all 
sizes.  These are lifted from the ground by a high-
speed jet of gas which is mostly steam, but which 
could contain non-condensible gases contained in 
the near-surface water.  Most of the material is 
directed vertically upwards from vents that can be 
from 5 m to 500 m in diameter; it is then 
deposited nearby. 
 
2.  MODELLING HISTORY 
 
The earliest attempt at modelling the mechanical 
processes of hydrothermal eruptions was made by 

McKibbin (1989).  Previous speculation as to the 
initiating event had been based around the idea of 
a small seismic motion that disturbed latently-
unstable conditions near the surface.  The causes 
of the instability were supposed to be one of three 
types: the first was formation of a steam cap due 
to a drop in groundwater level with increased 
steam-flow to the surface; the second was 
hydraulic fracturing and brecciation allowing 
non-condensible gases to decrease water boiling 
pressures; the third was a reduction in lithostatic 
pressure caused by lifting of overburden material. 
 
A discussion of these proposed mechanisms was 
given in McKibbin (1989); in particular, the type 
of eruptions classified as "hydrothermal" would 
preclude any large-scale "blast".  The process is 
started near the surface; the greatest effect is 
when the fluid there is liquid, as that provides the 
largest potential for expansion and high fluid 
ejection speeds.  A steam cap provides small 
expansion potential; that and the presence of non-
condensible gases was explored in McKibbin 
(1996), where it was found that very large over-
pressures of a gas such as CO2 would be required 
to have any significant effect over that of pure 
water.  Further, the potential of deeper 
overburden-lifting pore pressures to produce 
significant upward movement of large ground 
masses would be reduced by any escape of fluid 
which would immediately reduce the lifting force. 
 
Conclusions from these and other considerations 
have led to the view that a hydrothermal eruption 
proceeds due to boiling of near-surface fluid.  The 
expansion potential of such water can be 
expressed in terms of the "specific volume ratio" 
which compares the density of the fluid in the 
ground with that of the same mass when 
expanded to ambient atmospheric conditions 
(McKibbin, 1990; 1996).  The greatest values are 



for liquid groundwater, while any steam fraction 
there considerably reduces the potential.  The 
concept is based on mining by steam lifting, 
rather than by sudden explosions such as those 
caused by phreatomagmatic phenomena. 
 
Observations of laboratory-scale eruptions were 
reported by Smith (2000) and Smith & McKibbin 
(2003); these provided qualitative confirmation of 
the conceptual model of eruptions beginning at 
the surface and progressing downwards into the 
matrix. 
 
The lift caused by the motion of the boiling fluid 
escaping upwards to the atmosphere has to exceed 
the weight of rock particles at the ground surface 
as well as any cohesive forces that are binding 
them together.  The latter were taken account of 
by McKibbin (1989, 1990) and Bercich & 
McKibbin (1992, 1993).  An appropriate model 
for the movement of the boiling fluid was the 
subject of extensive investigation; this was 
reported by Smith & McKibbin (1997, 1998, 
1999, 2000, 2003) and Smith (2000).  The rapid 
process and high speed of the upwardly-moving 
fluid leads to the conclusion that there is little 
time for thermodynamic equilibration between the 
fluid and the rock matrix, or for dynamic 
separation of the two fluid phases.  At most, the 
fluid state is controlled by the condition that the 
fluid is at saturated conditions and it flows as a 
two-phase boiling mixture, with negligible heat 
transfer between it and the solid matrix (i.e. 
adiabatic flow). 
 
In the earliest modelling attempts, when the flow 
above the ground was less well-understood, it was 
supposed that conditions there were akin to a 
fluidized bed.  Examination of reports of the 
(rare) field observations and photographs, as well 
as some of the volcanological literature, led to the 
concept that the rock particles were mere 
"passengers" within the rising jet of gas-
dominated fluid, as indeed were the water 
droplets, and that the early model was incorrect.  
The rock particles and droplets form an extremely 
small volume fraction of the jet.  While the water 
droplet mass may increase by condensation as the 
hot fluid mixture entrains cold air, the liquid 
phase still forms a very small volumetric fraction 
in the plume above the ground. 
 
Investigations of the form of the jet based on 
considerations of these concepts were reported in 
Rynhart et al. (2000), McKibbin et al. (2005) and 
McKibbin & Smith (2006).  The subsequent 
dispersion and deposition of the ejecta have been 
based on recently-developed models for particle 
transport by the atmosphere (McKibbin et al., 
2005; McKibbin, 2006).  These models allow for 
agglomeration of wet particles, but do not allow 
specifically for evaporation of the water after 
release from the eruption jet.  Models 
incorporating the latter phenomenon are under 

current investigation by the first author and other 
colleagues. 
 
Quiescent conditions after an eruption has taken 
place were considered by Smith (2000), who 
modelled the subsequent groundwater flow near 
the event as the system "recovered" to a new pre-
eruptive state.  The almost incompressible liquid 
groundwater flow is controlled immediately by 
surrounding pressures, with conductive and/or 
convective heating following much more slowly. 
 
This is a summary of the mathematical models 
used for the various parts of hydrothermal 
eruptions, using assumptions and simplifications 
as outlined above.  Space precludes full 
mathematical descriptions of the various stages.  
The reader may find these together in McKibbin 
(2008) or severally in the references below. 
 
3.  BELOW GROUND 
 
The main driving force of hydrothermal eruptions 
is supposed to be due to an increased pressure 
gradient immediately below the surface of the 
ground arising from the fluid near the surface 
being suddenly exposed to atmospheric 
conditions.  In order for a particle of rock at the 
surface to be moved, the equilibrium of forces 
that govern the static particle rock matrix must be 
upset. 
 
In summary, it is supposed that hot fluid, initially 
at rest in the rock matrix, begins to escape to the 
atmospheric conditions at the surface, flashing 
(boiling) and increasing in specific volume as the 
pressure decreases.  The increasing speed of the 
two-phase fluid as it nears the surface provides 
lift to the rock particles.  A hydrothermal eruption 
can take place when the fluid speed is great 
enough to eject the particles, i.e., the 
hydrodynamic lift is large enough to overcome 
the effective weight and cohesive stresses of the 
rock particles.  The eroding surface and the 
flashing front in the formation are both 
considered to be moving boundaries. 
 
Assumptions made in the model are as follows: 
• the principles of conservation of mass, 

momentum and energy hold; 
• the fluid below the flashing zone is 

motionless; 
• the flowing fluid is a homogeneous mixture of 

liquid water and steam – it is assumed that, 
because boiling occurs very quickly, the two 
phases flow at the same speed; 

• the moving fluid is at saturated (boiling) 
conditions; 

• the process is quasi-steady, i.e., the eruption 
has already been initiated and is currently in 
progress, and is modelled as being, albeit for 
short time periods, nearly steady; 



• the fluid lifts the rock particles at the surface, 
where conditions are atmospheric (p = 1 bar 
abs.); 

• thermal conduction is ignored, i.e., there is 
negligible heat transfer between the fluid and 
rock in the flashing zone – the process is 
modelled as being adiabatic. 

 
There are two moving boundaries to the flashing 
zone.  The lower boundary, termed the "flashing 
front", propagates downward into the stationary 
fluid in the rock matrix at speed V.  The boundary 
formed by the eroding ground surface above also 
propagates downward; its speed is Ver.  The early 
models assumed that Ver = V but this is not 
justifiable, nor is it necessary. 
 
The flashing front moves downward at speed V 
into a fluid-filled medium of porosity φ and 
permeability k where the fluid has liquid 
saturation Sld (Sl = volume fraction of liquid in 
the two-phase fluid), vapour saturation Svd = 1 – 
Sld, mixture density ρ

fd
, and mixture specific 

enthalpy h
fd

, all of which may vary with depth.  
The average fluid particle speed (pore-velocity) is 
V

f
.  Subcripts f, r, l and v denote fluid, rock, 

liquid water and vapour (water gas) respectively.  
Parameter values pertaining to conditions at depth 
have a "d" subscript whilst those associated with 
conditions at the top (eroding) surface, where p = 
1 bar abs., have a "t" subscript. 
 
The technique is to refer quantities to a frame of 
reference that moves downward at the same speed 
V as the flashing front (see Figure 1).  Because 
the motion is assumed to be quasi-steady, the 
frame of reference can be treated as inertial for 

the short periods of time considered.  Within this 
frame, the flow is assumed steady. 
 
Conservation of mass 
The flashing front moves into a motionless fluid 
in the pores of the medium.  The (constant) fluid 
mass flowrate per unit area mf through this region 
and the flashing zone, relative to the moving 
frame of axes [see Figure 1(b)], is: 
 
mf = φρ f (V + Vf )  (1) 
 
but at the "flashing front", Vf = 0, and hence: 
 
mf = φρ f (V + Vf ) = φρ fdV  (2) 
 
The fluid mixture density is given by fluid 
saturation-weighted combinations of the phase 
quantities. 
 
Conservation of momentum 
The fluid volume flowrate per unit area relative to 
the fixed frame of axes is given by using the 
simple Darcy's Law for the motion of the 
homogeneous two-phase fluid mixture: 
 

w
f
Ź=ŹφVf Ź=Ź−

k

μ
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dp
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f
g

⎛
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 (3) 

 
where the dynamic viscosity is here taken to be 

, but other correlations 
are possible. 
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Figure 1.  Schematic of flows: (a) relative to fixed axes;  (b) relative to a frame of reference moving downwards with flashing front. 
 



Lift condition Assuming that the boiling fluid is moving as a 
homogeneous two-phase mixture, the 
corresponding liquid and vapour mass flowrates 
per unit area relative to the moving axes are 

   
 

and the total mass flow per unit area is 
.  After use of 

Equation (2), Equation (3) can be rearranged to 
give an expression for the local pressure gradient: 

The condition that a rock particle is removed from 
the ground surface is related to the dynamic lift at 
the surface, given in terms of the relative speed of 
the fluid with respect to the rock (see McKibbin, 
1989).  The criterion that L

ml = Sl ρl φ(V + Vf ),    mv = (1− Sl )ρvφ(V + Vf )
t, the dynamic lift 

there, exceeds the effective weight of the rock and 
cohesion (i.e. the net lift is positive) is given by 
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From Equation (2) it can also be deduced, by 
applying the surface boundary conditions, that 
 

  

V =Ź
Vft

ρ fd

ρ ft

− 1
Ź=Ź

Vft

v ft

v fd

− 1
 (5) 

The most important parameter of interest is the 
fluid particle velocity at the ground surface. This 
is found by considering the lift condition (10).  
Given the temperature of the fluid at the flashing 
front, the bottom boundary conditions are 
determined using correlations for the pressure (at 
saturated conditions), densities, and enthalpies.  
The surface is assumed to be at atmospheric 
pressure.  Equation (6) provides the volume 
expansion factor vrat and the flashing front speed 
V may be found from Equation (5).  Results 
(McKibbin, 1990) show that, for a reservoir 
temperature above 100 ˚C, the maximum fluid 
expansion occurs when S

 
where v = 1/ρ is the specific volume.  Equation 
(5) relates the flashing front speed to the speed 
and density of the fluid as it reaches the surface.  
The overall volume expansion factor for the 
flashing fluid as it rises from the bottom to the 
surface is given by 

ld = 1; the flashing front 
speed also appears smallest for Sld

 

  
vrat =Ź

v ft

v fd

Ź=Ź
ρ fd

ρ ft

 (6) 

 = 1.  One of 
the major benefits of this procedure was provision 
of an estimate of the thickness of the flashing 
zone.  Some interesting qualitative information 
resulted for particular experimental cases.  The 
reader is referred to McKibbin (1990) for these 
results. 
 

 Fluid properties 
Conservation of energy 
The vertical energy flux per unit area associated 
with the fluid flow, relative to the fixed frame of 
axes, is given by , where 

  qe
= m

l
h

l
+ m

v
h

v
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h
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Correlations for the fluid thermodynamic 
properties for near sub-surface conditions can be 
found in Smith (2000).  Since the temperatures of 
the fluid which is involved in an eruption are 
unlikely to exceed 150 ˚C, these are accurate 
enough for the modelling required here. 
 
4.  THE MOTION OF THE UPPER 
BOUNDARY  
 is the so-called "flowing enthalpy" of the fluid.  

Boundary conditions at the flashing front give 
.  Because q

Bercich & McKibbin (1992, 1993) describe the 
process for finding the downward speed of the 
erosion surface.  Given conditions at the flashing 
front, the pressure gradient equation (4) is 
integrated upwards until the lift criterion is 
satisfied. 

 qe
= m

f
h

fd
 is conserved and mfe

 is 
constant, h

f
 = h

fd
 and the fluid flow is isenthalpic; 

the constant value of the specific enthalpy is 
given by that at the flashing front.  
Rearrangement of Equation (7) gives the liquid 
saturation in terms of the specific enthalpies and 
densities of the phases: 

 
In detail, given a value of V and a state point (T, 
psat(T)) in the flow, evaluation of the 
thermodynamic properties from correlations 
allows calculation of S
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Equation of state 
The fluid is assumed to be at saturated (boiling) 
conditions and the equation of state is: 

  p = p
sat

(T )  (9) 

l, μf and ρf and hence the 
local pressure gradient.  Integration of Equation 
(4) from the flashing front upwards allows testing 
of the lift condition (10) at the point where p = 1 
bar abs. (the ground surface).  The value of 
flashing front speed V can be adjusted until the 
lift condition is exceeded; this will then give the 
flashing zone thickness. 
 



A small increment in time allows the new position 
of the flashing front, and hence the 
thermodynamic conditions there, to be determined 
from the initial temperature and saturation 
profiles underground.  The process is repeated; 
the positions of the flashing front and erosion 
surface are then found as functions of time. 
 
The above analysis was initially based on a one-
dimensional model, where the flashing and 
erosion surfaces were assumed to be horizontal 
planes.  More recent work by Fullard (2007) has 
extended this to a 2-D configuration, where the 
eruption vent is assumed to be circular pit. 
 
5.  THE ERUPTION JET 
 
A by-product of the above method is the time-
dependent structure of the fluid stream that issues 
from the ground, as well as the volume erosion 
rate.  The first of these may be used as surface 
boundary conditions for the fluid in the eruption 
jet.  Given a particle size-distribution in the 
ground, the volume erosion rate allows the 
(uncoupled) problem of particle ejection to be 
calculated.  This part of the process was 
formulated and described by McKibbin & Smith 
(2006) and McKibbin (2006). 
 
The main features of this part of the model are the 
initial composition and speed of the emerging 
two-phase fluid stream and the entrainment of air 
into the jet.  Conservation laws allow construction 
of a simple one-dimensional mathematical model 
for the jet, which is assumed to be approximately 
circular.  It is also supposed that the pressure 
within the jet is close to atmospheric, with 
contributions of partial pressures from the 
entrained air and the water vapour.  As the jet 
rises, it cools and some of the vapour condenses 
to satisfy the thermodynamic requirement of 
saturated conditions for the water component.  
Calculations show that the jet increases in 
diameter until it becomes infinitely wide at a 
certain height, the top of the jet, where the 
upward velocity becomes zero; the speed of the 
jet decreases approximately linearly with height 
above the ground.  As the speed decreases with 
elevation, so too does its ability to lift the 
entrained particles, which are then released to fall 
and be deposited on the ground. 
 
Because the jet slows with increasing elevation, 
any particle that leaves the surface must have 
been restrained from doing so by some cohesive 
force.  If not, the lift criterion will not be 
exceeded immediately above the ground and the 
particle will not be elevated further.  While small 
particles that are initially bound by cohesion 
become detached and accelerate upwards until the 
jet can not longer support them, larger clasts that 
are not cohesively attached, or which do not shed 
smaller fragments, might not leave the erosion 
surface but just remain close the ground.  They 

would descend into the eruption crater as smaller 
particles are swept upwards past them – the 
eruption therefore may act as a size-sorting 
mechanism for the particles. 
 
The geometry of the flow models is that of a 
column of circular horizontal cross-section with a 
vertical axis (see Figure 2).  The vertical fluxes 
are based on the average vertical speed of the 
fluid.  Where there are multiple components 
(liquid water + water vapour + air) it is assumed 
that their speeds are the same, i.e. they are well-
mixed. 

        
 

Figure 2: Diagram illustrating the geometry of the flow. 
 
The model is of a moving column (jet) of a steam-
dominated mixture of water vapour and liquid 
water droplets that issues from the ground from a 
circular region of radius r0.  As the fluid rises 
rises, it entrains air from the surrounding 
atmosphere, at ambient temperature Ta. 
 
The resulting jet rises vertically and grows in 
radius, r(z), where r(0) = r0.  It is assumed that the 
flow is at steady-state for a short period of time.  
As air is entrained into the flow, the total vertical 
mass flux M(z) increases from M(0) = M0 to M(z) 
> M0 due to air entrainment.  The total water flow 
(liquid + vapour) remains constant (Mw) while the 
air flow (Ma) increases with z.  The total mass 
flow is M = Mw + Ma. 
 
Mass conservation 
Conservation of mass requires that the vertical 
rate of mass increase in the column is equal to the 
mass entrainment rate around the column surface: 
 

dM

dz
=

dM
a

dz
= 2πrρ

atm
E(w)  (11) 

 
where the upwards mass flux within the column is 
M = M

l
+ M

v
+ M

a
= ρπr 2w .  Here, w(z) is the 

mean vertical speed in the flow, ρ (z) is the 
density of the fluid flow given by ρ = ρl + ρ  + ρv a  
with each gas component contributing a partial 
pressure to the total pressure patm, the ambient 
pressure; it is assumed that the pressure within the 
column is the same as that of the surrounding air.  



E(w) is the volume entrainment rate per unit 
surface area of the column, modelled here by 

, with constant dimension-
less parameters k and n.  
  E(w) = kw w / w0( n)
 
Momentum conservation 
The surrounding air that is being entrained has 
zero vertical momentum initially.  The momentum 
of the flow is reduced by gravitation and by the 
effective inertia of the entrained gas; since it is 
assumed that the pressure in the column is 
uniform and the same as the surrounding 
atmosphere, there is no pressure work. 
 
Energy conservation 
The energy equation takes into account changes 
in the kinetic and internal energy of the flow 
components. 
 
Results 
Numerical integration of the resulting three 
coupled ordinary differential equations gives 
results with the following general features: the 
radius of the column increases with height as the 
flux increases due to entrainment, while the jet 
speed decreases due to gravitational and inertial 
slowing; the radius diverges to an infinite value as 
the speed drops to zero.  For further details and 
discussion, see McKibbin & Smith (2006). 
 
6.  FLIGHT OF THE EJECTA 
 
In general, as discussed above, only small 
particles that have broken away from heavier 
clasts are able to be ejected by the emerging fluid 
stream.  Heavier particles remain at ground level, 
jostled by the lower parts of the jet.  The small 
particles are accelerated upwards until their 
weight equals the lift afforded by the decelerating 
column, when they are released into the 
surrounding air and are then moved by any cross-
flow (wind) near the jet.  The model for this part 
of the eruption is that of an advection-dispersion 
mechanism where the forces correspond to wind 
drag, gravitational settling and turbulence of the 
wind flow.  The particles are released at different 
levels according to their size. 
 
The components in this part of the model are 
small rock particles, water droplets and air.  It is 
assumed here that the air-flow is not affected by 
the jet, and that the water droplets are neglected 
once they leave the upflow.  The focus is 
therefore on the cohort of solid particles that is 
transported by the forces listed above, according 
to the advection-dispersion (sometimes called the 
convection-diffusion) equation.  For simplicity, 
this is stated here for a mass QS of particles of a 
certain size with a corresponding free-air settling 
speed (terminal speed) S, released into a wind 
with horizontal speed U, and with turbulent 
dispersion coefficients DL = ULL and DT = ULT in 
the down- and cross-wind directions respectively, 

where LL and LT are the corresponding dominant 
length scales of the turbulence of the flow.  The 
wind-flow parameters generally vary with 
elevation above the ground.  The mass density 
(mass per unit volume of air) of the particles is 
denoted  in Cartesian coordinates, 
where the x-axis is aligned to the downwind 
direction.  The particles are supposed to be 
released at point (0, 0, H) a distance H above the 
jet source, which is approximated by the point (0, 
0, 0).  The corresponding equation is: 

c(x, y, z, t)
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(13) 

 
Results from calculations where the atmosphere is 
modelled as a layered system were described in 
McKibbin (2006).  Equation (13) applies in each 
layer where the wind speed and turbulence 
characteristics and the settling speed are 
considered constant, but possibly different from 
those in other layers.  The transport of ejecta from 
a hydrothermal eruption is found by regarding the 
solution of Equation (13) as a basic building 
block.  Different-sized particles have different 
settling speeds S, corresponding release heights H 
found from the eruption jet dynamics, and 
different associated cohort masses QS depending 
on the material mix that is ejected.  The solutions 
for all sets of parameters may be found as a linear 
combination of the component cohorts.  The 
solution may be found in closed form (McKibbin, 
2006), so computation is straightforward. 
 
While this equation may be used to estimate the 
flight and deposition of ejected particles for any 
given eruption, it relies on some knowledge about 
the size composition of the ejected material.  
Historical data from typical areas (such as Craters 
of the Moon where deposits have been analysed) 
could be used, but the role of liquid water in the 
joining of small particles into larger-sized 
agglomerates may be difficult to model. 
 
7.  SUMMARY AND CONCLUSIONS 
 
The three main zones of interest (underground 
flow, eruption jet and plume dispersion) in 
hydrothermal eruptions, are able to be modelled 
to form an approximate, but complete, 
quantitative model of a hydrothermal eruption.  
An interesting question for further investigation 
arises: can this process be used to trace the motion 
forward through time and find any reason why it 
might eventually stop?  Can one then go "back in 
time" and glean some information about the 
phenomenon's initiation? 
NOMENCLATURE 
 
Note:  SI dimensions are given in square brackets; 
[–] denotes a dimensionless quantity 
 



 φ porosity  [–] 
 g acceleration due to gravity  [m s–2] 
 h specific enthalpy  [kJ kg–1] 
 k vertical permeability  [m2] 
 L dynamic lift  [Pa m–1] 
 μ dynamic viscosity  [kg m–1 s–1] 
 m mass flowrate per unit area  [kg s–1 m–2] 
 p pressure  [Pa, bar (1 bar = 105 Pa)] 
 q  energy flux/unit area  [W m

e
 ρ density  [kg m

–2] 
–3] 

 Sl liquid saturation  [–] 
 t time  [s] 
 T temperature  [˚C] 
 V flashing front speed  [m s–1] 
 v specific volume  [m3 kg–1] 
 vrat volume expansion factor  [–] 
 Ver eroding surface speed  [m s–1] 
 Vf average particle speed of fluid  [m s–1] 
 wf fluid volume flowrate per unit area  [m s–1] 
 z vertical distance above flashing front  [m] 
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