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SUMMARY – The aim of this work is the development of a method that will allow the automated 
calibration of computer models of geothermal fields. The mathematical method used is Markov chain 
Monte Carlo (MCMC) sampling from the posterior distribution. The technique is applied to calibrating a 
simple single-layer model of the feed-zone of a well, using discharge test measurements of flowing 
enthalpy and well-head pressure, and secondly to calibrating a large 3D natural state model using pre-
exploitation measurements of temperature versus depth in several wells. 

    
 

1. INTRODUCTION 

The most difficult task in setting up a computer 
model of a geothermal field is the estimation of 
parameters such as permeability and porosity. 
This inverse modelling or calibration process is 
carried out by matching the model results to field 
data. Because geothermal systems are highly 
heterogeneous and anisotropic and field 
observations are usually sparse, model calibration 
is difficult and time consuming both in terms of 
computer time and human input. The present 
study is part of a major investigation of methods 
for automating model calibration. It investigates 
model calibration, or the inverse geothermal 
modelling problem, as a problem in statistical 
inference using a Bayesian framework. 
 
Past approaches to the inverse problem of 
geothermal modelling have used a deterministic 
approach based on nonlinear optimization 
methods for calculating ‘optimum’ parameter 
values [1]. Some success has been achieved with 
these methods for simple models with few 
parameters but they do not work well for large 
complex models [2]. Also they do not generate 
information about the likely deviations in 
predictions made from an optimized model. 
 
Statistical Inference is a well-developed area of 
Science devoted to drawing conclusions from 
quantitative measurements that we apply here to 
geothermal model calibration. Bayesian methods 
are now well established as a route to quantifying 
and solving ill-posed inverse problems [3-7], and 
have a significant advantage over standard least-
squares by producing robust estimates along with 
quantified errors [8]. In a Bayesian formulation, 
predictions are based on the posterior distribution 
over all solutions consistent with the data, 
accounting for measurement and modeling 
uncertainties. Indeed, the posterior density given 
by Bayes’ formula is simply a quantification of 
the relative probability of a set of parameters 
being the correct solution, given the 
measurements and various uncertainties. Robust 

predictions are then possible as averages of 
desired quantities, or statistics, over the posterior 
distribution. We formalize those statements as 
follows. 
  
Let d

~
 and D denote the observed data and data 

space respectively, and θ  and  denote the 
parameter and parameter space respectively. All 
information pertinent to the model calibration is 
contained in the unnormalized posterior 
distribution for 

Θ

Θ∈θ conditional on d D∈
~

. This 
is given by Bayes' rule: 
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where )
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( θdL  and )(θπ pr  are the likelihood 

function and prior distribution, respectively. Note 
that the posterior distribution is a density over the 
(high-dimensional) parameter space Θ  and is not 
useful as a solution in that form.  Useful solutions 
are given by summary statistics of the posterior 
distribution that can always be written as the 
posterior expectation of some statistic , i.e. h
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The statistic )(θh can be any function of the 
parameter θ  in which we are interested. 
Uncertainties in the posterior expectation of h  
may be calculated similarly.  
 
The integral required in (2) is over all possible 
solutions, and represents a sizable computational 
task. However, such integrals are feasible with the 
best current technology being the Markov chain 
Monte Carlo (MCMC) algorithms developed in 
the field of computational statistics. These 
approximate (2) via the Monte Carlo quadrature 
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where nθ  are samples drawn from the posterior 
distribution. The approximation converges 
according to a central limit theorem, with 
expected variance of the RHS decreasing with 
increasing . Our MCMC implementation is 
outlined in section 5.  

N

 
Our methodology is applied first to determining 
the parameters for a simple single-layer model of 
the feed-zone of a well, using discharge test 
measurements of flowing enthalpy and well-head 
pressure, and secondly to calibrating a large 3D 
natural state model using pre-exploitation 
measurements of temperature versus depth in 
several wells. 
 
2.  FORWARD PROBLEM 
Multiphase non-isothermal flow in a geothermal 
reservoir is governed by mass the and energy 
balance equations 
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+Γ= ααα ˆ.   (4) 

 
The accumulation term Mα represents mass 
(α=m) or energy (α=e) per unit volume, Qα 
represents mass or energy flux, calculated from 
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Here rvrl kkk  and  , ,φ  are the porosity, permeability 
and relative permeabilities, respectively. The van 
Genuchten-Mualem relative permeability model 
[9] with Srv = 0 is adopted in this paper. The mass 
flow of water and steam are denoted by 

, respectively. mvQ andmlQ  
 
Equation (4) is discretised with the finite volume 
method and solved with the numerical simulator 
TOUGH2 [9]. For the well-discharge problem a 
1D radial grid is used whereas for the natural state 
reservoir model a 3D regular rectangular grid is 
used, with some mesh refinement in the 
production zone.  
 

3. BAYESIAN INFERENCE 

Figure 1 gives a schematic of the distributions of 
possible data and recovered parameters when 
uncertainty in measurement and noise in 
modelling is considered. A true parameter θtrue 

results in ideal, noise-free data dnf under the 
forward map (usually a numerical approximation 
to the real problem). Because of noise in 
measurements we do not actually measure the 
data dnf, but rather some noisy version. The range 
of possible observed data, considering the range 
of possible corruption by noise, is shown as a 
shaded region around dnf. In a particular 
experiment we observe a single data set d

~
 and 

the noise realization is unknown. By using some 
model-fitting procedures such as manual 
calibration or nonlinear optimization (with 
ITOUGH2 for example [1]), we may find θML 
which is typically the maximum likelihood (ML) 
estimate of the parameter. Because of the noise 
associated with d

~
 and numerical approximation 

of the forward map, there is in fact a range of 
feasible parameters each consistent with the 
measured data up to a feasible noise vector. The 
shaded region around θML shows these. 
 

 
 
Figure 1. A schematic showing the parameter 
space, the data space and the forward map. 

 
As discussed in section 1, Bayes' rule quantifies 
the distribution of feasible parameter values using 
the details of the forward map and estimates of 
the measurement noise process. In (1) the 
likelihood function )

~
( θdL  is the probability 

density function for d
~

 given θ, which represents 
a measure of how likely it is that a parameter θ is 
true given an observation d

~
. In past deterministic 

optimization techniques for geothermal 
calibration (e.g. ITOUGH2), the objective 
function (sum of squares of the differences of the 
model outputs and observations) can be 
considered as the logarithm of the likelihood 
function when Gaussian noise is assumed. The 
prior )(θπ pr  models the state of knowledge about 
the unknown true value of θ in the absence of 
measured data .

~
d  While )(θπ pr  reflects the 

belief about θ prior to experimentation, the 
posterior )

~
(θπ d

.

 reflects the belief about θ after 

observing 
~
d  Since )

~
(θπ d  represents the 

probability distribution of θ, Bayesian inference 
produces information about the distribution of the 
parameter θ, rather than a single value estimate. 
 
In our study, we assume the observed data has 
independent and normally distributed 



measurement errors with zero mean and variances 
: 2
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Here di is the unknown real parameter value, N is 
the total number of measurements and 

).,0(~ ii N σε  Therefore, the calculation of 
likelihood is straight forward: 
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Construction of the prior density is an important 
step in performing the statistical inverse problem. 
Our prior knowledge of the unknown is usually 
qualitative rather than quantitative. Hence we 
must transform qualitative information into 
quantitative probability densities. The prior 
probability distribution should be concentrated on 
those values of parameters that an expert expects 
to see and higher probabilities must be assigned to 
them rather than to those that are not expected to 
appear. The details will be discussed in the 
following sections. 
 
4. MODELLING AND INFERENCE 

Forming the posterior distribution in (1) requires 
two modelling steps that are not often explicitly 
considered in deterministic approaches.  The 
likelihood function )

~
( θdL  is derived as the 

probability density for measuring data d
~

when 
the true parameters are θ . What is required is a 
probabilistic model for measurement errors as 
well as the deterministic forward map. To clarify 
these concepts, consider a deterministic forward 
map ( )θd

f

 with measurements corrupted by 
additive errors e  having probability density 
function . Then the likelihood function is 
simply  

( )e

 
( )( )θθ ddfdL −=

~
)

~
(       (5) 

 
since the Jacobian determinant for the change of 
variables from e  to d

~
equals 1. The functional 

form of  is typically determined by modelling 
the measurement process based on repeated 
measurements where available, knowledge of the 
instrumentation, or by analysing an existing data 
set. In this work we analysed an existing data set, 
using high frequency structure too infer the scale 
of intrinsic measurement errors, some detective 
work to find data that were interpolated rather 
than measured, and a model for the data 
dependence between measured points that we 
validated by numerical simulation. For simplicity 
we took to be Gaussian with independent 
errors where feasible. Errors in the deterministic 
forward map may also be included in the 

likelihood function, and can lead to improved 
inference (see e.g. [7]). We are developing that 
analysis in an extension of the study presented 
here. 

f

f

 
Secondly, stochastic modelling of the unknown 
true parameters is required to form the prior 
distribution )(θπ pr . This distribution gives the 
relative probability for parameters θ  in the 
absence of data. Prior models are typically 
derived from expert knowledge of allowable 
parameter values, previous measurements, 
modelling of processes that produce the unknown 
parameters, or a combination of these. The 
representation of unknowns is a composite part of 
prior modelling since expressing certain types of 
knowledge is simpler in some representations 
than others, and solutions that cannot be 
represented are excluded. In this work we 
represented the state by the vector of coefficients 
in a finite-volume numerical model, with rock 
types and ranges of allowable values determined 
by experts, and the discretization taken from 
previous work.  Including a continuum 
discretization would allow the solution to 
determine geological features such as rock 
boundaries or fracture zones. An example of a 
variable discretization is the continuum 
triangulation of the plane by Nicholls [10] that we 
look to include in future analyses.  
 
The posterior distribution )

~
( dθπ  given in (1) 

summarises all knowledge about the measurement 
process and prior knowledge. Exploratory 
analyses are often aimed at simply quantifying the 
nature and range of feasible solutions, and may be 
performed by simply drawing samples from the 
posterior distribution, as in this paper. More 
realistic analyses are aimed at making a decision, 
such as an investment strategy for long-term 
power production. Then the ability to make robust 
decisions within a Bayesian framework is a 
significant advantage over deterministic 
approaches. 
 
5. MCMC IMPLEMENTATION 

MCMC algorithms draw samples from the 
posterior distribution by generating a sequence, or 
‘chain’, of solutions that have the ergodic 
property, i.e. that spends time in each region of 
parameter space proportional to the posterior 
probability of that region. Implementation of an 
MCMC sampling algorithm can be 
straightforward, particularly when simple 
Metropolis-Hastings dynamics [11] is employed, 
as in this paper. However, achieving 
computational efficiency remains something of an 
art. 
 
The Metropolis-Hastings algorithm generates a 
random sequence of parameters (or solutions), 



For each forward simulation the rock properties 
and the initial state of the system must be 
specified and then the measured historical mass 
flows are used to drive the model. The full suite 
of rock properties includes: porosity, density, 
permeabilities, thermal conductivity and specific 
heat. Of these only porosity and permeability 
have a significant influence on the model results 
and are the parameters that are varied. The other 
parameters are assigned typical values and are 
fixed. Since the model is a homogeneous single 
layer the porosity and permeability are identical 
for all the blocks in the model, and permeability 
has only one component (only in radial direction). 
For the discharge test considered boiling occurs in 
the reservoir and thus the choice of relative 
permeabilities is important. Here the van 
Genuchten model is used which is determined by 
four parameters. Of these three ( are 
allowed to vary while one (  is fixed. 

),, lslr SSm
)0=vrS

Nθθθθ ,...,,, 321  with limiting distribution equal to 

the desired posterior distribution, i.e. )
~

(~ di θπθ  

for large i. For most implementations adjacent 
samples are highly correlated, so iθ  and 1+iθ  will 
be very similar, however for large lags, i.e. 

, the parameters ij >> iθ  and jθ  may be viewed 
as independent samples from the posterior 
distribution. The sequence also has the Markov 
property, i.e. the distribution of 1+iθ  depends only 
on iθ , and not the whole history of the chain. 
Hence the algorithm has an iterative form, as 
follows: 
At step i, given state iθ : 
(i) Propose new state 'θ from some proposal 
density )'( iq θθ  

(ii) With probability:   
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The precise elevation of the feed-zone for the well 
is not known and therefore the initial temperature 
(T0) or saturation (  and initial pressure (p)0vS 0) 
are allowed to vary. Thus the following 
parameters have to be estimated: 

set  '1 θθ =+i , otherwise set ii θθ =+1 . 
 
Mild requirements on the proposal density 

)'( iq θθ ensure that this algorithm converges (in 
probability) to the desired target distribution. In 
practice these requirements are easy to satisfy, 
however some care is required to ensure that the 
resulting algorithm is sufficiently efficient to 
generate samples in reasonable time. In this paper 
we used simple component wise random-walk 
proposals, tuned for correlations between 
parameter values. 

 
 ),,),or (,),log(,( 000 lslrv SSmSTpkφθ =  
 
Here we have transformed permeability to the 
base 10 logarithmic scale for easier calibration. 
 
6.1 Observed Data 

 Production rate, flowing enthalpy and well-head 
pressure were collected during a 140 days period. 
As shown in Figure 2 the production rate was 
increased from 4 kg/s to 10 kg/s after day 105.  

The main computational cost per iteration is 
evaluation of the posterior density at the proposed 
state 'θ  using: 
   
 )'()'

~
()

~
'( θπθθπ prdLd =∝  

 
since evaluation of the likelihood function in (5) 
requires evaluation of the forward map. In this 
sense, MCMC algorithms are similar to 
optimisation algorithms in sources of 
computational cost. Unlike optimisation 
algorithms, sampling algorithms do not converge 
to a single state, but rather keep sampling from 
the posterior density indefinitely. In practice, one 
runs the MCMC sampler long enough to achieve 
sufficiently accurate estimates in (3), as 
determined by the sample variance or other 
means. 
 
6. WELL DISCHARGE TEST 

In order to model the discharge test a single layer 
radial symmetric grid is used. The well is located 
in the first block, and then 10 small blocks are 
used adjacent to the well, followed by 65 blocks 
with a thickness expansion factor of 1.2. 
 



 
 
Figure 2. Data collected from the extended 
discharge test. 

 
This proved to be difficult to deal with in forward 
simulations as with a low permeability value (k < 
1 millidarcy) after day 105 the pressure dropped 
too low. As shown later in the calibration results, 
to match the data before day 105, the feasible 
range of permeability is usually below 1 
millidarcy. Further, it is not possible to match the 
rise in the enthalpy and increase in the pressure 
while the production rate is falling from day 0 to 
day 10. Thus in our analysis only the data 
collected from day 14 to day 84 is used. 
 
Unfortunately, the observed pressures are 
measured at wellhead whereas the TOUGH2 
model generates downhole pressures. Two 
approaches were used to deal with this problem: 
(a) The pressure difference was considered as a 
constant but unknown parameter ps 
(b) Or it was calculated by using a wellbore 
simulator for each pressure record (ps(tj), j = 
1,…,NW).  
 
The wellbore simulator WELLSIM [12] was run 
to a steady state to work out the pressure drop for 
a given configuration of the well, wellhead 
pressure and flowing enthalpy. The resulting 
``steady state'' pressure drop was used as an 
approximate representation of the transient 
behaviour.  
 
Note that when the pressure drop is treated as a 
constant, we have to estimate the pressure shift ps. 
Then, the parameter set becomes θ' = (θ, ps). In 
the top plot of Figure 2, the black and blue 
crosses are the observed wellhead pressures and 
the blue crosses are the downhole pressures 

calculated with the WELLSIM. The wellhead 
pressure is smoother than the downhole pressure, 
and because of the lower enthalpy the pressure 
difference from day 10 to day 55 is larger than the 
pressure difference from day 55 to day 85.  
 
The data are assumed to satisfy the observation 
model  
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Here εh and εp are independent and normally 
distributed measurement errors with zero mean 
and constant variances σh

2 and σp
2, respectively. 

The error standard deviations σh
 = 50 KJ/kg and 

σp
 = 3 bar were estimated from the residual of a 

smoothed spline interpolation of the data and 
from reservoir engineering experience. 
 
6.2 Prior Distribution  

The prior probability density for discharge test 
analysis can be written as a product of the prior 
probability densities of each individual 
component of θ  and θ ′ : 
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For the production rate qm and the relative 
permeability parameter S  we use the improper 
prior distribution 

vr

( mpr q 1), ∝vrSπ , as the 
production rate is given, and the van Genuchten-
Mualem model with 0=vrS  was used in this 
study. Table 1 shows the constraints on the 
component parameters of .θ Note that the 
previous study [2] of this discharge test showed 
that the system is two-phase, and hence we use 
pressure p and vapour saturation Sv to represent 
the state of the system. In addition, we choose the 
following exponential distribution to represent the 
prior density of each component of θ and θ' 
(except log(k)): 
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Here s is the factor to scale the parameters into 
the range (0, 1) and ι is a non-zero constant which 
control the skewness of the distribution, and sets 
the high probability region in which the parameter 
is more likely to occur. Different values of ι are 
chosen for different components of the parameters 
θ and θ', as shown in Table 1. 
 

Parameter Units Upper 
Bound 

Lower 
Bound 

Skewness 

φ   1 0 -5 



)log(k  [m2] -12 -18 - 
m   1 0 5 

lrS   1 0 2 

lsS   1 0 10 

0p  [bar] 250 50 -2 

0vS   1 0 -10 

sp  [bar] 150 50 -2 

 

 
Table 1. The physical bounds for θ and θ' 

 
 
6.3 Inversion Result 

The posterior distribution introduced in (1) is 
explored by MCMC. The mean value of output is 
used to estimate the well performance. We use the 
data from day 14 to day 19 and day 53 to day 69 
for training (triangles), and the remaining data is 
used for validation (squares). Figure 3(a) shows 
the inversion results for θ and Figure 3(b) shows 
the results for θ'. The uncertainty in pressure and 
enthalpy predictions is estimated as ± standard 
deviations of the TOUGH2 outputs of the 
corresponding random samples (shown as the 
shaded region).  

3

(b) 
Figure 3. Predictions of pressure and enthalpy 
changes. (a) pressure difference between WHP and 
DHP calculated using WELLSIM  (b) Constant 
pressure difference between WHP and DHP. 

 
With the use of WELLSIM to calculate pressure 
shifts, the model experiences difficulties in 
matching the relatively strong pressure drop 
between day 60 and day 80. In contrast, its peer θ' 
did a better job during this period, using the 
constant pressure shift assumption. However 
compared to the previous work [2] carried out 
with the optimization package ITOUGH2 our 
MCMC techniques gives a more accurate and 
robust result. 

 
Both scenarios (with/without the use of the 
wellbore simulator) are able to produce a 
reasonable prediction of enthalpy changes. 
 

 

 
In both of the parameter sets θ and θ', we can 
observe a strong negative correlation between log 
of permeability (log(k)) and initial pressure (p0) 
and also a strong negative correlation between 
initial vapour saturation (Sv0) and the relative 
permeability parameter S  (see Figures 4-7). ls

 

 

(a) 

Figure 4.  Histograms for the marginal distribution of 
log(k) and p0 and a scatter plot of their joint marginal 
density (pressure difference between WHP and DHP 
calculated using WELLSIM) 



 

 
Figure 5.  Histograms for the marginal distribution of 
Sv0 and Sls and a scatter plot of their joint marginal 
density (pressure difference between WHP and DHP 
calculated using WELLSIM) 

 

 
 
Figure 6.  Scatter plot of the joint marginal 
distribution of log(k), p0 and ps (constant pressure 
difference between WHP and DHP) 

 

 
 

Figure 7.  Histograms for the marginal distribution of 
Sv0 and Sls and a scatter plot of their joint marginal 
density (constant pressure difference between WHP 
and DHP) 

 
 
7. NATURAL STATE MODEL 

The 3-D finite volume grid for the natural state 
model consists of 7023 blocks. Since most of the 

wells and therefore most of the temperature 
measurements (1183 out of 1203) are in the 
middle of the reservoir, we use a fine grid in this 
region and a coarse grid in the remaining region. 
 
In natural state modelling problem, since the 
porosity and initial conditions do not affect the 
results and the relative permeability function has 
only a minor impact on the results, they have been 
removed from the parameter set. Also, we assume 
the mass and heat input are not variable (this 
improves the computational efficiency, as varying 
mass and heat input leads to a long run-time for 
modelling the natural state). Thus, the parameter 
set for natural state modelling is: 
 
 ( )Nik i ,...,1  ; ==θ  
 
There are thirteen temperature profiles measured 
from different wells. Since the temperature 
measurements are made on a finer scale than the 
results from the finite volume TOUGH2 model, 
we interpolate the TOUGH2 simulated result at 
each measurement point by bilinear interpolation.  
The data are assumed to satisfy the observation 
model 
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With the assumptions we made previously, the 
error in (7),  represents independent and 
normally distributed measurement errors with 
zero mean and constant variance σ

,j
Tε

T
2. The error 

standard deviation σT = 3˚C is estimated by 
calculating the residual of a fitted polynomial  for 
temperature data  in each well.  
 
Previously one of the authors (O'Sullivan) 
calibrated this model manually, and our starting 
state of MCMC sampling is based on random 
perturbations to his model. When we perform the 
MCMC sampling on the unnormalized posterior 
in equation (1), our current algorithm has 
difficulties in converging to the target posterior 
distribution. The maximum likelihood estimate is 
used instead of the mean estimate, calibration 
results for some of the wells are shown in Figures 
8-14.  
 
In all the plots the red line is the observed 
temperature profile, the dashed black line is the 
initial guess, the green line is the results achieved 
by O’Sullivan using manual calibration and the 
blue line is our present ML (maximum likelihood) 
estimate. 
 



  
  
Figure 8. Temperature profile for well A.  Figure 11. Temperature profile for well D 
  
  
  

  
 Figure 12. Temperature profile for well E 
Figure 9. Temperature profile for well B  
 

 
  

 Figure 13. Temperature profile for well F 
Figure 10. Temperature profile for well C  
  
 
 



 
 
Figure 14. Temperature profile for well G 

 
For well A and some other wells (not shown) our 
ML estimate produces a match of similar quality 
the O'Sullivan model. However, the O'Sullivan 
model performs slightly better for well F and well 
G. Both our ML estimate and the O'Sullivan 
model cannot produce close a match to the 
temperature measurements in well B and well C, 
but our ML estimate shows a slightly better 
match. In the well D and well E, our ML estimate 
gives a better match and the model temperatures 
are almost identical to the observed temperatures. 
For the other wells (not shown) our ML estimates 
give a somewhat better match than the O’Sullivan 
model. 
 
 
8. DISCUSSION 

The aim of this study was to developing statistical 
methods to solve the inverse problems for the 
extended discharge test and the natural state 
model that automate the calibration process. The 
results of the two case studies show that our 
sample based inference for inverse problems 
provides an efficient and robust calibration 
approach via MCMC sampling for geothermal 
models. Compared to a manual approach or a 
deterministic approach (using iTOUGH2 for 
example), our approach provides a range of 
feasible parameters consistent with the observed 
data through the posterior distribution rather than 
a single value estimate. 
 
To take the full advantage of sample based 
inference for geothermal model calibration there 
are several possible improvements that could be 
made in the future. For example: 
(i) Construct a likelihood function that is able to 
deal with the spatial-temporal correlation in 
measure data. 
(ii) The temperature profiles shown above are the 
raw data measured in wells, with no interpretation 
used. In some cases the presence of internal flows 
may be disguising the true reservoir temperature. 

This problem could be overcome by embedding a 
wellbore simulator into TOUGH2 to handle the 
internal flow and pressure difference between 
wellhead pressure and downhole pressure at 
runtime. 
(iii) The vertical grid spacing in our model is too 
coarse to represent the detailed temperature 
changes along the well. The model match could 
be improved by using a sequence of models with 
each grid a refinement of the previous one, and 
with the first estimate of parameters for a fine grid 
obtained by interpolating values form a coarse 
grid. 
(iv) The MCMC process we used assumes that the 
results obtained from a forward run of TOUGH2 
contain no errors. This is not true as discretisation 
necessarily introduces errors. This problem 
requires further investigation with statistical 
techniques that quantify and perhaps utilize 
modelling errors or bias. 
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