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SUMMARY – This paper proposes a quantitative model for the "fountain" of boiling water and rock 
particles ejected from a hydrothermal eruption.  The model is based on principles of conservation of 
mass, momentum and energy.  The main volumetric constituent is steam, which is diluted by entrained air 
as the jet rises.  It is proposed that small rock particles and water droplets (from condensed steam) are 
carried up by the column while their weights are exceeded by the lift force of the rising gas mixture.  
They then exit from the column to be deposited.  This paper primarily examines the form of the eruption 
jet when constrained by the conservation principles' requirements.  A typical example is used to illustrate 
the model; calculated column shapes, fluid speed, phase compositions and particle exit heights are 
depicted and are discussed. 

 
1.  INTRODUCTION 

Previous work on the modelling of hydrothermal 
eruptions has concentrated mainly on the flow 
below ground beneath the surface expression of 
the eruption (McKibbin, 1989; Smith, 2000; 
Smith and McKibbin, 1997, 1998, 1999, 2000).  
This paper moves the focus back onto the 
"fountain" of boiling water and rock particles 
which are ejected into the atmosphere as the 
eruption proceeds.  
 
Conceptually, the eruption column is a vertical 
flow of steam and liquid water as well as 
entrained air.  It is dominated volumetrically by 
the gas (water vapour and air) phase and it 
propels rock particles of various sizes from the 
ground, where they have been broken from the 
formation by the shear stress of the rapidly-
passing fluid.  As the column rises, it entrains 
some of the surrounding air; this leads to slowing 
and cooling of the flow. 
 
It was suggested in earlier work (McKibbin, 
1989) that the solid particles would form a 
significant volume fraction of the total flow.  
However, reconsideration of photographs of 
eruptions indicates that this is probably not the 
case, and that quantitative models should 
concentrate on the fluid flow, with the rock 
particles treated as occasional participants in the 
volume flux of the eruption column. 
 
Consequently, the fluid flow model is worked out 
first.  This is of a two-phase water mixture 
erupting, with air being entrained from the 
surrounding atmosphere. 
 
The geometry of the flow model is that of a 
column of circular horizontal cross-section with a 
vertical axis (see Figure 1).  The vertical fluxes 
are based on the average vertical speed of the 
fluid mixture.  Where there are multiple 
components (liquid water + water vapour + air) it 

is assumed that their speeds are the same, i.e. they 
are well-mixed. 
 

 
 

Figure 1.  Schematic of the geometry of the 
hydrothermal eruption jet flow. 

 
 
2.  THE MODEL 

The model is of a moving column (jet) of a steam-
dominated mixture of water vapour and liquid 
water droplets which issues from the ground from 
a circular region of radius r0. As it rises, it 
entrains air from the surrounding atmosphere, at 
ambient temperature Tatm. 
 
The resulting jet rises vertically and grows in 
radius, r(z), at height z above ground level (which 
is at z = 0).  It is assumed that the flow has 
reached steady-state.  As air is entrained into the 
flow, the total vertical mass flux M increases from 
M(0) = M0 to M(z) > M0 due to air entrainment. 
 
The total water flow (liquid + vapour) remains 
constant (Mw) while the air flow (Ma) increases 
with z.  The total mass flow is M = Mw + Ma. 



The momentum of the flow is reduced by 
gravitation and by the effective inertia of the 
entrained air; also, since it is assumed that the 
pressure in the column is uniform and the same as 
the surrounding atmosphere, there is no pressure 
work: 

 
The mass fraction of water per unit volume (Xw) 
decreases from Xw(0) = 1 as z increases.  That for 
air (Xa = 1 – Xw) increases from Xa(0) = 0 as z 
increases. 
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Energy conservation 
The energy equation takes into account changes 
in the kinetic and internal energy of the flow, and 
may be written in the form: 
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where Mw is constant. 
 
Mass conservation  
Conservation of mass requires that the vertical 
rate of mass increase in the column is equal to the 
mass entrainment rate of air around the column 
surface: 

where the ui are the specific internal energies of 
various components.  Simplified formulae for 
some of the thermodynamic variables are given in 
the Appendix. 

 

 dM
dz =

dMa

dz
= 2πrρatm E(w)  (1) 

 

 
where the upwards mass flux within the column is 
 
  (2)   M = M l + M v + M a = ρπr 2w M

Since the water mass flux Mw is constant, it is 
useful to use Xw, the mass fraction of the water in 
the flow, defined by .  This means 
that the air mass fraction is 

  Substitution into 
Equations (1) and (2) and some rearrangement 
gives a pair of differential equations for the 
system variables X

MXM ww =

.)Mw1( XMX aa −==

w and w: 

 
Here, r(z) is the radius of the column (circular 
cross-section of the flow), and w(z) is the mean 
vertical speed in the flow.  It is assumed that the 
pressure within the column is the same as in the 
surrounding air.  The density ρ (z) of the mixture 
is given by   ρ = ρl + ρv + ρa , with each 
component contributing a partial pressure to the 
total pressure of patm (the ambient pressure).  Note 
that the density ρa of the air component of the 
stream is not the same as the atmospheric density 
ρatm, since the air component within the jet is at a 
reduced partial pressure.  
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Some simplification of Equation (5) involving use 
of the Appendix formulae gives 
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E(w) is the volume entrainment rate of air per unit 
surface area of the column, modelled here by the 
formula 
  (3) E(w) = kw w / w0( n  )  
 3.  RESULTS 
where k and n are constant dimensionless 
parameters.  The fluid mass flux issuing from the 
ground is given by  where the 
subscript 0 indicates values at z = 0. 

M 0 = ρ0πr0
2w0

Numerical integration of the three coupled 
ordinary differential equations (6 – 8) gives 
results with the following general features: the 
radius of the column increases with height as the 
flux increases due to entrainment, while the 
velocity decreases due to gravitational and inertial 
slowing.  The radius diverges to an infinitely 
large value as the speed drops to zero.  The 
(maximum) height of the column where this 
occurs is not known ab initio, and is found as part 
of the solution. 

 
Momentum conservation 
The surrounding air that is being entrained is 
assumed to have zero initial vertical momentum. 
 

 



 



 
Figure 2(a). The radius, vertical speed, temperature, water mass fraction, partial pressure of the vapour  

and partial pressure of the air in the column as functions of height. 

 
Figure 2(b). The total water, and the liquid and vapour mass fractions, the air mass fraction,  

and the liquid and gas saturations of the mixture, in the column as functions of height. 
 

 
Figure 2(c). The total mass flux, the air flux, and the total liquid, vapour and gas fluxes,  

in the column as functions of height. 
 



Using the parameters listed in Table 1 gives the 
results shown in Figure 2.  [A non-zero but very 
small value of the air concentration at the ground 
is required in order that all components are 
available during the whole integration procedure.] 
 
 
Table 1.  Parameters for the example calculation shown 

in Figure 2. 
 

r0 1 m 
w0 20 m s–1 
T0 99.6 ˚C 

  Yl0  0.8 
Xw0 0.999999 

p=patm 1 bar abs. 
Tatm 20 ˚C 

k 0.1 
n 2 

 
From Figure 1(a) it can be seen that the maximum 
column height for this example is about 12.2 m, 
where the calculated radius of the column 
becomes infinitely large and the vertical speed 
drops to zero.  The temperature of the column 
reduces from the initial temperature to about 80 
˚C near the top.  The water mass fraction reduces 
from 1 to about 0.7 as more and more air is 
entrained. 
 
Figure 2(b) shows how the liquid and vapour 
mass fractions contribute to the total water mass 
fraction in the mixture.  It also shows how the air 
mass fraction rises as entrainment takes place.  Of 
some interest also is that the liquid saturation of 
the mixture reduces from its initial (small) value, 
showing that the mixture "dries" as it rises. 
 
Figure 2(c) depicts the various component and 
phase mass fluxes vs height; these results follow 
from the those in Figures 2(a) and (b).  The liquid 
mass flux    reduces with height; this 
corresponds to some evaporation of the liquid 
water component.  This is somewhat surprising, 
since it might be anticipated that the vapour 
would condense as it rises.  Whether this is a 
feature of all examples can only be found by 
further testing. 

M l

 
 
4. RELEASE OF MATERIAL FROM THE 

COLUMN 

Information about the fountain dynamics enables 
release heights of particular sized rock particles or 
water droplets to be found.  It can be assumed that 
water droplets or particles will rise to a height in 
the column where their weight is exactly balanced 
by the upward force (drag) exerted by the 
hydrothermal eruption column.  (Below this 

height, the lift will exceed the weight and the 
particles will continue to rise.) 
 



Settling speed of particles 
The settling speed S of a particular particle 
depends on its size, shape and weight.  For a 
particle that is approximately spherical, with 
diameter d, the requirement that the particle's 
weight be exactly balanced by the drag exerted by 
the upward moving jet is expressed by 
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where ρ p  and ρ  are the densities of the particle 
and gas respectively, and the drag coefficient CD 
is a function of the Reynolds Number, 
 

 Re =
ρdS
µ

, (10) 

 
where µ is the dynamic viscosity of the gas 
mixture.  Here, we assume the form (Perry et al., 
1984): 
 

 CD =
24
Re

(1+ 0.14 Re0.7)    for    Re < 1000 

and  (11) 
 CD = 0.447     for     Re ≥ 1000. 
 
For a given particle size and density, Equations 
(9–11) can be solved to give S.  
 

 
 
Figure 3.  The top graph shows the settling speed of a 

spherical water droplet vs its release height.  The 
bottom graph shows the speed of the eruption jet vs its 

height for the example given in Figure 2. 
 
 



Release heights of particles 
From the vertical speed of the fluid column, w(z), 
and the settling speed of a particular particle, S, 
we can calculate the release height of that particle. 
For example, in Figure 3 a plot of a spherical 
water droplet’s settling speed versus its radius is 
shown above the speed of a gas jet versus its 
height (from the example shown in Figure 2, 
calculated with the parameters given in Table 1). 
 
By comparing the two graphs we can obtain a 
relationship between the water droplet's radius 
and its release height. The release heights for 
water droplets of particular radii are given in 
Table 2. 
 
 
Table 2.  Water droplet radius vs release height for the 
example using parameters shown in Table 1 and results 

shown in Figure 2. 
 

r z (m) 
0 12.2 

0.0005 11.4 
0.001 10.0 
0.002 7.6 
0.003 5.6 
0.004 4.0 
0.005 2.7 
0.006 1.7 
0.007 0.8 
0.008 0.2 

0.0086 0 
 
Once the heights to which rock particles are lifted 
is known, wind velocity and turbulence 
parameters allow calculation of the dispersion and 
deposit profiles of the aerosols and liquid 
droplets.  Solutions of the advection-dispersion 
equation may be used to describe the airborne 
concentrations after release.  5Example mass 
deposit profiles are provided by McKibbin (2006, 
in these Proceedings). 
 
 
5. SENSITIVITY ANALYSIS OF MODEL 

The model is sensitive to the initial column radii 
and eruption speeds chosen.  For a given initial jet 
speed, the initial radius must be greater than a 
particular value to produce reasonable results.  In 
Figure 4, minimum initial radii are shown for 
given initial speeds for calculations using the 
parameters shown in Table 3.  The initial mass 
fraction of water per unit volume Xw0 and liquid 
mass fraction of the water flux is   are shown 
on the graph for each case. 

Yl0

 
Results show that the slower the initial speed of 
the jet, the larger the jet radius at the eruption 

vent is required for the model to produce 
reasonable results. 
 

Table 3.  Parameters for the calculation  
shown in Figure 4. 

 
T0 98.7 ˚C 

p=patm 1 bar abs. 
Tatm 20 ˚C 

k 0.1 
n 2 

 
 
 

 
 

Figure 4.  For the parameters shown in Table 3, 
minimum initial radii of the “eruption vent” are shown 

for a given initial jet speed. 
 
 
For example, for initial jet speeds of 20 ms–1, 
minimum jet radii at the vent of between 0.5 and 
0.9 m are required, while for speeds of 30 ms–1, 
radii of 0.1 – 0.3 m are required, and for speeds of 
40 ms–1, radii of only about 0.1 m are required. 
 



SUMMARY 

This work is a first attempt at modelling the 
fountain of boiling water and rock particles that 
are ejected in a hydrothermal eruption.  
Information about the jet dynamics will 
eventually help us to connect the flow below 
ground beneath the surface expression of the 
eruption (as previously studied in Smith, 2000; 
Smith and McKibbin, 1998, 1999, 2000) to the 
calculation of the dispersion and deposit profiles 
of the aerosols and liquid droplets [as modelled in 
McKibbin (2006, elsewhere in this Proceedings)]. 
 
A quantitative model for the boiling water jet and 
rock particles ejected from a hydrothermal 
eruption is proposed and heights at which the 
water droplets and rock particles exit from the 
column to be deposited are calculated.  A typical 
example is used to illustrate calculated column 
shapes, fluid speed, phase compositions and 
particle exit heights. 
 
General features of the results are that the radius 
of the column increases with height as the flux 
increases due to air entrainment, while the 
velocity decreases due to gravitational and inertial 
slowing, and the radius diverges to an infinitely 
large value as the speed drops to zero.  
 
For the model to produce reasonable results, the 
initial jet radius must be greater than a certain 
amount for a given initial jet speed.  Typical 
examples are provided to show the relationship 
between the minimum jet radius at the eruption 
vent and initial jet speeds. 
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APPENDIX 
 
Thermodynamic variables 
Densities 

 ρv = pv/461.527/T  kg m–3 

 ρa = pa/287.099/T  kg m–3 

 
Internal energies 

 uv = 2375 × 103 + cv(T – 273.15)  J kg–1 

  where cv = 1310  J kg–1 K–1 

 ua = ca(T – 273.15)  J kg–1 

  where ca = 1010  J kg–1 K–1 

 
 
 
 


	1.  INTRODUCTION
	2.  THE MODEL
	3.  RESULTS
	4.RELEASE OF MATERIAL FROM THE COLUMN
	5.SENSITIVITY ANALYSIS OF MODEL
	SUMMARY
	REFERENCES
	Contents menu
	Authors Index
	Conference programme

