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FORCE, FLIGHT AND FALLOUT:
PROGRESS ON MODELLING HYDROTHERMAL ERUPTIONS

R.MCKIBBIN

Institute of Information and Mathematical Sciences
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SUMMARY - McKibbin (1989) began development of a mathematical model for hydrothermal
eruptions. Early work concentrated on modelling the underground process, while lately some attempts
have been made to model the eruption jet and the flight and deposit of ejected material. Conceptually,
the model is that of a boiling and expanding two-phase fluid rising through porous rock near the ground
surface, with a vertical high-speed jet, dominated volumetrically by the gas phase, ejecting rock particles
that are then deposited on the ground near the eruption site. Reported field observations of eruptions in
progress and experimental results from a laboratory-sized model have confirmed the conceptual model.
The quantitative models for all parts of the process are based on the fundamental conservation equations
of motion and thermodynamics, using a continuum approximation for each of the components. The three
main zones of interest (underground flow, eruption jet and plume dispersion) may be connected to form
an approximate, but complete, quantitative model of a hydrothermal eruption.

1. INTRODUCTION

Hydrothermal eruptions occur in many geo-
thermal fields around the world. Besides the rare
reported witnessing of an eruption actually taking
place, most evidence is based upon breccia
deposits on the surface or subsurface formations
that record historical eruptions.

Hydrothermal eruptions are categorised as being
natural or induced. Natural eruptions include
prehistoric and unexploited-field eruptions. In
New Zealand, prehistoric eruptions have occurred
in many areas of the Taupo Volcanic Zone
(TVZ). Waimangu has more recently been an
area of interest for large natural eruptions, the
latest occurrence being in 1973. Induced
eruptions occur as a result of exploitation of
geothermal fields. These have taken place in the
Tauhara and "Craters of the Moon" areas of the
Wairakei Geothermal Field (Bixley & Browne,
1988).

Such eruptions are violent and can last from a
matter of minutes to several hours. Hydrothermal
eruptions are distinct from geysers in that the
former are non-cyclic in occurrence, take place
without warning, and the ejected material is a
slushy mixture of water and rock particles of all
sizes. These are lifted from the ground by a high-
speed jet of gas which is mostly steam, but which
could contain non-condensible gases contained in
the near-surface water. Most of the material is
directed vertically upwards from vents that can be
from 5 m to 500 m in diameter; it is then
deposited nearby.

2. MODELLING HISTORY

The earliest attempt at modelling the mechanical
processes of hydrothermal eruptions was made by

McKibbin (1989). Previous speculation as to the
initiating event had been based around the idea of
a small seismic motion that disturbed latently-
unstable conditions near the surface. The causes
of the instability were supposed to be one of three
types: the first was formation of a steam cap due
to a drop in groundwater level with increased
steam-flow to the surface; the second was
hydraulic fracturing and brecciation allowing
non-condensible gases to decrease water boiling
pressures; the third was a reduction in lithostatic
pressure caused by lifting of overburden material.

A discussion of these proposed mechanisms was
given in McKibbin (1989); in particular, the type
of eruptions classified as "hydrothermal” would
preclude any large-scale "blast". The process is
started near the surface; the greatest effect is
when the fluid there is liquid, as that provides the
largest potential for expansion and high fluid
ejection speeds. A steam cap provides small
expansion potential; that and the presence of non-
condensible gases was explored in McKibbin
(1996), where it was found that very large over-
pressures of a gas such as CO, would be required
to have any significant effect over that of pure
water. Further, the potential of deeper
overburden-lifting pore pressures to produce
significant upward movement of large ground
masses would be reduced by any escape of fluid
which would immediately reduce the lifting force.

Conclusions from these and other considerations
have led to the view that a hydrothermal eruption
proceeds due to boiling of near-surface fluid. The
expansion potential of such water can be
expressed in terms of the "specific volume ratio"
which compares the density of the fluid in the
ground with that of the same mass when
expanded to ambient atmospheric conditions
(McKibbin, 1990; 1996). The greatest values are



for liquid groundwater, while any steam fraction
there considerably reduces the potential. The
concept is based on mining by steam lifting,
rather than by sudden explosions such as those
caused by phreatomagmatic phenomena.

Observations of laboratory-scale eruptions were
reported by Smith (2000) and Smith & McKibbin
(2003); these provided qualitative confirmation of
the conceptual model of eruptions beginning at
the surface and progressing downwards into the
matrix.

The lift caused by the motion of the boiling fluid
escaping upwards to the atmosphere has to exceed
the weight of rock particles at the ground surface
as well as any cohesive forces that are binding
them together. The latter were taken account of
by McKibbin (1989, 1990) and Bercich &
McKibbin (1992, 1993). An appropriate model
for the movement of the boiling fluid was the
subject of extensive investigation; this was
reported by Smith & McKibbin (1997, 1998,
1999, 2000, 2003) and Smith (2000). The rapid
process and high speed of the upwardly-moving
fluid leads to the conclusion that there is little
time for thermodynamic equilibration between the
fluid and the rock matrix, or for dynamic
separation of the two fluid phases. At most, the
fluid state is controlled by the condition that the
fluid is at saturated conditions and it flows as a
two-phase boiling mixture, with negligible heat
transfer between it and the solid matrix (i.e.
adiabatic flow).

In the earliest modelling attempts, when the flow
above the ground was less well-understood, it was
supposed that conditions there were akin to a
fluidized bed. Examination of reports of the
(rare) field observations and photographs, as well
as some of the volcanological literature, led to the
concept that the rock particles were mere
"passengers" within the rising jet of gas-
dominated fluid, as indeed were the water
droplets, and that the early model was incorrect.
The rock particles and droplets form an extremely
small volume fraction of the jet. While the water
droplet mass may increase by condensation as the
hot fluid mixture entrains cold air, the liquid
phase still forms a very small volumetric fraction
in the plume above the ground.

Investigations of the form of the jet based on
considerations of these concepts were reported in
Rynhart et al. (2000), McKibbin et al. (2005) and
McKibbin & Smith (2006). The subsequent
dispersion and deposition of the ejecta have been
based on recently-developed models for particle
transport by the atmosphere (McKibbin et al.,
2005; McKibbin, 2006). These models allow for
agglomeration of wet particles, but do not allow
specifically for evaporation of the water after
release from the eruption jet. Models
incorporating the latter phenomenon are under

current investigation by the first author and other
colleagues.

Quiescent conditions after an eruption has taken
place were considered by Smith (2000), who
modelled the subsequent groundwater flow near
the event as the system "recovered" to a new pre-
eruptive state. The almost incompressible liquid
groundwater flow is controlled immediately by
surrounding pressures, with conductive and/or
convective heating following much more slowly.

This is a summary of the mathematical models
used for the wvarious parts of hydrothermal
eruptions, using assumptions and simplifications
as outlined above. Space precludes full
mathematical descriptions of the various stages.
The reader may find these together in McKibbin
(2008) or severally in the references below.

3. BELOW GROUND

The main driving force of hydrothermal eruptions
is supposed to be due to an increased pressure
gradient immediately below the surface of the
ground arising from the fluid near the surface
being suddenly exposed to atmospheric
conditions. In order for a particle of rock at the
surface to be moved, the equilibrium of forces
that govern the static particle rock matrix must be
upset.

In summary, it is supposed that hot fluid, initially
at rest in the rock matrix, begins to escape to the
atmospheric conditions at the surface, flashing
(boiling) and increasing in specific volume as the
pressure decreases. The increasing speed of the
two-phase fluid as it nears the surface provides
lift to the rock particles. A hydrothermal eruption
can take place when the fluid speed is great
enough to eject the particles, i.e., the
hydrodynamic lift is large enough to overcome
the effective weight and cohesive stresses of the
rock particles. The eroding surface and the
flashing front in the formation are both
considered to be moving boundaries.

Assumptions made in the model are as follows:

» the principles of conservation of mass,
momentum and energy hold;

o the fluid below the flashing zone is
motionless;

+ the flowing fluid is a homogeneous mixture of
liquid water and steam — it is assumed that,
because boiling occurs very quickly, the two
phases flow at the same speed;

+ the moving fluid is at saturated (boiling)
conditions;

» the process is quasi-steady, i.e., the eruption
has already been initiated and is currently in
progress, and is modelled as being, albeit for
short time periods, nearly steady;



 the fluid lifts the rock particles at the surface,
where conditions are atmospheric (p = 1 bar
abs.);

» thermal conduction is ignored, i.e., there is
negligible heat transfer between the fluid and
rock in the flashing zone — the process is
modelled as being adiabatic.

There are two moving boundaries to the flashing
zone. The lower boundary, termed the "flashing
front", propagates downward into the stationary
fluid in the rock matrix at speed V. The boundary
formed by the eroding ground surface above also
propagates downward; its speed is V. The early
models assumed that Ve = V but this is not
justifiable, nor is it necessary.

The flashing front moves downward at speed V
into a fluid-filled medium of porosity ¢ and
permeability k where the fluid has liquid
saturation S,4 (S, = volume fraction of liquid in
the two-phase fluid), vapour saturation Syq = 1 —
S,e, mixture density Py and mixture specific

enthalpy h_, all of which may vary with depth.

o’
The average fluid particle speed (pore-velocity) is
Vf. Subcripts f, r, ¢ and v denote fluid, rock,

liquid water and vapour (water gas) respectively.
Parameter values pertaining to conditions at depth
have a "d" subscript whilst those associated with
conditions at the top (eroding) surface, where p =
1 bar abs., have a "t" subscript.

The technique is to refer quantities to a frame of
reference that moves downward at the same speed
V as the flashing front (see Figure 1). Because
the motion is assumed to be quasi-steady, the
frame of reference can be treated as inertial for

Sl, T=Tsa(p)

v l Ta Sia> Ve = Vi =0

(a)

p=1 bar

erosion surface

flashing front

the short periods of time considered. Within this
frame, the flow is assumed steady.

Conservation of mass

The flashing front moves into a motionless fluid
in the pores of the medium. The (constant) fluid
mass flowrate per unit area m; through this region
and the flashing zone, relative to the moving
frame of axes [see Figure 1(b)], is:

m, = gp, (V +V,) )
but at the "flashing front", Vi = 0, and hence:
m, =¢p, (V +V,)=¢pV @

The fluid mixture density is given by fluid
saturation-weighted combinations of the phase
quantities.

Conservation of momentum

The fluid volume flowrate per unit area relative to
the fixed frame of axes is given by using the
simple Darcy's Law for the motion of the
homogeneous two-phase fluid mixture:

., .. k(d
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where the dynamic viscosity is here taken to be

S, (1-8)
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Figure 1. Schematic of flows: (a) relative to fixed axes; (b) relative to a frame of reference moving downwards with flashing front.



Assuming that the boiling fluid is moving as a
homogeneous two-phase mixture, the
corresponding liquid and vapour mass flowrates
per unit area relative to the moving axes are

m =S gV +V,). m =(1-5)pdV +V,)
and the total mass flow per unit area is
m =m+m =p@V+V,). After use of

Equation (2), Equation (3) can be rearranged to
give an expression for the local pressure gradient:

dp #¢V P, A
@ 79k kp J @

From Equation (2) it can also be deduced, by
applying the surface boundary conditions, that

LV, ..V,
V=z— " zz "t )
pfd vﬁ
L .
pft vfd

where v = 1/p is the specific volume. Equation
(5) relates the flashing front speed to the speed
and density of the fluid as it reaches the surface.
The overall volume expansion factor for the
flashing fluid as it rises from the bottom to the
surface is given by

Ve .
WAV L) (6)
Vfd p

Conservation of energy
The vertical energy flux per unit area associated
with the fluid flow, relative to the fixed frame of

axes, is givenbyq =mh +mh =m h , where
:Slplhl+(l_sl)pvhv
- Sp =Sy,

=

(N

is the so-called "flowing enthalpy" of the fluid.
Boundary conditions at the flashing front give

q, = mfhm. Because q, is conserved and my is

constant, hf = hf ’ and the fluid flow is isenthalpic;

the constant value of the specific enthalpy is
given by that at the flashing front.
Rearrangement of Equation (7) gives the liquid
saturation in terms of the specific enthalpies and
densities of the phases:

p,(h —h )
S = (8)

(o, =p)h, +(ph, = ph)

Equation of state
The fluid is assumed to be at saturated (boiling)
conditions and the equation of state is:

p=p,(T) )

sat

Lift condition

The condition that a rock particle is removed from
the ground surface is related to the dynamic lift at
the surface, given in terms of the relative speed of
the fluid with respect to the rock (see McKibbin,
1989). The criterion that L;, the dynamic lift
there, exceeds the effective weight of the rock and
cohesion (i.e. the net lift is positive) is given by

L > ¢(1- @) p — p, 9% cohesion (10)

The most important parameter of interest is the
fluid particle velocity at the ground surface. This
is found by considering the lift condition (10).
Given the temperature of the fluid at the flashing
front, the bottom boundary conditions are
determined using correlations for the pressure (at
saturated conditions), densities, and enthalpies.
The surface is assumed to be at atmospheric
pressure.  Equation (6) provides the volume
expansion factor Vi and the flashing front speed
V may be found from Equation (5). Results
(McKibbin, 1990) show that, for a reservoir
temperature above 100 °C, the maximum fluid
expansion occurs when S,4 = 1; the flashing front
speed also appears smallest for S, = 1. One of
the major benefits of this procedure was provision
of an estimate of the thickness of the flashing
zone. Some interesting qualitative information
resulted for particular experimental cases. The
reader is referred to McKibbin (1990) for these
results.

Fluid properties

Correlations for the fluid thermodynamic
properties for near sub-surface conditions can be
found in Smith (2000). Since the temperatures of
the fluid which is involved in an eruption are
unlikely to exceed 150 °C, these are accurate
enough for the modelling required here.

4, THE MOTION OF THE UPPER
BOUNDARY

Bercich & McKibbin (1992, 1993) describe the
process for finding the downward speed of the
erosion surface. Given conditions at the flashing
front, the pressure gradient equation (4) is
integrated upwards until the lift criterion is
satisfied.

In detail, given a value of V and a state point (T,
Psat(T)) in  the flow, evaluation of the
thermodynamic properties from correlations
allows calculation of S,, s and por and hence the
local pressure gradient. Integration of Equation
(4) from the flashing front upwards allows testing
of the lift condition (10) at the point where p = 1
bar abs. (the ground surface). The value of
flashing front speed V can be adjusted until the
lift condition is exceeded; this will then give the
flashing zone thickness.



A small increment in time allows the new position
of the flashing front, and hence the
thermodynamic conditions there, to be determined
from the initial temperature and saturation
profiles underground. The process is repeated;
the positions of the flashing front and erosion
surface are then found as functions of time.

The above analysis was initially based on a one-
dimensional model, where the flashing and
erosion surfaces were assumed to be horizontal
planes. More recent work by Fullard (2007) has
extended this to a 2-D configuration, where the
eruption vent is assumed to be circular pit.

5. THE ERUPTION JET

A by-product of the above method is the time-
dependent structure of the fluid stream that issues
from the ground, as well as the volume erosion
rate. The first of these may be used as surface
boundary conditions for the fluid in the eruption
jet. Given a particle size-distribution in the
ground, the volume erosion rate allows the
(uncoupled) problem of particle ejection to be
calculated. =~ This part of the process was
formulated and described by McKibbin & Smith
(2006) and McKibbin (2006).

The main features of this part of the model are the
initial composition and speed of the emerging
two-phase fluid stream and the entrainment of air
into the jet. Conservation laws allow construction
of a simple one-dimensional mathematical model
for the jet, which is assumed to be approximately
circular. It is also supposed that the pressure
within the jet is close to atmospheric, with
contributions of partial pressures from the
entrained air and the water vapour. As the jet
rises, it cools and some of the vapour condenses
to satisfy the thermodynamic requirement of
saturated conditions for the water component.
Calculations show that the jet increases in
diameter until it becomes infinitely wide at a
certain height, the top of the jet, where the
upward velocity becomes zero; the speed of the
jet decreases approximately linearly with height
above the ground. As the speed decreases with
elevation, so too does its ability to lift the
entrained particles, which are then released to fall
and be deposited on the ground.

Because the jet slows with increasing elevation,
any particle that leaves the surface must have
been restrained from doing so by some cohesive
force. If not, the lift criterion will not be
exceeded immediately above the ground and the
particle will not be elevated further. While small
particles that are initially bound by cohesion
become detached and accelerate upwards until the
jet can not longer support them, larger clasts that
are not cohesively attached, or which do not shed
smaller fragments, might not leave the erosion
surface but just remain close the ground. They

would descend into the eruption crater as smaller
particles are swept upwards past them — the
eruption therefore may act as a size-sorting
mechanism for the particles.

The geometry of the flow models is that of a
column of circular horizontal cross-section with a
vertical axis (see Figure 2). The vertical fluxes
are based on the average vertical speed of the
fluid. Where there are multiple components
(liquid water + water vapour + air) it is assumed
that their speeds are the same, i.e. they are well-
mixed.

Az

Figure 2: Diagram illustrating the geometry of the flow.

The model is of a moving column (jet) of a steam-
dominated mixture of water vapour and liquid
water droplets that issues from the ground from a
circular region of radius ry. As the fluid rises
rises, it entrains air from the surrounding
atmosphere, at ambient temperature T.

The resulting jet rises vertically and grows in
radius, r(z), where r(0) =r,. Itis assumed that the
flow is at steady-state for a short period of time.
As air is entrained into the flow, the total vertical
mass flux M(z) increases from M(0) = M, to M(z)
> M due to air entrainment. The total water flow
(liquid + vapour) remains constant (M,,) while the
air flow (M,) increases with z. The total mass
flow is M =M, + M,.

Mass conservation

Conservation of mass requires that the vertical
rate of mass increase in the column is equal to the
mass entrainment rate around the column surface:

dM dM
— =2 =27rp E(W) (11)
dz dz am

where the upwards mass flux within the column is
M=M+M +M = prr’w. Here, W(z) is the

mean vertical speed in the flow, p(z) is the
density of the fluid flow given by p=p, + o, + pa
with each gas component contributing a partial
pressure to the total pressure Pam, the ambient
pressure; it is assumed that the pressure within the
column is the same as that of the surrounding air.



E(w) is the volume entrainment rate per unit
surface area of the column, modelled here by

E(w) = kW(W/ w, )n, with constant dimension-

less parameters K and n.

Momentum conservation

The surrounding air that is being entrained has
zero vertical momentum initially. The momentum
of the flow is reduced by gravitation and by the
effective inertia of the entrained gas; since it is
assumed that the pressure in the column is
uniform and the same as the surrounding
atmosphere, there is no pressure work.

Energy conservation

The energy equation takes into account changes
in the kinetic and internal energy of the flow
components.

Results

Numerical integration of the resulting three
coupled ordinary differential equations gives
results with the following general features: the
radius of the column increases with height as the
flux increases due to entrainment, while the jet
speed decreases due to gravitational and inertial
slowing; the radius diverges to an infinite value as
the speed drops to zero. For further details and
discussion, see McKibbin & Smith (2006).

6. FLIGHT OF THE EJECTA

In general, as discussed above, only small
particles that have broken away from heavier
clasts are able to be ejected by the emerging fluid
stream. Heavier particles remain at ground level,
jostled by the lower parts of the jet. The small
particles are accelerated upwards until their
weight equals the lift afforded by the decelerating
column, when they are released into the
surrounding air and are then moved by any cross-
flow (wind) near the jet. The model for this part
of the eruption is that of an advection-dispersion
mechanism where the forces correspond to wind
drag, gravitational settling and turbulence of the
wind flow. The particles are released at different
levels according to their size.

The components in this part of the model are
small rock particles, water droplets and air. It is
assumed here that the air-flow is not affected by
the jet, and that the water droplets are neglected
once they leave the upflow. The focus is
therefore on the cohort of solid particles that is
transported by the forces listed above, according
to the advection-dispersion (sometimes called the
convection-diffusion) equation. For simplicity,
this is stated here for a mass Qs of particles of a
certain size with a corresponding free-air settling
speed (terminal speed) S, released into a wind
with horizontal speed U, and with turbulent
dispersion coefficients D = UL and D7 = ULt in
the down- and cross-wind directions respectively,

where L and Lr are the corresponding dominant
length scales of the turbulence of the flow. The
wind-flow parameters generally vary with
elevation above the ground. The mass density
(mass per unit volume of air) of the particles is
denoted c(X,Yy,z,t) in Cartesian coordinates,

where the x-axis is aligned to the downwind
direction. The particles are supposed to be
released at point (0, 0, H) a distance H above the
jet source, which is approximated by the point (0,
0, 0). The corresponding equation is:

oc oc oc 2 2
U=-s==p 2t,p ¢
ox a ox’ oz’ (13)

TN Q_5(X)5(Y) (2 — H)S(t)

Results from calculations where the atmosphere is
modelled as a layered system were described in
McKibbin (2006). Equation (13) applies in each
layer where the wind speed and turbulence
characteristics and the settling speed are
considered constant, but possibly different from
those in other layers. The transport of ejecta from
a hydrothermal eruption is found by regarding the
solution of Equation (13) as a basic building
block. Different-sized particles have different
settling speeds S, corresponding release heights H
found from the eruption jet dynamics, and
different associated cohort masses Qs depending
on the material mix that is ejected. The solutions
for all sets of parameters may be found as a linear
combination of the component cohorts. The
solution may be found in closed form (McKibbin,
2006), so computation is straightforward.

While this equation may be used to estimate the
flight and deposition of ejected particles for any
given eruption, it relies on some knowledge about
the size composition of the ejected material.
Historical data from typical areas (such as Craters
of the Moon where deposits have been analysed)
could be used, but the role of liquid water in the
joining of small particles into larger-sized
agglomerates may be difficult to model.

7. SUMMARY AND CONCLUSIONS

The three main zones of interest (underground
flow, eruption jet and plume dispersion) in
hydrothermal eruptions, are able to be modelled
to form an approximate, but complete,
quantitative model of a hydrothermal eruption.
An interesting question for further investigation
arises: can this process be used to trace the motion
forward through time and find any reason why it
might eventually stop? Can one then go "back in
time" and glean some information about the
phenomenon's initiation?

NOMENCLATURE

Note: SI dimensions are given in square brackets;
[-] denotes a dimensionless quantity



porosity [—]
acceleration due to gravity [ms?]
specific enthalpy [kJ kg ']
vertical permeability [m?]
dynamic lift [Pam ']
dynamic viscosity [kgm ' s']
mass flowrate per unit area [kgs ' m?]
pressure [Pa, bar (1 bar = 10° Pa)]
energy flux/unit area [W m 2]
density [kg m”]
,  liquid saturation [-]
t  time [s]
T  temperature ['C]
V  flashing front speed [ms']
v specific volume [m®kg ']
Viat  volume expansion factor [—]
Ver  eroding surface speed [ms ']
Vi  average particle speed of fluid [ms™']
w;  fluid volume flowrate per unit area [ms ']
z  vertical distance above flashing front [m]

o3 rr=x-oaw
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