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SUMMARY - The aim of this work is the development of a method that will allow the automated
calibration of computer models of geothermal fields. The mathematical method used is Markov chain
Monte Carlo (MCMC) sampling from the posterior distribution. The technique is applied to calibrating a
simple single-layer model of the feed-zone of a well, using discharge test measurements of flowing
enthalpy and well-head pressure, and secondly to calibrating a large 3D natural state model using pre-
exploitation measurements of temperature versus depth in several wells.

1. INTRODUCTION

The most difficult task in setting up a computer
model of a geothermal field is the estimation of
parameters such as permeability and porosity.
This inverse modelling or calibration process is
carried out by matching the model results to field
data. Because geothermal systems are highly
heterogeneous and anisotropic and field
observations are usually sparse, model calibration
is difficult and time consuming both in terms of
computer time and human input. The present
study is part of a major investigation of methods
for automating model calibration. It investigates
model calibration, or the inverse geothermal
modelling problem, as a problem in statistical
inference using a Bayesian framework.

Past approaches to the inverse problem of
geothermal modelling have used a deterministic
approach based on nonlinear optimization
methods for calculating ‘optimum’ parameter
values [1]. Some success has been achieved with
these methods for simple models with few
parameters but they do not work well for large
complex models [2]. Also they do not generate
information about the likely deviations in
predictions made from an optimized model.

Statistical Inference is a well-developed area of
Science devoted to drawing conclusions from
quantitative measurements that we apply here to
geothermal model calibration. Bayesian methods
are now well established as a route to quantifying
and solving ill-posed inverse problems [3-7], and
have a significant advantage over standard least-
squares by producing robust estimates along with
quantified errors [8]. In a Bayesian formulation,
predictions are based on the posterior distribution
over all solutions consistent with the data,
accounting for measurement and modeling
uncertainties. Indeed, the posterior density given
by Bayes’ formula is simply a quantification of
the relative probability of a set of parameters
being the correct solution, given the
measurements and various uncertainties. Robust

predictions are then possible as averages of
desired quantities, or statistics, over the posterior
distribution. We formalize those statements as
follows.

Let d and D denote the observed data and data
space respectively, and € and ©® denote the
parameter and parameter space respectively. All
information pertinent to the model calibration is
contained in the unnormalized posterior
distribution for 6 € © conditional on d e D . This
is given by Bayes' rule:

n(e‘i )ec L(d|0)7,,(6) (1)

where L(c? |0) and 7 (0) are the likelihood

function and prior distribution, respectively. Note
that the posterior distribution is a density over the
(high-dimensional) parameter space ® and is not
useful as a solution in that form. Useful solutions
are given by summary statistics of the posterior
distribution that can always be written as the
posterior expectation of some statistic %, i.e.
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The statistic 4#(#) can be any function of the

parameter ¢ in which we are interested.

Uncertainties in the posterior expectation of /
may be calculated similarly.

The integral required in (2) is over all possible
solutions, and represents a sizable computational
task. However, such integrals are feasible with the
best current technology being the Markov chain
Monte Carlo (MCMC) algorithms developed in
the field of computational statistics. These
approximate (2) via the Monte Carlo quadrature

[no)r(6ld)ao ~ %Zh(ﬁﬂ) 3)



where 6, are samples drawn from the posterior

distribution. The approximation converges
according to a central limit theorem, with
expected variance of the RHS decreasing with
increasing N . Our MCMC implementation is
outlined in section 5.

Our methodology is applied first to determining
the parameters for a simple single-layer model of
the feed-zone of a well, using discharge test
measurements of flowing enthalpy and well-head
pressure, and secondly to calibrating a large 3D
natural state model wusing pre-exploitation
measurements of temperature versus depth in
several wells.

2. FORWARD PROBLEM

Multiphase non-isothermal flow in a geothermal
reservoir is governed by mass the and energy
balance equations

ijMade an.ﬁdF+jqadV (4)
dtQ oQ Q

The accumulation term M, represents mass
(a=m) or energy (a=e) per unit volume, Q,
represents mass or energy flux, calculated from

Mm =¢(plSl+vav)
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Here ¢, k, k
and relative permeabilities, respectively. The van
Genuchten-Mualem relative permeability model
[9] with S,,, = 0 is adopted in this paper. The mass
flow of water and steam are denoted by
0, and Q, ,respectively.

and k,, are the porosity, permeability

rl

Equation (4) is discretised with the finite volume
method and solved with the numerical simulator
TOUGH2 [9]. For the well-discharge problem a
1D radial grid is used whereas for the natural state
reservoir model a 3D regular rectangular grid is

used, with some mesh refinement in the
production zone.
3. BAYESIAN INFERENCE

Figure 1 gives a schematic of the distributions of
possible data and recovered parameters when
uncertainty in measurement and noise in
modelling is considered. A true parameter 6,.,.

results in ideal, noise-free data d,, under the
forward map (usually a numerical approximation
to the real problem). Because of noise in
measurements we do not actually measure the
data d,, but rather some noisy version. The range
of possible observed data, considering the range
of possible corruption by noise, is shown as a
shaded region around d,. In a particular

experiment we observe a single data set d and
the noise realization is unknown. By using some
model-fitting  procedures such as manual
calibration or nonlinear optimization (with
ITOUGH?2 for example [1]), we may find 6,
which is typically the maximum likelihood (ML)
estimate of the parameter. Because of the noise

associated with d and numerical approximation
of the forward map, there is in fact a range of
feasible parameters each consistent with the
measured data up to a feasible noise vector. The
shaded region around 6,, shows these.
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Figure 1. A schematic showing the parameter
space, the data space and the forward map.

As discussed in section 1, Bayes' rule quantifies
the distribution of feasible parameter values using
the details of the forward map and estimates of
the measurement noise process. In (1) the

likelihood function L(§|49) is the probability

density function for d given 6, which represents
a measure of how likely it is that a parameter 6 is
true given an observation d.In past deterministic
optimization  techniques  for  geothermal
calibration (e.g. ITOUGH2), the objective
function (sum of squares of the differences of the
model outputs and observations) can be
considered as the logarithm of the likelihood
function when Gaussian noise is assumed. The
prior 7z, (6) models the state of knowledge about

the unknown true value of 8 in the absence of
measured data d. While 7, (0) reflects the
belief about & prior to experimentation, the
posterior (6 d ) reflects the belief about 6 after

observing d. Since 7r(¢9a7) represents the

probability distribution of 8, Bayesian inference
produces information about the distribution of the
parameter 6, rather than a single value estimate.

In our study, we assume the observed data has
independent and normally distributed



measurement errors with zero mean and variances

2,
o;

d,=d +¢g, i=1.N

Here d; is the unknown real parameter value, N is
the total number of measurements and
g, ~N(0,0,). Therefore, the calculation of

likelihood is straight forward:

~ il d,—d"y
L(d|0) Hexp(— %)

i

Construction of the prior density is an important
step in performing the statistical inverse problem.
Our prior knowledge of the unknown is usually
qualitative rather than quantitative. Hence we
must transform qualitative information into
quantitative probability densities. The prior
probability distribution should be concentrated on
those values of parameters that an expert expects
to see and higher probabilities must be assigned to
them rather than to those that are not expected to
appear. The details will be discussed in the
following sections.

4. MODELLING AND INFERENCE

Forming the posterior distribution in (1) requires
two modelling steps that are not often explicitly
considered in deterministic approaches. The

likelihood function L(67|49) is derived as the

probability density for measuring data d when
the true parameters are €. What is required is a
probabilistic model for measurement errors as
well as the deterministic forward map. To clarify
these concepts, consider a deterministic forward
map d(@) with measurements corrupted by
additive errors e having probability density
function f (e). Then the likelihood function is
simply

L@y = rld-d(o)) (5)

since the Jacobian determinant for the change of
variables from e to d equals 1. The functional
form of f is typically determined by modelling

the measurement process based on repeated
measurements where available, knowledge of the
instrumentation, or by analysing an existing data
set. In this work we analysed an existing data set,
using high frequency structure too infer the scale
of intrinsic measurement errors, some detective
work to find data that were interpolated rather
than measured, and a model for the data
dependence between measured points that we
validated by numerical simulation. For simplicity

we took f to be Gaussian with independent

errors where feasible. Errors in the deterministic
forward map may also be included in the

likelihood function, and can lead to improved
inference (see e.g. [7]). We are developing that
analysis in an extension of the study presented
here.

Secondly, stochastic modelling of the unknown
true parameters is required to form the prior
distribution 7, (¢) . This distribution gives the

relative probability for parameters 6 in the
absence of data. Prior models are typically
derived from expert knowledge of allowable
parameter  values, previous measurements,
modelling of processes that produce the unknown
parameters, or a combination of these. The
representation of unknowns is a composite part of
prior modelling since expressing certain types of
knowledge is simpler in some representations
than others, and solutions that cannot be
represented are excluded. In this work we
represented the state by the vector of coefficients
in a finite-volume numerical model, with rock
types and ranges of allowable values determined
by experts, and the discretization taken from
previous  work. Including a continuum
discretization would allow the solution to
determine geological features such as rock
boundaries or fracture zones. An example of a
variable  discretization is the continuum
triangulation of the plane by Nicholls [10] that we
look to include in future analyses.

The posterior distribution ﬂ(&g ) given in (1)

summarises all knowledge about the measurement
process and prior knowledge. Exploratory
analyses are often aimed at simply quantifying the
nature and range of feasible solutions, and may be
performed by simply drawing samples from the
posterior distribution, as in this paper. More
realistic analyses are aimed at making a decision,
such as an investment strategy for long-term
power production. Then the ability to make robust
decisions within a Bayesian framework is a
significant ~ advantage  over  deterministic
approaches.

5. MCMC IMPLEMENTATION

MCMC algorithms draw samples from the
posterior distribution by generating a sequence, or
‘chain’, of solutions that have the ergodic
property, i.e. that spends time in each region of
parameter space proportional to the posterior
probability of that region. Implementation of an
MCMC sampling algorithm can  be
straightforward,  particularly =~ when simple
Metropolis-Hastings dynamics [11] is employed,
as in this paper. However, achieving
computational efficiency remains something of an
art.

The Metropolis-Hastings algorithm generates a
random sequence of parameters (or solutions),



6,,0,.6,,...,6, with limiting distribution equal to
the desired posterior distribution, i.e. 8, ~ 7(6 d )

for large i. For most implementations adjacent

samples are highly correlated, so 8, and 6, will

be very similar, however for large lags, i.e.
J >>1i, the parameters 6, and 6, may be viewed
as independent samples from the posterior
distribution. The sequence also has the Markov
property, i.e. the distribution of 6,,, depends only
on 6, , and not the whole history of the chain.
Hence the algorithm has an iterative form, as
follows:

At step i, given state 0, :

(1) Propose new state 6' from some proposal
density ¢(6'|6,)

9(6,0)7(O|d)

(i1) With probability: min| |, ————
9@ )(6|d)

set 0,

— A 1 —
., =0', otherwise set 6, =6,.

Mild requirements on the proposal density
q(0’|6?,.) ensure that this algorithm converges (in

probability) to the desired target distribution. In
practice these requirements are easy to satisfy,
however some care is required to ensure that the
resulting algorithm is sufficiently efficient to
generate samples in reasonable time. In this paper
we used simple component wise random-walk
proposals, tuned for correlations between
parameter values.

The main computational cost per iteration is

evaluation of the posterior density at the proposed
state @' using:

;z(a"J )= L(d|0)7,,(6")

since evaluation of the likelihood function in (5)
requires evaluation of the forward map. In this

sense, MCMC algorithms are similar to
optimisation  algorithms in  sources  of
computational ~ cost.  Unlike  optimisation

algorithms, sampling algorithms do not converge
to a single state, but rather keep sampling from
the posterior density indefinitely. In practice, one
runs the MCMC sampler long enough to achieve
sufficiently —accurate estimates in (3), as
determined by the sample variance or other
means.

6. WELL DISCHARGE TEST

In order to model the discharge test a single layer
radial symmetric grid is used. The well is located
in the first block, and then 10 small blocks are
used adjacent to the well, followed by 65 blocks
with a thickness expansion factor of 1.2.

For each forward simulation the rock properties
and the initial state of the system must be
specified and then the measured historical mass
flows are used to drive the model. The full suite
of rock properties includes: porosity, density,
permeabilities, thermal conductivity and specific
heat. Of these only porosity and permeability
have a significant influence on the model results
and are the parameters that are varied. The other
parameters are assigned typical values and are
fixed. Since the model is a homogeneous single
layer the porosity and permeability are identical
for all the blocks in the model, and permeability
has only one component (only in radial direction).
For the discharge test considered boiling occurs in
the reservoir and thus the choice of relative
permeabilities is important. Here the van
Genuchten model is used which is determined by
four parameters. Of these three (m,S,.,S, ) are

allowed to vary while one (S,, =0) is fixed.

The precise elevation of the feed-zone for the well
is not known and therefore the initial temperature
(Tp) or saturation (S,,) and initial pressure (p,)
are allowed to vary. Thus the
parameters have to be estimated:

following

0 = (¢,10g(k),p0,T0(01' Svo)ﬂmﬂslr’Sls)

Here we have transformed permeability to the
base 10 logarithmic scale for easier calibration.

6.1 Observed Data

Production rate, flowing enthalpy and well-head
pressure were collected during a 140 days period.
As shown in Figure 2 the production rate was
increased from 4 kg/s to 10 kg/s after day 105.
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Figure 2. Data collected from the extended
discharge test.

This proved to be difficult to deal with in forward
simulations as with a low permeability value (k <
1 millidarcy) after day 105 the pressure dropped
too low. As shown later in the calibration results,
to match the data before day 105, the feasible
range of permeability is wusually below 1
millidarcy. Further, it is not possible to match the
rise in the enthalpy and increase in the pressure
while the production rate is falling from day 0 to
day 10. Thus in our analysis only the data
collected from day 14 to day 84 is used.

Unfortunately, the observed pressures are
measured at wellhead whereas the TOUGH?2
model generates downhole pressures. Two
approaches were used to deal with this problem:
(a) The pressure difference was considered as a
constant but unknown parameter p;

(b) Or it was calculated by using a wellbore
simulator for each pressure record (ps(t), j =
L,....Nw).

The wellbore simulator WELLSIM [12] was run
to a steady state to work out the pressure drop for
a given configuration of the well, wellhead
pressure and flowing enthalpy. The resulting
“steady state" pressure drop was used as an
approximate representation of the transient
behaviour.

Note that when the pressure drop is treated as a
constant, we have to estimate the pressure shift p;.
Then, the parameter set becomes 8’ = (6, p,). In
the top plot of Figure 2, the black and blue
crosses are the observed wellhead pressures and
the blue crosses are the downhole pressures

calculated with the WELLSIM. The wellhead
pressure is smoother than the downhole pressure,
and because of the lower enthalpy the pressure
difference from day 10 to day 55 is larger than the
pressure difference from day 55 to day 85.

The data are assumed to satisfy the observation
model

W) _ )
hya =hy" +&,

(t;) _ ()
Pra =Py T&,

Here ¢, and ¢, are independent and normally
distributed measurement errors with zero mean
and constant variances o, and apz, respectively.
The error standard deviations o, = 50 KJ/kg and
0, = 3 bar were estimated from the residual of a
smoothed spline interpolation of the data and
from reservoir engineering experience.

6.2 Prior Distribution

The prior probability density for discharge test
analysis can be written as a product of the prior

probability  densities of each individual
component of 6 and 6" :

7, @ =]]7,©)

g 1:1[ g &)

7, (0) =7, O)r,(p,)

For the production rate ¢, and the relative
permeability parameter S, we use the improper

prior  distribution 7 ,(q,,S, )1 , as the

production rate is given, and the van Genuchten-
Mualem model with S, =0 was used in this

study. Table 1 shows the constraints on the
component parameters of 6. Note that the
previous study [2] of this discharge test showed
that the system is two-phase, and hence we use
pressure p and vapour saturation S, to represent
the state of the system. In addition, we choose the
following exponential distribution to represent the
prior density of each component of 6 and &'

(except log(k)):

m(x) oc %(1 - %) exp(z%j

Here s is the factor to scale the parameters into
the range (0, 1) and 1 is a non-zero constant which
control the skewness of the distribution, and sets
the high probability region in which the parameter
is more likely to occur. Different values of 1 are
chosen for different components of the parameters
6 and @', as shown in Table 1.

Parameter | Units | Upper | Lower | Skewness
Bound | Bound
@ 1 0 -5




log(k) m’] | -12 -18 -
m 1 0 5
S, 1 0 2
S, 1 10
I3 [bar] | 250 50 2
S, 1 0 -10
». [bar] | 150 50 2

Table 1. The physical bounds for 6 and 6§’

6.3 Inversion Result

The posterior distribution introduced in (1) is
explored by MCMC. The mean value of output is
used to estimate the well performance. We use the
data from day 14 to day 19 and day 53 to day 69
for training (triangles), and the remaining data is
used for validation (squares). Figure 3(a) shows
the inversion results for # and Figure 3(b) shows
the results for 8". The uncertainty in pressure and
enthalpy predictions is estimated as +3 standard
deviations of the TOUGH2 outputs of the
corresponding random samples (shown as the
shaded region).

Both scenarios (with/without the use of the
wellbore simulator) are able to produce a
reasonable prediction of enthalpy changes.
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Diown Hole Pressure [bar|
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Figure 3. Predictions of pressure and enthalpy
changes. (a) pressure difference between WHP and
DHP calculated using WELLSIM (b) Constant
pressure difference between WHP and DHP.

With the use of WELLSIM to calculate pressure
shifts, the model experiences difficulties in
matching the relatively strong pressure drop
between day 60 and day 80. In contrast, its peer 6’
did a better job during this period, using the
constant pressure shift assumption. However
compared to the previous work [2] carried out
with the optimization package ITOUGH2 our
MCMC techniques gives a more accurate and
robust result.

In both of the parameter sets # and ', we can
observe a strong negative correlation between log
of permeability (log(k)) and initial pressure (po)
and also a strong negative correlation between
initial vapour saturation (S,y) and the relative
permeability parameter S, (see Figures 4-7).

pg [bar]

-15.35 -15.3 RER R TR -15.15
logyo(k [m7)
Figure 4. Histograms for the marginal distribution of
log(k) and po and a scatter plot of their joint marginal
density (pressure difference between WHP and DHP
calculated using WELLSIM)
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Syo and Sis and a scatter plot of their joint marginal
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Figure 6. Scatter plot of the joint marginal

distribution of log(k), p and p (constant pressure
difference between WHP and DHP)

Figure 7. Histograms for the marginal distribution of
Svo and Si; and a scatter plot of their joint marginal
density (constant pressure difference between WHP
and DHP)

7. NATURAL STATE MODEL

The 3-D finite volume grid for the natural state
model consists of 7023 blocks. Since most of the

wells and therefore most of the temperature
measurements (1183 out of 1203) are in the
middle of the reservoir, we use a fine grid in this
region and a coarse grid in the remaining region.

In natural state modelling problem, since the
porosity and initial conditions do not affect the
results and the relative permeability function has
only a minor impact on the results, they have been
removed from the parameter set. Also, we assume
the mass and heat input are not variable (this
improves the computational efficiency, as varying
mass and heat input leads to a long run-time for
modelling the natural state). Thus, the parameter
set for natural state modelling is:

0='; i=1,..N)

There are thirteen temperature profiles measured
from different wells. Since the temperature
measurements are made on a finer scale than the
results from the finite volume TOUGH2 model,
we interpolate the TOUGH2 simulated result at
each measurement point by bilinear interpolation.
The data are assumed to satisfy the observation
model

T/ =T/ +¢&l, j=1,.,N ™

With the assumptions we made previously, the
error in (7), &}, represents independent and

normally distributed measurement errors with
zero mean and constant variance o1>. The error
standard deviation o = 3°C is estimated by
calculating the residual of a fitted polynomial for
temperature data in each well.

Previously one of the authors (O'Sullivan)
calibrated this model manually, and our starting
state of MCMC sampling is based on random
perturbations to his model. When we perform the
MCMC sampling on the unnormalized posterior
in equation (1), our current algorithm has
difficulties in converging to the target posterior
distribution. The maximum likelihood estimate is
used instead of the mean estimate, calibration
results for some of the wells are shown in Figures
8-14.

In all the plots the red line is the observed
temperature profile, the dashed black line is the
initial guess, the green line is the results achieved
by O’Sullivan using manual calibration and the
blue line is our present ML (maximum likelihood)
estimate.
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For well A and some other wells (not shown) our
ML estimate produces a match of similar quality
the O'Sullivan model. However, the O'Sullivan
model performs slightly better for well F and well
G. Both our ML estimate and the O'Sullivan
model cannot produce close a match to the
temperature measurements in well B and well C,
but our ML estimate shows a slightly better
match. In the well D and well E, our ML estimate
gives a better match and the model temperatures
are almost identical to the observed temperatures.
For the other wells (not shown) our ML estimates
give a somewhat better match than the O’Sullivan
model.

8. DISCUSSION

The aim of this study was to developing statistical
methods to solve the inverse problems for the
extended discharge test and the natural state
model that automate the calibration process. The
results of the two case studies show that our
sample based inference for inverse problems
provides an efficient and robust calibration
approach via MCMC sampling for geothermal
models. Compared to a manual approach or a
deterministic approach (using iTOUGH2 for
example), our approach provides a range of
feasible parameters consistent with the observed
data through the posterior distribution rather than
a single value estimate.

To take the full advantage of sample based
inference for geothermal model calibration there
are several possible improvements that could be
made in the future. For example:

(1) Construct a likelihood function that is able to
deal with the spatial-temporal correlation in
measure data.

(i1) The temperature profiles shown above are the
raw data measured in wells, with no interpretation
used. In some cases the presence of internal flows
may be disguising the true reservoir temperature.

This problem could be overcome by embedding a
wellbore simulator into TOUGH2 to handle the
internal flow and pressure difference between
wellhead pressure and downhole pressure at
runtime.

(iii) The vertical grid spacing in our model is too
coarse to represent the detailed temperature
changes along the well. The model match could
be improved by using a sequence of models with
each grid a refinement of the previous one, and
with the first estimate of parameters for a fine grid
obtained by interpolating values form a coarse
grid.

(iv) The MCMC process we used assumes that the
results obtained from a forward run of TOUGH?2
contain no errors. This is not true as discretisation
necessarily introduces errors. This problem
requires further investigation with statistical
techniques that quantify and perhaps utilize
modelling errors or bias.
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