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SUMMARY We present a new methodology for imaging the evolution of electrically conductive fluids 
in porous media. The inversion problem is formulated as a state estimation problem. The approach is 
based on an evolution-observation model and is solved using an extended Kalman filter algorithm. The 
example we consider involves the imaging of time-varying distributions of water saturation in porous 
media using time-lapse electrical resistance tomography (ERT). The complete electrode model (with 
Archie’s law relating saturations to electrical conductivity) is used as the observation model. The 
evolution model we employ is a simplified (approximate) model for simulating flow through partially 
saturated porous media. We propose to account for approximation errors in the evolution model by 
constructing a statistical model of the differences between the accurate and approximate representations 
of fluid flow, and by including this information in the calculation of the posterior probability density of 
the estimated system state. The proposed method provides improved estimates of water saturation 
distribution relative to traditional reconstruction schemes that rely on conventional stabilization methods 
(e.g., using a smoothness prior) and relative to the extended Kalman filter without incorporating the 
approximation error method. Finally, the approximation error method allows for the use of a simplified 
and computationally efficient evolution model in the state estimation scheme. The methodology 
presented here for unsaturated flow through porous media may be extended for applications of 
nonisothermal multiphase flow in fractured geothermal reservoirs using a variety of geophysical 
methods. 

1.  INTRODUCTION 

Monitoring soil water content and its change with 
time is of great importance for understanding flow 
and transport processes in variably saturated 
porous media.  The use of geophysical methods 
for inferring spatial and temporal changes in 
water content has proven useful, see for example 
Binley et al. (2002). For example, the sensitivity 
of the electrical conductivity to water content 
enables the use of electrical resistance 
tomography (ERT) to monitor the water content 
distribution. 
 
Electrical resistance tomography has been applied 
to a wide range of environmental and 
hydrogeological investigations, including the 
monitoring of tracer movement in the saturated 
zone (Kemna et al., 2002). ERT has also been 
used in monitoring spatial and temporal variations 
of soil water content in the vadose zone (Zhou, 
2001). For example, cross-borehole electrical 
resistivity tomography has been used to image the 
resistivity distribution of the vadose zone before 
and during infiltration experiments (Daily, 1992). 
 
In ERT, electric currents are injected into the 
target through electrodes placed in boreholes, and 
the resulting voltages are measured using the 
same electrodes. The internal conductivity 
distribution is estimated based on the current and 
voltage data.  
 
Classical tomographic reconstruction approaches 
analyze geophysical data from a single 

measurement frame only, where each frame may 
consist of voltage measurements corresponding to 
several current injections. Because a frame refers 
to a single reconstruction, the associated data are 
assumed to be obtained from a time-invariant 
target. Multiple reconstructions from frames at 
different times are then combined to visualize 
time-varying hydrological phenomena. In the 
stationary reconstruction approach the errors 
between sequential reconstructions tend to be 
large and typically unrealistic because the 
approach do not incorporate the temporal prior 
knowledge of the target into the reconstruction. 
 
Recent results (Seppänen, 2000; Kaipio, 2004) 
indicate that by combining information from ERT 
measurements and an appropriate evolution 
model, the accuracy of the estimates may be 
improved significantly in the case of time-varying 
targets.  The basic idea behind the nonstationary 
inversion approach is to incorporate models for 
the temporal behavior of the target into data 
processing.  The use of the models for the time 
evolution of the water content distribution can be 
interpreted as temporal prior models for the 
system. Although the rate of change of 
hydrological processes in the subsurface is 
relatively slow, the use of the non-stationary 
approach stabilizes the reconstruction problem. 
 
In this paper we develop a nonstationary 
inversion approach to monitor moisture flow in 
unsaturated porous media. We consider the 
problem as a state estimation problem. In order to 
evaluate the performance of the proposed 



approach in comparison with the traditional 
Tikhonov regularization method, a numerical test 
case is presented in which we monitor the water 
saturation distribution as water is injected into an 
unsaturated porous medium. 
 
2.  METHODS 

2.1 Observation Model 

Electrical resistance tomography (ERT) is an 
imaging method in which conducting targets are 
monitored via electrical measurements. In ERT, 
electric currents I are injected into the target 
through electrodes, and the resulting voltages V  
between electrode pairs are measured. The 
forward model is the computational model which 
predicts the voltage measurements given the 
electrical conductivity distribution )(xσσ = of the 
monitored domain ertΩ  and the injected current 
pattern { }LIII ,...,1= , where L  denotes the number 
of electrodes. The boundary of the domain ertΩ is 
denoted ertΩ∂ . The most accurate forward model 
for ERT is the complete electrode model (Cheng, 
1989), defined by the following boundary value 
problem 
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where )(xuu = is the electrical potential, le is the 
thl electrode, lz is the contact impedance between 

the thl electrode and the domain ertΩ , lU is the 
potential on the thl electrode, lI is the injected 
current and n  is the outward unit normal vector.  
In addition, the charge conservation law needs to 
be fulfilled, and the potential reference needs to 
be fixed. Thus, the following conditions are 
written 
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The Finite Element approximation of the forward 
problem can be written in the form (Vauhkonen, 
1997) 

,)()( IRU σσ =         (6) 

where INLU ×∈ R)(σ is a matrix of 
measured voltages between the electrodes, 

LN vR ×∈R)(σ is a resistivity matrix, and INLI ×∈R is 
the matrix of current patterns. Here, IN  is the 
number of injected current patterns. 
 
In this paper, we assume that Archie’s law 
(Archie, 1942) accurately relates water saturation 
to electrical conductivity. Archie's law is 
described as 

,)( nce
w SS φσσ =         (7) 

where wσ  is the conductivity of the aqueous 
phase, ce  is called the cementation index, and n  
is the saturation index. 
 
The inverse problem of ERT is written in terms of 
water saturation NS R∈ . By substituting (7) into 
(6), the forward model can be written as 

),(* SUV =          (8) 
where the mapping VNNU RR a:* is 

))(()(* SUSU σ= , and vN is the number of voltage 
observations. We assume that measurements are 
corrupted by additive Gaussian noise ε  with zero 
mean and covariance εΓ . This is the commonly 
used measurement error model for ERT and the 
statistics of the measurement noise can be 
measured. With the following assumptions the 
observation model (8) can be written in the form 

.)(* ε+= SUV         (9) 
The reconstruction of the water saturation 
distribution requires multiple measurements 
corresponding to several current injections. One 
ERT frame is defined as the voltage data 
corresponding to IN  current injection patterns 
injected during a short time period in which the 
target distribution can be considered time-
invariant. The fact that hydrological processes are 
often relatively slow justifies the assumption that 
the saturation distribution N

tS R∈  does not 
change significantly while the data for a specific 
frame are collected.  Thus, by stacking the models 
(9) corresponding to all IN  current injections, the 
observation model at time t  can be written as 

ttt SUV ε+= )(*        (10) 

Here, Iv NN
tV R∈ is the vector containing the 

voltage measurements corresponding to current 
patterns applied at time t . We assume here that 
the forward problem is relatively accurate so that 
the approximation errors due to the finite element 
model for the forward problem are smaller than 
the additive noise. We also assume that the 
parameters of Archie's law are accurately known. 
 
2.2 Evolution Model 

The flow of water in variably saturated porous 
media is modelled with the Richards' equation 
(see Bear (1988) for a general description), which 
can be written as  
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where ϕ  is the porosity, S is the water saturation, 
K is the unsaturated hydraulic conductivity 
and cP  is capillary pressure (both nonlinear 
functions of water saturation), wρ  is the water 
density, g is the gravitational constant, and z  is 
the unit vector, positive upward. 
 
The hydraulic conductivity is given by 
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where k is the absolute permeability, relk  is the 
relative permeability, which is a nonlinear 
function of water saturation, and wµ  is the 
dynamic viscosity of water. 
 
Van Genuchten's parametric model (van 
Genuchten, 1980) for relative permeability relk  
and capillary pressure cP can be written as  
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where m  and α  are soil-specific parameters, 
eS is the effective water saturation, wrS  is the 

residual saturation. 
 
We assume that the relative permeability and 
capillary pressure functions are valid and the 
hydraulic parameters are known (however, our  
nonstationary inversion approach allows for 
uncertainty in hydraulic parameters to be 
considered, as will be discussed in the  example 
given below). We specify the following initial and 
boundary conditions:  
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where )(0 xS  is the initial water saturation 
distribution, and n  is the outward unit normal 
vector. Water saturation is kept constant at 

1),( =txSin at the boundary denoted by inΩ∂ , 
representing a point release of water from a 
borehole located at inx . 
 
The numerical solution of equations (1)-(8) using 
the Finite Volume Method (FVM) yields the 
(forward) evolution model 

),;( 11 kSFS tt ++ =        (19) 
where tS  are the discretized saturation values at 
the nodes at a given time, and F  is a nonlinear 
function of water saturation. This is the forward 
model for the evolution of water saturation; in this 
formulation, all hydraulic parameters are assumed 
to be known, although in our nonstationary 
inversion approach uncertainty in any parameter 
can be modelled, section 2.3. 
 
For the simulated measurements used in the 
synthetic example, this model is used to compute 
the true time evolution of the saturation in a dense 
mesh. In this study the variably saturated flow 
simulator TOUGH2 (Pruess et al., 1999) is used 
for this purpose.  
 
The aim is to estimate the water saturation 
distribution as a function of space and time. We 

use Richards' equation as the evolution model in 
our nonstationary inversion approach. The 
Richards' equation is highly nonlinear and we 
assume that absolute permeability is not known 
exactly. Additional approximations (such as 
discretization errors) may lead to errors in the 
solution to the Richards equation, (Kaipio, 2004). 
Thus, the evolution model is written as 

,)( 1
11 tttt SFSS ω++= ++      (20) 

where 1
tω is a discrete time noise process 

representing modelling errors (Kaipio, 2004). 
Equation (20) is referred to as the state evolution 
model for water saturation. 
 
2.3 Enhanced Error Model 

Huttunen (2006) developed an approximation 
error method to handle uncertainties in 
nonstationary inverse problems. In this 
framework, the state noise term due to the 
uncertainties in the permeability is modeled as 
follows: 
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where the best guess of the permeability (e.g., 
based on values reported in the literature for 
settings that are geologically similar to the ones 
being investigated) is *k , which is used in 
inversion.  Here, k  is the realization of the 
heterogeneous permeability field considered to be 
reality. Thus, we use the approximation 

),( 1
*

+tSkF  in the evolution model and interpret 
the term )),(),(( 1

*
1 ++ − tt SkFSkF as the state noise 

that is due to the uncertainty in the permeability. 
 
2.4 Extended Kalman Filtering 

State estimation refers to the problem of 
estimating the time-varying saturation distribution 
from ERT measurements, where the system is 
described using a state space representation. In 
hydrological applications, both the physical 
evolution and the petrophysical models are 
usually nonlinear. In this paper, we consider the 
additive noise model for the evolution and 
observation models so that we can write 

,)( tttt SgV ε+=        (22) 
.)(1 tttt SfS ω+=+       (23) 

In our case, the state space representation consists 
of Eqs. (10) and (21). In nonlinear problems, 
suboptimal estimates can be obtained using an 
extended Kalman filter (EKF) algorithm 
(Anderson, 1979). The EKF recursions can be 
written as 
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The computation of Jacobian 

tgJ  associated with 
the observation model is presented in Vauhkonen 
(2004).  The Jacobian associated with the 
evolution model 

tf
J is computed numerically 

using TOUGH2 (Pruess et al., 1999). 
 
3.  RESULTS 

We consider a simulated two-dimensional ERT 
survey collected during transient unsaturated flow 
induced by the injection of water from a point 
source into an initially dry heterogeneous porous 
medium. Electrodes are placed in two straight 
boreholes that are 5 meters apart. The electrodes 
are installed at 1.2 meters interval along the 
boreholes. 
 
3.1 Simulation of Measurements 

The true evolution of the water saturation tS  is 
computed by solving the Richards' equation with 
the TOUGH2 simulator. The only non-uniform 
flow parameter is the absolute permeability, and 
its log value is modelled as a random field. The 
log permeability field was generated using 
sequential Gaussian simulation (Deutsch and 
Journel, 1992). The parameters for this simulation 
are summarized in Table 1.  
 
Table 1 
Summary of parameters used to generate the 
water saturation data 

Description Parameter values 
Unsaturated flow model 
parameters, Eqs. (11)-
(12) 
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Capillary pressure and 
relative permeability, 
Eqs. (13)-(15) 
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Archie's law, Eq. (7) 
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Spherical semi-variogram 
model used to generate 
spatially correlated log 
permeability, as defined 
by Deutsch and Journel 
(1992) 
 

ma 4.0= (range) 

0.1=c (sill) 
Anisotropy factor= 5 
Rotation angle=20o

 
(from horizontal) 

 
The initial saturation was uniform and set at a 
value of 0.05 with the exception of the injection 
point, where water was supplied by keeping the 
saturation constant at value 0.99. 
 
The voltages were simulated by using the 
numerical solution of the complete electrode 
model. The computed voltages were then 
corrupted with additive noise consisting of two 
components, both being Gaussian with zero mean. 
The standard deviation of the first component was 

1% of the measurement, and the standard 
deviation of the second component was a 0.1% of 
the maximum voltage.  
 
3.2 Numerical results 

The meshes used in inversion were sparser and 
different from those used in the computation of 
the synthetic measurements. The model for the 
measurement noise in the inversion was also 
different from that in the synthetic measurements: 
it was zero mean but the covariance matrix is 
approximated as a time invariant diagonal matrix 

Iv
t

2σε =Γ  with a standard deviation vσ  that was 
0.1% of the difference between the maximum and 
minimum voltage difference. 
 
Furthermore, we assumed that we knew all other 
associated parameters except the absolute 
permeability field. We assumed an isotropic, 
homogeneous permeability 12101 −×=k  in the 
evolution model. 
 
To approximate the statistics of the state noise 
term 2

tω , we generated 250 samples from the 
statistical model for k  and computed the time-
dependent Gaussian approximation for the 
statistics of the water saturation distribution. The 
random samples are shown in Figure 1. We 
assumed that we knew all the parameters in 
sequential Gaussian simulation (though the seed 
number  was changed each time a random sample 
was drawn). Approximation errors are 
appropriately incorporated into the evolution 
model. 
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Figure 1. Simulated water distribution 90 hours 
after injection for 12 random permeability fields 
generated for the construction of a statistical 
enhanced error model. 
 



For comparison, we also compute conventional 
stationary estimates of the water saturation based 
on the same simulated ERT data. The stationary 
estimates were calculated using an approach 
based on Tikhonov regularization (Kaipio, 2004). 
The water saturation distributions estimated with 
the proposed nonstationary and stationary 
approaches are presented in Figure 2. Comparing 
the simulated, true saturation distributions (left 
column) with the corresponding reconstructions 
shows clearly that the nonstationary estimates are 
better than the stationary estimates. 
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Figure 2. Left column: True, simulated saturation 
distributions; center column: stationary 
reconstruction; right column: nonstationary 
reconstruction. 
 
4.  CONCLUSION 

In this study we proposed a nonstationary 
reconstruction approach for ERT data collected in 
the unsaturated zone. The approach incorporates 
models for temporal behaviour of the target into 
the processing of geophysical data. The method is 
based on a state space representation of the 
problem, and estimates are computed using the 
extended Kalman filter algorithm . 
 
We proposed method to take account for 
approximation errors in the parameters of 
evolution model by constructing a statistical 
model of the differences between the 
heterogeneous and approximate representations of 
permeability in fluid flow model. The enhanced 
evolution model allows for the use of a simplified 
and computationally efficient evolution model in 
the nonstationary inversion. Using an evolution 
model capable of simulating nonisothermal 
multiphase flow, the proposed approach can also 
be adopted for the monitoring of geothermal 
systems 
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