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SUMMARY – Analytic solutions of the advection-dispersion equation that may be used to describe 
airborne concentrations after a release of small particles at some height are used to model the deposits 
from hydrothermal eruption events.  The dynamics of the eruption jet are used to estimate the height to 
which rock particles are lifted, while wind velocity and turbulence parameters allow calculation of the 
dispersion and deposit profiles of the aerosols and liquid droplets. 

 
The method can also be used for modelling other wind-dispersed particles (e.g. sand, dust, pollen, spray 
droplets) and can be also be continued below water surfaces to predict seabed or lakebed deposits of 
land-based solid-particle ejecta. 
 
1.  INTRODUCTION 

Small particles (sand, dust, droplets, etc.) that are 
released into the atmosphere, descend under 
gravity while being dispersed by the wind.  
Generally the atmosphere does not move 
uniformly; the wind speed and direction, and also 
the turbulence length scales, all vary with 
elevation.  By modelling the atmosphere as a flow 
that is layer-wise uniform, analytical solutions of 
the conservation equations that describe particle 
movement through an elevation-varying 
atmospheric flow may be found.  Then, deposition 
concentrations on the ground may be calculated.  
While it is possible to numerically calculate 
solutions to the non-linear equations that result 
from a continuously-stratified model, the finitely-
layered system better reflects the kind of 
information which is available on air movement.  
Because the solutions are expressed as explicit 
formulae, analyses of sensitivity of the deposit 
structure to the various parameters are easily 
carried out. 
 
Key assumptions made in the model are as 
follows: 
• the wind is modelled as having a layer-wise 
uniform velocity (i.e. the wind is constant in 
direction and speed over each height interval); 
• the ground surface is assumed approximately 
horizontal and the variation of topography does 
not influence the average transport mechanisms; 
• each cohort of material is released at a certain 
height, where each particle quickly takes up a 
velocity which corresponds to the wind speed 
laterally and the particle's "settling speed" 
downwards (the motion of large rock fragments is 
not included in this model); 
• the turbulence within the air flow is represented 
by downwind, crosswind and vertical 
characteristic length scales within each wind layer.  
Usually, the vertical dispersion is taken to be 
negligible compared with the vertical advection;  
• deposits of different-sized cohorts of particles 
may be superposed for releases which contain 
various particle sizes.  A hydrothermal eruption 

contains particles of many sizes; the solids are 
partitioned into standard sieve diameters, the 
deposits of which are then combined. 
 2.  THE MODEL 

The advection-dispersion equation which 
describes the motion of a cohort, with total mass 
Q, of uniformly-sized particles released at the 
point (0,0,H )  a distance H above the Cartesian 
origin, at time t = 0, under the above assumptions, 
is based on the equation of conservation of mass: 
 

 ∂c
∂t

+ ∇ ⋅ q = Qδ (x)δ (y)δ (z − H )δ (t)  (1) 

 
where the point source term on the RHS is 
expressed in terms of Dirac delta functions.  The 
volumetric mass concentration c(x, y,z, t)  of 
particles (in kg/m3) in the atmosphere depends on 
the specific mass flux q which is a combination of 
advection by the wind, turbulent dispersion and 
settling under gravity.  [Initially, the concentration 
is zero, i.e. c(x, y,z,0) = 0 .]  The mass flux term is 
taken to be of the form 
 
 q = cu − D ⊗ ∇c − cSk  (2) 
 
where u = (U,V ,0)  is the mean wind velocity 
vector, with wind speed W , while 
S is the settling speed in the downward direction 
(k is a unit vector in the z-direction) and 

= (U 2 + V 2)1/ 2

D = WL 
is the dispersion tensor written in terms of wind 
speed and a dispersion length tensor.   Substitution 
of (2) into Equation (1) gives an advection-
dispersion equation for c: 
 

 
∂c
∂t

+ ∇ ⋅ (cu − D ⊗ ∇c − cSk)

             = Qδ (x)δ (y)δ (z − H )δ (t)
 (3) 

 
The dispersion tensor is of the general form 
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  (9) If the wind direction is at angle θ to the x-axis (i.e. 

U /W = cosθ ,  V /W = sinθ ), and the longitudinal 
(downwind) and transverse (crosswind) dispersion 
coefficients are DL and DT respectively, then the 
second-order symmetric dispersion tensor has the 
form 

 
In general, the deposit has elliptical level surfaces 
(contours) centred on the point (x, y) = (UH /S,0).  
If DT = DL , the contours are circular. 

 3.  MULTI–LAYERED MODEL 
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A piecewise-constant approximation is made to 
each of the parameters in Equation (6), by 
dividing the atmosphere into layers.  Within Layer 
i, the wind speed and direction, the particle falling 
speed and the turbulent dispersion coefficients are 
taken to be constant, with vertical dispersion 
negligible.  Then, within Layer i, c satisfies the 
equation: 

 
Furthermore, if it is assumed that the settling 
speed, the wind speed and direction, as well as the 
turbulent dispersion, vary with elevation, then S = 
S(z), U = U(z), V = V(z) and D = D(z), and 
Equation (3) may be written as: 
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  (6) 

with requirements for continuity of concentration 
and vertical mass flux to be satisfied at the layer 
interfaces, which are at .  The particle 
release height H can be placed in any chosen 
layer. For the case where the vertical dispersion is 
small enough to be neglected, analytical solutions 
can be found. 

z = Zi

 
In general, this equation cannot be solved 
analytically, and a full-scale numerical approach is 
necessary for finding the concentration c and 
consequent deposits.  However, for a uniform 
airflow in the x-direction with constant speed W 
and constant downwind (longitudinal) and 
crosswind (transverse) dispersion coefficients DL 
and DT respectively, and negligible vertical 
dispersion (Dzz = DV = 0), the concentration is 
given at time t after release by 

 
In the multi-layered model, the particles fall from 
the release point and the resulting mass 
distribution that is calculated at the first layer 
interface [in a form similar to the result given in 
Equation (9)] is used as a distributed source for 
the transport through the next layer.  In that next 
layer, the axes are rotated so the "x-axis" is 
pointing downwind.  The process is repeated until 
the ground is reached, and the resulting deposit is 
calculated.  There is not enough space here to 
provide the detailed formula for the deposits, but 
it is easily programmed for direct calculation.  
Because the mathematical problem is linear, 
different-sized cohorts can be superposed without 
interference, and the combined deposit calculated 
directly.  The method can be applied to continuous 
and time-varying releases, from different positions 
in the atmosphere. 
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At time 0 < t < H/S, the particles are spread 
laterally at a height z = H – St above the ground.  
The deposit on the ground is found by integrating 
the total downward mass flux there: 

  

 −qz (x, y,0, t) = DV
∂c
∂z

+ Sc
 
  

 
  

z= 0
 (8) 

4.  HYDROTHERMAL ERUPTIONS 
 
In general, a hydrothermal eruption consists of a 
jet of steam, water droplets and small rock 
particles.  While the mechanism that triggers the 
onset of such events is still a matter of conjecture 
(seismic disturbance?), they continue to occur 
irregularly in many geothermal systems around 

 
Because the vertical dispersion is effectively zero, 
the mass deposit is given (in kg/m2) by 
 



the world.  Previous mathematical modelling work 
by McKibbin, Smith and other workers (2000, 
2003, 2005, 2006) has concentrated on both the 
underground flows and the above-ground mass 
transport as the eruptions proceed. 
 
In order to make use of the above model, 
information is needed about the way the particles 
and droplets in a hydrothermal eruption are 
ejected into the air; in particular, information 
about the jet dynamics enables release heights of 
particular-sized particles to be found.  In 
McKibbin & Smith (2006, in these Proceedings), 
a formulation for a hydrothermal eruption jet is 
proposed, and it is that model which is used here. 
 
Height of release from jet 
It is assumed that the particles will rise to a height 
in the jet where their weight is exactly balanced 
by the upward force (drag) exerted by the 
hydrothermal eruption column.  From McKibbin 
& Smith (2006), the vertical speed w(z) of the 
fluid column reduces approximately linearly with 
elevation from the emerging speed w(0) to zero at 
the column height Hmax, i.e., 
 

 w(z) ≈ w(0) 1−
z

Hmax

 

 
 

 

 
 . (11) 

 
Figure 1 shows a comparison of calculated and 
approximate jet speeds as functions of height for 
one particular example, where w(0) = 20 ms–1. 
 

 
 

Figure 1: Vertical jet speed w of gas phase at height z: 
(––––) values from Smith & McKibbin (2006);  

(– – –) linear approximation from Equation (11). 
 
 
The release height for a particle with settling 
speed S is therefore given approximately by 
 

 z = Hmax 1−
S

w(0)
 

 
 

 

 
  (12) 

 
provided that w(0) > S, i.e. that the emerging jet is 
moving fast enough to lift the particle off the 
ground. 
 
Settling speed of particles 
The settling speed S of a particular particle 

depends on its size, shape and weight.  For 
particles which are approximately spherical, with 
diameter d, the requirement that the particle's 
weight be exactly balanced by the drag exerted by 
the upward moving jet is expressed by 
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where ρ p  and ρa  are the densities of the particle 
and air respectively, and the drag coefficient CD is 
a function of the Reynolds Number, 
 

 Re =
ρadS
µa

, (14) 

 
where µa  is the dynamic viscosity of the air.  
Here, we assume the form (Perry et al., 1984): 
 

 CD =
24
Re

(1+ 0.14 Re0.7)    for    Re < 1000 

and  (15) 
 CD = 0.447     for     Re ≥ 1000. 
 
For a given particle size and density, Equations 
(13–15) can be solved to give S.  
 
Particle size distribution 
In geology and volcanology, grain-size analyses of 
tephra are made using sieve diameters, which are 
in turn converted to φ-values via the formula: 
 
 d = 2−φ    i.e.    φ = − log2 d  (16) 
 
where diameter d is measured in mm (e.g. see 
Bonadonna & Houghton, 2005). This means that 
small particles have large φ-values, and vice versa.  
Table 1 gives settling speed values for a range of 
particle sizes measured by standard φ-values, for 
particles with density 1500 kg m–3, and also for 
water droplets with density 1000 kg m–3.  [Note 
that for φ ≥ 5, diameters are given in microns and 
speeds in mm s–1.] 
 
 

Table 1: Calculated values of settling speed S for 
particles of various sizes and densities: 

rock particles 1500 kg m–3, water drops 1000 kg m–3. 
[* Water droplets: dw ≤ 8 mm, with a maximum speed of 

about 9 m s–1.  See Perry et al. (1984).] 
 

φ diameter (�m) Sp   (m s–1) Sw  (m s–1) 
–4 16 24 20* 
–3 8 17 14* 
–2 4 12 9.8 
–1 2 8.5 6.8 
0 1 4.9 3.8 
1 0.5 2.7 2.0 
2 0.25 1.3 0.96 
3 0.125 0.51 0.36 
4 0.0625 0.16 0.11 
  diameter (µm) Sp  (mm s–1) Sw  (mm s–1) 



5 31 43 29 
6 16 11 7.4 
7 8 2.8 1.9 
8 4 0.70 0.46 
9 2 0.17 0.11 
10 1 0.044 0.029 

 
Use of Equation (12) and Table 1 now allows the 
release height for each φ-class to be calculated.  In 
the example shown in Figure 1, w(0) = 20 m s–1 
and Hmax = 12.2 m.  Table 2 shows the height in 
the jet where the weight and drag are equal for 
each particle size.  Note that, in this case, the fine 
particles with diameter less than 0.25 mm all rise 
to very near the top of the jet column. 
 
Table 2: Heights in the eruption jet where the nett force 

is zero, and settling time to ground:  
zp, tp for rock particles (1500 kg m–3); 
zw, tw for water drops (1000 kg m–3).   

[# From Table 1, note that for φ = –4, Sp > w(0). 
* See note in caption for Table 1.]] 

 
φ zp   (m) tp  (s) zw  (m) tw  (s) 
–4 – # – # 0.27* 0.014* 
–3 1.9 0.11 3.8* 0.27* 
–2 4.9 0.41 6.2 0.63 
–1 7.0 0.82 8.0 1.2 
0 9.2 1.9 9.9 2.6 
1 10.6 3.9 11.0 5.5 
2 11.4 8.8 11.6 12 
3 11.9 23 12.0 33 
4 12.1 75 12.1 110 
5 12.2 4.7 min 12.2 7.0 min. 
6 12.2 18 min. 12.2 27 min. 
7 12.2 72 min. 12.2 1.7 min. 
8 12.2 4.8 hr 12.2 7.4 hr 
9 12.2 20 hr 12.2 31 hr 
10 12.2 77 hr 12.2 120 hr 

 
Particle size distribution 
The last remaining component required is the 
actual distribution of the particles amongst the 
grain-size φ-classes.  For a given total mass 
discharge from a hydrothermal eruption jet, 
particles of all sizes that are small enough to be 
lifted from the ground will contribute to the 
eruption.  Also, water droplets from the erupting 
fluid as well as from condensing vapour will be 
lifted by the jet until they are too large to be 
elevated any further.  It is likely that many will 
adhere to solid particles and act as a binding agent 
to aid coalescence of smaller particles into 
agglomerates which will have a greater settling 
speed and fall as mud-like particles.  Here, to 
illustrate the method, we will calculate the deposit 
from an event with a somewhat arbitrary particle 
size distribution. 
 
The supposed mass distribution amongst different-
sized particles is set out in Table 3.  If the total 
volume V of ejected solid material is known, then 
the total mass M can be calculated from M = ρpV, 
where in this case ρp = 1500 kg m–3.  This is only 
approximate, as the in situ pre-erupted material 

and that deposited both contain pore space. 
 
The wind 
The eruption jet in our example has a maximum 
height of 12.2 m.  We assume that the wind profile 
is exponential, of the form 
 

 U = U f
z

H f

 

 
  

 

 
  

a

 

 
with a free windspeed of Uf = 5 m s–1 at a height 
of Hf = 20 m, and with a = 0.2. 
 

Table 3: Mass distribution amongst the rock particle 
size classes for an example eruption with an initial 

ejection speed at the ground of w(0) = 20 m s–1. 
[# Note from Table 1 that for φ = –4, Sp > w(0).] 

 
φ Sp   (m s–1) zp   (m) mass fraction (%) 
–4 24 – # –# 
–3 17 1.9 0 
–2 12 4.9 5 
–1 8.5 7.0 10 
0 4.9 9.2 10 
1 2.7 10.6 15 
2 1.3 11.4 15 
3 0.51 11.9 20 
4 0.16 12.1 15 
5 0.043 12.2 10 
6 0.011 12.2 0 
7 0.0028 12.2 0 
8 0.00070 12.2 0 
9 0.00017 12.2 0 
10 0.000044 12.2 0 
  Total 100 

 
We approximate this as a five-layer system with 
four layers each 5 m thick, topped by a semi-
infinite layer; within each layer the wind-speed is 
uniform (see Figure 2), corresponding to a value 
mid-way through the layer.  The wind direction 
varies with altitude, but the turbulence length 
scales are assumed to be uniform; this leads to 
increasing values of the dispersion coefficients 
(DLi, DTi) = Wi(LLi, LTi).  The wind parameters are 
shown in Table 4. 
 

 
 

Figure 2. Exponential wind profile and the 
approximating multi-layered system. 

 
 



Note that, if required, one can add a layer or layers 
of water below the wind strata.  These layers can 
be moving to simulate water currents.  The settling 
speeds of particles may be calculated from 
Equations (13–15) with density and viscosity of 
water instead of air. 
 
Deposit of solid ejecta 
Deposits from each of the eight non-zero masses 
of grain-size cohorts listed in Table 3 may be 
superposed.  Particles with φ = –2 are released in 
Layer 5, those with φ = –1, 0 in Layer 4, and the 
other five sizes φ = 1, …, 5 in Layer 3.  Because 
they are released at greater height and fall more 
slowly, the spread of the smaller particles is 
greater than that of the larger ones.  Figure 4 
shows the pathways of the centre of mass (c.o.m.) 
of some of the separate grain-size cohorts, as well 
as the contours of the total mass deposit.  The 
c.o.m. pathways all originate within the eruption 
jet above its base at (x, y) = (0, 0).  Depending on 
the height to which the particles are lifted, the 
particles move with the wind, first in the layer in 
which they leave the jet, and then down through 
the layers below (if any). 
 
 

Table 4. Values of interface heights, wind speeds, 
directions and turbulence length scales for the example 

case where the wind motion is modelled by a multi-
layered system. 

 

Layer Zi 
(m) 

Wi 
(ms–1) θ� LLi 

(m) 
LTi 
(m) 

1 20 5.00 0 1 0.5 

2 15 4.86 20 1 0.5 
3 10 4.55 –20 1 0.5 
4 5 4.11 20 1 0.5 
5 0 3.30 0 1 0.5 

 
The lighter particles (φ = 1, …, 5) are lifted to 
Layer 3 (10 < z < 15 m) and, because of their slow 
settling speed (see Table 2), are transported 
considerable distances before reaching the ground.  
Because there is then plenty of time for 
dispersion, these smaller particles are spread more 
thinly where they land.  Figure 5 shows contours 
of the deposit from the cohort of φ = 5 particles 
(diameter 31 µm; release height 12.2 m; settling 
speed 43 mm s–1; time to ground 4.7 minutes). 
 
These particles are transported a long way (of the 
order of a kilometre or more) downwind of the 
eruption, and would not be regarded as part of the 
main ejecta deposit.  However, they form part of 
the fine material that coats the surrounding areas 
with a thin powder-like coating, some distance 
from the eruption site. 
 
Further analysis is possible of the distribution of 
grain-sizes within any sample gathered from the 
eruption ejecta.  At the eruption site, the relative 
mass fractions of the φ-classes are shown in Table 
3.  The analytic solutions enable the relative mass 
fractions deposited at any point on the ground to 
be calculated.   
 

 

 
 

Figure 4. Contours (at 10 % intervals) of the total mass deposit for the example data.  The pathways of the centres of 
mass for the different grain-size cohorts are shown as dashed lines, some of which are marked with their φ-values. 

 
 



 
 

Figure 5. Contours (at 10 % intervals) of the total mass deposit for the φ = 5 cohort. 
 



A profile for a distance of 70 m along y = 0 (this is 
in the direction of the wind at ground level) is 
shown in Figure 6.  The lines show the cumulative 
mass deposits for the various 
g���� ���� cohorts with φ = –2 at the bottom 
up to φ = 5 at the top.  The deposits for φ > 2 in 
this region are too small to distinguish here.  The 
bold curve shows the total deposit f(x, 0), in kg m–

2, for –20 < x < 50 m. 
 

 
Figure 6. Cumulative mass deposit for the various 

g���� ���� cohorts with φ = –2 at the bottom up to  
φ = 5 at the top.  The deposits for φ > 2 in this region are 

too small to distinguish here. 
 
Field-data test? 
It is of interest to know what a collected sample 
from the deposit would show in terms of grain-
size composition.  This is easily computed by 
scaling the cumulative values into fractions of the 
total at each point.  For the same data as in Figure 
6, these values are shown in Figure 7.   
 

 
Figure 7. Cumulative mass fractions for the various 

g���� ���� cohorts with φ ≤ –2 at the bottom.  The 
deposits for φ > 3 in this region are too small to 

distinguish here. 
 
Although the curves appear very symmetrical in 
this case, it is not so generally.  However, Figure 7 
shows that, for this particular example, samples 
collected from, say, 5 m upwind and 5 m down-
wind of the eruption vent, should have very nearly 
the same fractional composition of grain sizes, 
although, of course, the total mass deposit would 
be much smaller upwind than downwind (see 
Figure 6).  Is there data available that could be 
used to test such a calculated result? 

SUMMARY 
 
This work is a further development of earlier 
research into finding analytical expressions for 
deposits of wind-blown particles released into the 
atmosphere.  The elements required for modelling 
the transport and deposit of solid material ejected 
from a hydrothermal eruption have been 
presented.   
 
Analytical solutions for the advection-dispersion 
equation have been used to directly calculate how 
small particles settle to the ground through a non-
uniform wind.  These have been used to estimate 
the particulate deposits from an eruption, by using 
release heights from an eruption jet model. 
 
An example set of mass release data has been used 
to calculate the particle-size composition of the 
total deposit.  Some field data could be used to 
test the results.  The inverse problem of finding all 
parameters from field samples would be difficult. 
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