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SUMMARY We present a new methodology for imaging the evolution of electrically conductive fluids
in porous media. The inversion problem is formulated as a state estimation problem. The approach is
based on an evolution-observation model and is solved using an extended Kalman filter algorithm. The
example we consider involves the imaging of time-varying distributions of water saturation in porous
media using time-lapse electrical resistance tomography (ERT). The complete electrode model (with
Archie’s law relating saturations to electrical conductivity) is used as the observation model. The
evolution model we employ is a simplified (approximate) model for simulating flow through partially
saturated porous media. We propose to account for approximation errors in the evolution model by
constructing a statistical model of the differences between the accurate and approximate representations
of fluid flow, and by including this information in the calculation of the posterior probability density of
the estimated system state. The proposed method provides improved estimates of water saturation
distribution relative to traditional reconstruction schemes that rely on conventional stabilization methods
(e.g., using a smoothness prior) and relative to the extended Kalman filter without incorporating the
approximation error method. Finally, the approximation error method allows for the use of a simplified
and computationally efficient evolution model in the state estimation scheme. The methodology
presented here for unsaturated flow through porous media may be extended for applications of
nonisothermal multiphase flow in fractured geothermal reservoirs using a variety of geophysical

methods.
1. INTRODUCTION

Monitoring soil water content and its change with
time is of great importance for understanding flow
and transport processes in variably saturated
porous media. The use of geophysical methods
for inferring spatial and temporal changes in
water content has proven useful, see for example
Binley et al. (2002). For example, the sensitivity
of the electrical conductivity to water content
enables the wuse of electrical resistance
tomography (ERT) to monitor the water content
distribution.

Electrical resistance tomography has been applied
to a wide range of environmental and
hydrogeological investigations, including the
monitoring of tracer movement in the saturated
zone (Kemna et al., 2002). ERT has also been
used in monitoring spatial and temporal variations
of soil water content in the vadose zone (Zhou,
2001). For example, cross-borehole electrical
resistivity tomography has been used to image the
resistivity distribution of the vadose zone before
and during infiltration experiments (Daily, 1992).

In ERT, electric currents are injected into the
target through electrodes placed in boreholes, and
the resulting voltages are measured using the
same electrodes. The internal conductivity
distribution is estimated based on the current and
voltage data.

Classical tomographic reconstruction approaches
analyze geophysical data from a single

measurement frame only, where each frame may
consist of voltage measurements corresponding to
several current injections. Because a frame refers
to a single reconstruction, the associated data are
assumed to be obtained from a time-invariant
target. Multiple reconstructions from frames at
different times are then combined to visualize
time-varying hydrological phenomena. In the
stationary reconstruction approach the errors
between sequential reconstructions tend to be
large and typically unrealistic because the
approach do not incorporate the temporal prior
knowledge of the target into the reconstruction.

Recent results (Seppédnen, 2000; Kaipio, 2004)
indicate that by combining information from ERT
measurements and an appropriate evolution
model, the accuracy of the estimates may be
improved significantly in the case of time-varying
targets. The basic idea behind the nonstationary
inversion approach is to incorporate models for
the temporal behavior of the target into data
processing. The use of the models for the time
evolution of the water content distribution can be
interpreted as temporal prior models for the
system. Although the rate of change of
hydrological processes in the subsurface is
relatively slow, the use of the non-stationary
approach stabilizes the reconstruction problem.

In this paper we develop a nonstationary
inversion approach to monitor moisture flow in
unsaturated porous media. We consider the
problem as a state estimation problem. In order to
evaluate the performance of the proposed



approach in comparison with the traditional
Tikhonov regularization method, a numerical test
case is presented in which we monitor the water
saturation distribution as water is injected into an
unsaturated porous medium.

2. METHODS
2.1 Observation Model

Electrical resistance tomography (ERT) is an
imaging method in which conducting targets are
monitored via electrical measurements. In ERT,
electric currents 7are injected into the target
through electrodes, and the resulting voltages V
between electrode pairs are measured. The
forward model is the computational model which
predicts the voltage measurements given the

electrical conductivity distribution o =o(x) of the
monitored domain Q

ert

pattern /={I,....1,}, where L denotes the number

and the injected current

of electrodes. The boundary of the domain Q,is
denoted 0Q,, . The most accurate forward model

for ERT is the complete electrode model (Cheng,
1989), defined by the following boundary value

problem
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where u =u(x) is the electrical potential, ¢, is the
" electrode, z,is the contact impedance between
U,is the
potential on the [”electrode, I,is the injected

the ["electrode and the domain Q

ert

current and 7 is the outward unit normal vector.
In addition, the charge conservation law needs to
be fulfilled, and the potential reference needs to
be fixed. Thus, the following conditions are
written

S-S0 -0 “
I=1 I=1

The Finite Element approximation of the forward
problem can be written in the form (Vauhkonen,

1997)
U(o)=R(o)l, (6)
where U (c)e R“ Y/ is a matrix of

measured voltages between the electrodes,
R(c) e R is a resistivity matrix, and 7 e R"" is
the matrix of current patterns. Here, N, is the
number of injected current patterns.

In this paper, we assume that Archie’s law
(Archie, 1942) accurately relates water saturation
to electrical conductivity. Archie's law is
described as

o(S) = o ¢“S", (7)

where o, is the conductivity of the aqueous

phase, ce is called the cementation index, and »
is the saturation index.

The inverse problem of ERT is written in terms of
water saturation S e R” . By substituting (7) into
(6), the forward model can be written as

V=U'(), (®)
where the mapping U :R" > RYis
U™ (S)=U(o(S)), and N, is the number of voltage

observations. We assume that measurements are
corrupted by additive Gaussian noise & with zero
mean and covariance I,. This is the commonly

used measurement error model for ERT and the
statistics of the measurement noise can be
measured. With the following assumptions the
observation model (8) can be written in the form

V=U*(S)+£. O]
The reconstruction of the water saturation
distribution requires multiple measurements
corresponding to several current injections. One
ERT frame is defined as the voltage data
corresponding to N, _current injection patterns

injected during a short time period in which the
target distribution can be considered time-
invariant. The fact that hydrological processes are
often relatively slow justifies the assumption that
the saturation distribution S, eR" does not

change significantly while the data for a specific
frame are collected. Thus, by stacking the models
(9) corresponding to all_ N, _current injections, the

observation model at time ¢ can be written as
V,=U'(S)+e, (10)

Here, 7, eR"™"is the vector containing the

voltage measurements corresponding to current
patterns applied at times. We assume here that
the forward problem is relatively accurate so that
the approximation errors due to the finite element
model for the forward problem are smaller than
the additive noise. We also assume that the
parameters of Archie's law are accurately known.

2.2 Evolution Model

The flow of water in variably saturated porous
media is modelled with the Richards' equation
(see Bear_(1988) for a general description), which
can be written as
PR @V}’C(S)—K(S)z}:o, 11

ot p.8

where ¢ is the porosity, S is the water saturation,

i

K is the unsaturated hydraulic conductivity
and P is capillary pressure (both nonlinear

functions of water saturation), p, is the water
density, g is the gravitational constant, and z _is
the unit vector, positive upward.

The hydraulic conductivity is given by



ket ra(S)P,E (12)
M,

where & is the absolute permeability, &, is the

relative permeability, which is a nonlinear

function of water saturation, and g, is the

rel

dynamic viscosity of water.

Van Genuchten's parametric model (van
Genuchten, 1980) for relative permeability £,

and capillary pressure P can be written as

P=-a'(s,""-D"", (13)
ko =S, A=(1=5"" "), (14)
S-S
S == Zwr 15
T (15)

where m and «a are soil-specific parameters,
S,is the effective water saturation, S, is the

residual saturation.

We assume that the relative permeability and
capillary pressure functions are valid and the
hydraulic parameters are known (however, our
nonstationary inversion approach allows for
uncertainty in hydraulic parameters to be
considered, as will be discussed in the example
given below). We specify the following initial and
boundary conditions:

S(x,0) = S, (x), xeQ, (16)
g =0, xedQ, (17)
on

S(x,0)=8,,(x,1), xe€oQ, (18)

where S,(x) is the initial water saturation

distribution, and 7» is the outward unit normal
vector. Water saturation is kept constant at
S, (x,f)=1at the boundary denoted by &Q

representing a point release of water from a
borehole located at x,, .

in

The numerical solution of equations (1)-(8) using
the Finite Volume Method (FVM) yields the
(forward) evolution model

S =F(S,,:k), (19)

where S, are the discretized saturation values at

the nodes at a given time, and F _is a nonlinear
function of water saturation. This is the forward
model for the evolution of water saturation; in this
formulation, all hydraulic parameters are assumed
to be known, although in our nonstationary
inversion approach uncertainty in any parameter
can be modelled, section 2.3.

For the simulated measurements used in the
synthetic example, this model is used to compute
the true time evolution of the saturation in a dense
mesh. In this study the variably saturated flow
simulator TOUGH2 (Pruess et al., 1999) is used
for this purpose.

The aim is to estimate the water saturation
distribution as a function of space and time. We

use Richards' equation as the evolution model in |
our nonstationary inversion approach. The
Richards' equation is highly nonlinear and we
assume that absolute permeability is not known
exactly. Additional approximations (such as
discretization errors) may lead to errors in the
solution to the Richards equation, (Kaipio, 2004).
Thus, the evolution model is written as

S, =8 +F(S,)+a, (20)

where o/ is a discrete time noise process

t+1

representing modelling errors (Kaipio, 2004).
Equation (20) is referred to as the state evolution
model for water saturation.

2.3 Enhanced Error Model

Huttunen (2006) developed an approximation
error method to handle uncertainties in
nonstationary  inverse problems. In  this
framework, the state noise term due to the
uncertainties in the permeability is modeled as
follows:

S.,=8+F(k,S,,
=S +F(k,S,)+(F(k,S,,,
=S +Fk',S,)+ao +o*,
where the best guess of the permeability (e.g.,
based on values reported in the literature for
settings that are geologically similar to the ones
being investigated) is &, which is used in
inversion. Here, k& 1is the realization of the
heterogeneous permeability field considered to be
reality. Thus, we wuse the approximation
F(k",S,,) in the evolution model and interpret

the term (F(k,S,)-F(k',S,,)) as the state noise
that is due to the uncertainty in the permeability.

)+(011
)= F(k'.S,.))+ o' (21)

t+1

2.4 Extended Kalman Filtering

State estimation refers to the problem of
estimating the time-varying saturation distribution
from ERT measurements, where the system is
described using a state space representation. In
hydrological applications, both the physical
evolution and the petrophysical models are
usually nonlinear. In this paper, we consider the
additive noise model for the evolution and
observation models so that we can write
Vi=g/(S)+¢, (22)

Sr+l = f;(Sr)+w1' (23)

In our case, the state space representation consists
of Egs. (10) and (21). In nonlinear problems,
suboptimal estimates can be obtained using an
extended Kalman filter (EKF) algorithm
(Anderson, 1979). The EKF recursions can be
written as

St\tfl = f;fl (Slfl\l—l )7 (24)
l—‘z\zfl = J,/,,lr‘f—l\z—l']r/lfl + F(,;H > (25)
Kt = rt\tfl‘lrg/ (Jg,r‘t\ffl‘jrg/ + Fz:, )71 H (26)
Fz\z = (1 - Kthl )Fz\z—l > (27)



Sr\r = Sr\rfl + Kr(Vf - gr(Sz\z—l )) (28)
The computation of Jacobian J, associated with

the observation model is presented in Vauhkonen
(2004).  The Jacobian associated with the
evolution model J,is computed numerically

using TOUGH2 (Pruess ef al., 1999).
3. RESULTS

We consider a simulated two-dimensional ERT
survey collected during transient unsaturated flow
induced by the injection of water from a point
source into an initially dry heterogeneous porous
medium. Electrodes are placed in two straight
boreholes that are 5 meters apart. The electrodes
are installed at 1.2 meters interval along the
boreholes.

3.1 Simulation of Measurements

The true evolution of the water saturation S, _is

computed by solving the Richards' equation with
the TOUGH2 simulator. The only non-uniform
flow parameter is the absolute permeability, and
its log value is modelled as a random field. The
log permeability field was generated using
sequential Gaussian simulation (Deutsch and
Journel, 1992). The parameters for this simulation
are summarized in Table 1.

Table 1

Summary of parameters used to generate the

water saturation data
Description

Unsaturated flow model
parameters, Eqs. (11)-

Parameter values
4, =1.002x107 Pas

(12) p,, =1000kgm™

$=03
Capillary pressure and | 7 =0.628
relative permeability, o
Egs. (13)-(15) a=0.001Pa

S, =0.083
Archie's law, Eq. (7) ce=2

n=2

o, =0.01Sm™"
Spherical semi-variogram | g =0.4m (range)
model used to generate .
spatially correlated log ¢=1.0ill)

permeability, as defined
by Deutsch and Journel
(1992)

Anisotropy factor=5
Rotation angle=20°
(from horizontal)

The initial saturation was uniform and set at a
value of 0.05 with the exception of the injection
point, where water was supplied by keeping the
saturation constant at value 0.99.

The voltages were simulated by using the
numerical solution of the complete electrode
model. The computed voltages were then
corrupted with additive noise consisting of two
components, both being Gaussian with zero mean.
The standard deviation of the first component was

1% of the measurement, and the standard |
deviation of the second component was a 0.1% of
the maximum voltage.

3.2 Numerical results

The meshes used in inversion were sparser and
different from those used in the computation of
the synthetic measurements. The model for the
measurement noise in the inversion was also
different from that in the synthetic measurements:
it was zero mean but the covariance matrix is
approximated as a time invariant diagonal matrix
I, =o’.1 with a standard deviation o, that was

0.1% of the difference between the maximum and
minimum voltage difference.

Furthermore, we assumed that we knew all other
associated parameters except the absolute
permeability field. We assumed an isotropic,
homogeneous permeability k=1x10"" in the
evolution model.

To approximate the statistics of the state noise
term o, we generated 250 samples from the

statistical model for & and computed the time-
dependent Gaussian approximation for the
statistics of the water saturation distribution. The
random samples are shown in Figure 1. We
assumed that we knew all the parameters in
sequential Gaussian simulation (though the seed
number_was changed each time a random sample
was drawn).  Approximation errors  are
appropriately incorporated into the evolution
model.
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Figure 1. Simulated water distribution 90 hours
after injection for 12 random permeability fields
generated for the construction of a statistical
enhanced error model.



For comparison, we also compute conventional
stationary estimates of the water saturation based
on the same simulated ERT data. The stationary
estimates were calculated using an approach
based on Tikhonov regularization (Kaipio, 2004).
The water saturation distributions estimated with
the proposed nonstationary and stationary
approaches are presented in Figure 2. Comparing
the simulated, true saturation distributions (left
column) with the corresponding reconstructions
shows clearly that the nonstationary estimates are
better than the stationary estimates.
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Figure 2. Left column: True, simulated saturation

distributions;  center  column: stationary
reconstruction; right column: nonstationary
reconstruction.

4. CONCLUSION

In this study we proposed a nonstationary
reconstruction approach for ERT data collected in
the unsaturated zone. The approach incorporates
models for temporal behaviour of the target into
the processing of geophysical data. The method is
based on a state space representation of the
problem, and estimates are computed using the
extended Kalman filter algorithm .

We proposed method to take account for
approximation errors in the parameters of
evolution model by constructing a statistical
model of the differences between the
heterogeneous and approximate representations of
permeability in fluid flow model. The enhanced
evolution model allows for the use of a simplified
and computationally efficient evolution model in
the nonstationary inversion. Using an evolution
model capable of simulating nonisothermal
multiphase flow, the proposed approach can also
be adopted for the monitoring of geothermal
systems
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