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MODELLING DEPOSITION OF HYDROTHERMAL ERUPTION EJECTA

R. MCKIBBIN

Massey University, Auckland, New Zealand

SUMMARY - Analytic solutions of the advection-dispersion equation that may be used to describe
airborne concentrations after a release of small particles at some height are used to model the deposits
from hydrothermal eruption events. The dynamics of the eruption jet are used to estimate the height to
which rock particles are lifted, while wind velocity and turbulence parameters allow calculation of the
dispersion and deposit profiles of the aerosols and liquid droplets.

The method can also be used for modelling other wind-dispersed particles (e.g. sand, dust, pollen, spray
droplets) and can be also be continued below water surfaces to predict seabed or lakebed deposits of

land-based solid-particle ejecta.
1. INTRODUCTION

Small particles (sand, dust, droplets, etc.) that are
released into the atmosphere, descend under
gravity while being dispersed by the wind.
Generally the atmosphere does not move
uniformly; the wind speed and direction, and also
the turbulence length scales, all vary with
elevation. By modelling the atmosphere as a flow
that is layer-wise uniform, analytical solutions of
the conservation equations that describe particle
movement  through an  elevation-varying
atmospheric flow may be found. Then, deposition
concentrations on the ground may be calculated.
While it is possible to numerically calculate
solutions to the non-linear equations that result
from a continuously-stratified model, the finitely-
layered system better reflects the kind of
information which is available on air movement.
Because the solutions are expressed as explicit
formulae, analyses of sensitivity of the deposit
structure to the various parameters are easily
carried out.

Key assumptions made in the model are as
follows:

«the wind is modelled as having a layer-wise
uniform velocity (i.e. the wind is constant in
direction and speed over each height interval);

* the ground surface is assumed approximately
horizontal and the variation of topography does
not influence the average transport mechanisms;

* each cohort of material is released at a certain
height, where each particle quickly takes up a
velocity which corresponds to the wind speed
laterally and the particle's "settling speed"
downwards (the motion of large rock fragments is
not included in this model);

« the turbulence within the air flow is represented
by downwind, crosswind and vertical
characteristic length scales within each wind layer.
Usually, the vertical dispersion is taken to be
negligible compared with the vertical advection;

* deposits of different-sized cohorts of particles
may be superposed for releases which contain
various particle sizes. A hydrothermal eruption

contains particles of many sizes; the solids are
partitioned into standard sieve diameters, the
deposits of which are then combined.

2. THE MODEL

The advection-dispersion  equation  which
describes the motion of a cohort, with total mass
0O, of uniformly-sized particles released at the
point (0,0,H) a distance H above the Cartesian
origin, at time ¢ = 0, under the above assumptions,
is based on the equation of conservation of mass:

%Jr V-q=06(x)o(y)o(z-H)o() (1)
where the point source term on the RHS is
expressed in terms of Dirac delta functions. The
volumetric mass concentration c(x,y,z,t) of
particles (in kg/m®) in the atmosphere depends on
the specific mass flux q which is a combination of
advection by the wind, turbulent dispersion and
settling under gravity. [Initially, the concentration
is zero, i.e. ¢(x,y,z,0)=0.] The mass flux term is
taken to be of the form

q=cu-D® Vc—-cSk 2)

where u=(U,V,0) is the mean wind velocity
vector, with wind speed W = (U? + Vz)l/ 2 while
S is the settling speed in the downward direction
(k is a unit vector in the z-direction) and D = WL
is the dispersion tensor written in terms of wind
speed and a dispersion length tensor. Substitution
of (2) into Equation (1) gives an advection-
dispersion equation for c:
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The dispersion tensor is of the general form
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If the wind direction is at angle fto the x-axis (i.e.
U/W =cos@, V/W =sinf), and the longitudinal
(downwind) and transverse (crosswind) dispersion
coefficients are D; and Dy respectively, then the
second-order symmetric dispersion tensor has the
form

D, cos’ 0+ Dy sin® @ (D, —Dy)sinfcos@ 0
D=| (D, —D;)sinfcos@ D, sin’@+Dycos’d 0
0 0 D
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Furthermore, if it is assumed that the settling
speed, the wind speed and direction, as well as the
turbulent dispersion, vary with elevation, then S =
S(z), U = Uz), V= Vz and D = D(z), and
Equation (3) may be written as:
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In general, this equation cannot be solved
analytically, and a full-scale numerical approach is
necessary for finding the concentration ¢ and
consequent deposits. However, for a uniform
airflow in the x-direction with constant speed W
and constant downwind (longitudinal) and
crosswind (transverse) dispersion coefficients D,
and Dy respectively, and negligible vertical
dispersion (D,, = Dy = 0), the concentration is
given at time ¢ after release by

0
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At time 0 < t < H/S, the particles are spread
laterally at a height z = H — St above the ground.
The deposit on the ground is found by integrating
the total downward mass flux there:

—q,(x,,0,t) :LDV é + ScJ ®)
& z=0

Because the vertical dispersion is effectively zero,
the mass deposit is given (in kg/m?) by

fxy)= I :Sc(x, ,0,0)dt
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In general, the deposit has elliptical level surfaces
(contours) centred on the point (x,y) = (UH/S,0).
If Dy = D,, the contours are circular.

3. MULTI-LAYERED MODEL

A piecewise-constant approximation is made to
each of the parameters in Equation (6), by
dividing the atmosphere into layers. Within Layer
i, the wind speed and direction, the particle falling
speed and the turbulent dispersion coefficients are
taken to be constant, with vertical dispersion
negligible. Then, within Layer i, c¢ satisfies the
equation:
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with requirements for continuity of concentration
and vertical mass flux to be satisfied at the layer
interfaces, which are at z=Z,. The particle
release height H can be placed in any chosen
layer. For the case where the vertical dispersion is
small enough to be neglected, analytical solutions
can be found.

In the multi-layered model, the particles fall from
the release point and the resulting mass
distribution that is calculated at the first layer
interface [in a form similar to the result given in
Equation (9)] is used as a distributed source for
the transport through the next layer. In that next
layer, the axes are rotated so the "x-axis" is
pointing downwind. The process is repeated until
the ground is reached, and the resulting deposit is
calculated. There is not enough space here to
provide the detailed formula for the deposits, but
it is easily programmed for direct calculation.
Because the mathematical problem is linear,
different-sized cohorts can be superposed without
interference, and the combined deposit calculated
directly. The method can be applied to continuous
and time-varying releases, from different positions
in the atmosphere.

4. HYDROTHERMAL ERUPTIONS

In general, a hydrothermal eruption consists of a
jet of steam, water droplets and small rock
particles. While the mechanism that triggers the
onset of such events is still a matter of conjecture
(seismic disturbance?), they continue to occur
irregularly in many geothermal systems around



the world. Previous mathematical modelling work
by McKibbin, Smith and other workers (2000,
2003, 2005, 2006) has concentrated on both the
underground flows and the above-ground mass
transport as the eruptions proceed.

In order to make use of the above model,
information is needed about the way the particles
and droplets in a hydrothermal eruption are
ejected into the air; in particular, information
about the jet dynamics enables release heights of
particular-sized particles to be found. In
McKibbin & Smith (2006, in these Proceedings),
a formulation for a hydrothermal eruption jet is
proposed, and it is that model which is used here.

Height of release from jet

It is assumed that the particles will rise to a height
in the jet where their weight is exactly balanced
by the upward force (drag) exerted by the
hydrothermal eruption column. From McKibbin
& Smith (2006), the vertical speed w(z) of the
fluid column reduces approximately linearly with
elevation from the emerging speed w(0) to zero at
the column height H,,,,, i.e.,

=~
Hmax

Figure 1 shows a comparison of calculated and
approximate jet speeds as functions of height for
one particular example, where w(0) =20 ms .

w(z) w(O)[l— (11)

calculated jet speed

z [m] linear approximation  *

w [mis]

Figure 1: Vertical jet speed w of gas phase at height z:
( ) values from Smith & McKibbin (2006);
(= —-) linear approximation from Equation (11).

The release height for a particle with settling
speed S is therefore given approximately by

z :Hmax(l_ij
w(0)

provided that w(0) > S, i.e. that the emerging jet is
moving fast enough to lift the particle off the
ground.

(12)

Settling speed of particles
The settling speed S of a particular particle

depends on its size, shape and weight. For
particles which are approximately spherical, with
diameter d, the requirement that the particle's
weight be exactly balanced by the drag exerted by
the upward moving jet is expressed by

4 (d} 1 dY
p3es] tcordld]s

where p, and p, are the densities of the particle

and air respectively, and the drag coefficient Cp, is
a function of the Reynolds Number,

Re:—p”dS,
Ha

(14)

where p, is the dynamic viscosity of the air.
Here, we assume the form (Perry et al., 1984):

CD:Ii—4(1+O.14Re°'7) for Re<1000
€

and (15)
Cp=0447 for Re=1000.

For a given particle size and density, Equations
(13—15) can be solved to give S.

Particle size distribution
In geology and volcanology, grain-size analyses of
tephra are made using sieve diameters, which are
in turn converted to ¢-values via the formula:
d=2" ie ¢=-log,d (16)
where diameter d is measured in mm (e.g. see
Bonadonna & Houghton, 2005). This means that
small particles have large ¢-values, and vice versa.
Table 1 gives settling speed values for a range of
particle sizes measured by standard ¢-values, for
particles with density 1500 kg m~, and also for
water droplets with density 1000 kg m™. [Note
that for ¢ > 5, diameters are given in microns and
speeds in mm s ']

Table 1: Calculated values of settling speed S for
particles of various sizes and densities:
rock particles 1500 kg m™, water drops 1000 kg m™.
[* Water droplets: d,, < 8 mm, with a maximum speed of
about 9ms™'. See Perry ez al. (1984).]

¢ | diameter (Om) | S, (m s S, (ms™)
—4 16 24 20%*
-3 8 17 14*
-2 4 12 9.8
-1 2 8.5 6.8

0 1 4.9 3.8

1 0.5 2.7 2.0

2 0.25 1.3 0.96

3 0.125 0.51 0.36

4 0.0625 0.16 0.11

diameter (um) | S, (mm s | S, (mms™)




5 31 43 29
6 16 11 7.4
7 8 2.8 1.9
8 4 0.70 0.46
9 2 0.17 0.11
10 1 0.044 0.029

Use of Equation (12) and Table 1 now allows the
release height for each ¢-class to be calculated. In
the example shown in Figure 1, w(0) =20 m s’
and Hp.x = 12.2 m. Table 2 shows the height in
the jet where the weight and drag are equal for
each particle size. Note that, in this case, the fine
particles with diameter less than 0.25 mm all rise
to very near the top of the jet column.

Table 2: Heights in the eruption jet where the nett force
is zero, and settling time to ground:
z,,, t, for rock particles (1500 kg m>);

and that deposited both contain pore space.

The wind

The eruption jet in our example has a maximum
height of 12.2 m. We assume that the wind profile
is exponential, of the form

z
U=U (—J
1
H,

with a free windspeed of Uy = 5 m s at a height
of H;=20 m, and with a = 0.2.

Table 3: Mass distribution amongst the rock particle
size classes for an example eruption with an initial
ejection speed at the ground of w(0) =20 m s
[# Note from Table 1 that for ¢=—4, 5, > w(0).]

Zys 1, for water drops (1000 kg m™). O .
[# From Table 1, note that for ¢=—4, S, > w(0). ¢ | S (ms?) | z, (m) | massfraction (%)
* See note in caption for Table 1.]] —4 24 —# —#
=3 17 1.9 0
$ Zp (m) i (s) z,, (m) ty (8) _:2__.___12___.__i'2__ _____i _____
4 —# —# 0.27* 0.014* - 8.5 7.0 10
3 1.9 0.11 3.8 0.27* 0 1__4% _| %2 | _____ 0_ ____
-2 4.9 0.41 6.2 0.63 1 2.7 10.6 15
-1 7.0 0.82 8.0 1.2 2 1.3 11.4 15
0 9.2 1.9 9.9 2.6 3 0.51 11.9 20
1 10.6 3.9 11.0 5.5 4 0.16 12.1 15
2 11.4 8.8 11.6 12 S 0.043 12.2 10
3 11.9 23 12.0 33 6 0.011 12.2 0
4 12.1 75 12.1 110 7 0.0028 12.2 0
5 12.2 4.7 min 12.2 7.0 min. 8 0.00070 12.2 0
6 12.2 18 min. 12.2 27 min. 9 0.00017 12.2 0
7 12.2 72 min. 12.2 1.7 min. 10 0.000044 12.2 0
8 12.2 4.8 hr 12.2 7.4 hr Total 100
9 12.2 20 hr 12.2 31 hr
10 12.2 77 hr 12.2 120 hr We approximate this as a five-layer system with

Particle size distribution

The last remaining component required is the
actual distribution of the particles amongst the
grain-size ¢-classes. For a given total mass
discharge from a hydrothermal eruption jet,
particles of all sizes that are small enough to be
lifted from the ground will contribute to the
eruption. Also, water droplets from the erupting
fluid as well as from condensing vapour will be
lifted by the jet until they are too large to be
elevated any further. It is likely that many will
adhere to solid particles and act as a binding agent
to aid coalescence of smaller particles into
agglomerates which will have a greater settling
speed and fall as mud-like particles. Here, to
illustrate the method, we will calculate the deposit
from an event with a somewhat arbitrary particle
size distribution.

The supposed mass distribution amongst different-
sized particles is set out in Table 3. If the total
volume ¥ of ejected solid material is known, then
the total mass M can be calculated from M = p,V,
where in this case g, = 1500 kg m . This is only
approximate, as the in sifu pre-erupted material

four layers each 5 m thick, topped by a semi-
infinite layer; within each layer the wind-speed is
uniform (see Figure 2), corresponding to a value
mid-way through the layer. The wind direction
varies with altitude, but the turbulence length
scales are assumed to be uniform; this leads to
increasing values of the dispersion coefficients
(Dyi, D) = WLy, L). The wind parameters are
shown in Table 4.

J T T T[]

3
Uz) [m s

Figure 2. Exponential wind profile and the
approximating multi-layered system.



Note that, if required, one can add a layer or layers
of water below the wind strata. These layers can
be moving to simulate water currents. The settling
speeds of particles may be calculated from
Equations (13-15) with density and viscosity of
water instead of air.

Deposit of solid ejecta

Deposits from each of the eight non-zero masses
of grain-size cohorts listed in Table 3 may be
superposed. Particles with ¢ = -2 are released in
Layer 5, those with ¢ =—1, 0 in Layer 4, and the
other five sizes ¢ =1, ..., 5 in Layer 3. Because
they are released at greater height and fall more
slowly, the spread of the smaller particles is
greater than that of the larger ones. Figure 4
shows the pathways of the centre of mass (c.0.m.)
of some of the separate grain-size cohorts, as well
as the contours of the total mass deposit. The
c.o.m. pathways all originate within the eruption
jet above its base at (x, y) = (0, 0). Depending on
the height to which the particles are lifted, the
particles move with the wind, first in the layer in
which they leave the jet, and then down through
the layers below (if any).

Table 4. Values of interface heights, wind speeds,
directions and turbulence length scales for the example
case where the wind motion is modelled by a multi-
layered system.

2 5 4.86 20 1 0.5
3 0 4.55 —20 1 0.5
4 5 4.11 20 1 0.5
5 0 3.30 0 1 0.5

The lighter particles (¢ = 1, ..., 5) are lifted to
Layer 3 (10 <z < 15 m) and, because of their slow
settling speed (see Table 2), are transported
considerable distances before reaching the ground.
Because there is then plenty of time for
dispersion, these smaller particles are spread more
thinly where they land. Figure 5 shows contours
of the deposit from the cohort of ¢ = 5 particles
(diameter 31 um; release height 12.2 m; settling
speed 43 mm s '; time to ground 4.7 minutes).

These particles are transported a long way (of the
order of a kilometre or more) downwind of the
eruption, and would not be regarded as part of the
main ejecta deposit. However, they form part of
the fine material that coats the surrounding areas
with a thin powder-like coating, some distance
from the eruption site.

Further analysis is possible of the distribution of
grain-sizes within any sample gathered from the
eruption ejecta. At the eruption site, the relative
mass fractions of the ¢-classes are shown in Table
3. The analytic solutions enable the relative mass
fractions deposited at any point on the ground to
be calculated.

Z; W; L;; Ly
Layer ! ! o ! !
| s m | (m
1 20 5.00 0 1 0.5
Contours of total deposit + centres of mass paths for particle cohorts
10 T T T T
8
6
at =2 1
y(m) 5| J
0 - -
-2 L
—4 . h= 3
B 4
-8t b=4 e R s
10 L L L =~
-10 -5 0 5 10 15 20 25 30

x (m)

Figure 4. Contours (at 10 % intervals) of the total mass deposit for the example data. The pathways of the centres of
mass for the different grain-size cohorts are shown as dashed lines, some of which are marked with their ¢-values.
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Figure 5. Contours (at 10 % intervals) of the total mass deposit for the ¢= 5 cohort.



A profile for a distance of 70 m along y = 0 (this is
in the direction of the wind at ground level) is
shown in Figure 6. The lines show the cumulative
mass deposits for the various
gl 0000 cohorts with ¢=—2 at the bottom
up to ¢ =5 at the top. The deposits for ¢ > 2 in
this region are too small to distinguish here. The
bold curve shows the total deposit f{x, 0), in kg m~
%, for 20 <x <50 m.

Calculated cumulative cohort deposit on x-axis

k") ) [ 0 20 E) a0 =
x [m]

Figure 6. Cumulative mass deposit for the various
g1000000cohorts with ¢g= -2 at the bottom up to
¢=15 at the top. The deposits for ¢> 2 in this region are

too small to distinguish here.

Field-data test?

It is of interest to know what a collected sample
from the deposit would show in terms of grain-
size composition. This is easily computed by
scaling the cumulative values into fractions of the
total at each point. For the same data as in Figure
6, these values are shown in Figure 7.

cumulative fraction

63

20 0 [ [ 2 £ 40 =
x [m]

Figure 7. Cumulative mass fractions for the various
g1000000cohorts with ¢ < -2 at the bottom. The
deposits for ¢ > 3 in this region are too small to
distinguish here.

Although the curves appear very symmetrical in
this case, it is not so generally. However, Figure 7
shows that, for this particular example, samples
collected from, say, 5 m upwind and 5 m down-
wind of the eruption vent, should have very nearly
the same fractional composition of grain sizes,
although, of course, the total mass deposit would
be much smaller upwind than downwind (see
Figure 6). Is there data available that could be
used to test such a calculated result?

SUMMARY

This work is a further development of earlier
research into finding analytical expressions for
deposits of wind-blown particles released into the
atmosphere. The elements required for modelling
the transport and deposit of solid material ejected
from a hydrothermal eruption have been
presented.

Analytical solutions for the advection-dispersion
equation have been used to directly calculate how
small particles settle to the ground through a non-
uniform wind. These have been used to estimate
the particulate deposits from an eruption, by using
release heights from an eruption jet model.

An example set of mass release data has been used
to calculate the particle-size composition of the
total deposit. Some field data could be used to
test the results. The inverse problem of finding all
parameters from field samples would be difficult.
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