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SUMMARY - This paper proposes a quantitative model for the "fountain" of boiling water and rock
particles ejected from a hydrothermal eruption. The model is based on principles of conservation of
mass, momentum and energy. The main volumetric constituent is steam, which is diluted by entrained air
as the jet rises. It is proposed that small rock particles and water droplets (from condensed steam) are
carried up by the column while their weights are exceeded by the lift force of the rising gas mixture.
They then exit from the column to be deposited. This paper primarily examines the form of the eruption
jet when constrained by the conservation principles' requirements. A typical example is used to illustrate
the model; calculated column shapes, fluid speed, phase compositions and particle exit heights are
depicted and are discussed.

1. INTRODUCTION is assumed that their speeds are the same, i.e. they
are well-mixed.

Previous work on the modelling of hydrothermal

eruptions has concentrated mainly on the flow

below ground beneath the surface expression of 4°

the eruption (McKibbin, 1989; Smith, 2000;

Smith and McKibbin, 1997, 1998, 1999, 2000).

This paper moves the focus back onto the

"fountain" of boiling water and rock particles

which are ejected into the atmosphere as the

eruption proceeds.

Conceptually, the eruption column is a vertical
flow of steam and liquid water as well as
entrained air. It is dominated volumetrically by
the gas (water vapour and air) phase and it
propels rock particles of various sizes from the
ground, where they have been broken from the
formation by the shear stress of the rapidly-
passing fluid. As the column rises, it entrains

some of the surrounding air; this leads to slowing
and cooling of the flow. Figure 1. Schematic of the geometry of the
hydrothermal eruption jet flow.

It was suggested in earlier work (McKibbin,
1989) that the solid particles would form a
significant volume fraction of the total flow. 2. THE MODEL
However, reconsideration of photographs of
eruptions indicates that this is probably not the
case, and that quantitative models should
concentrate on the fluid flow, with the rock
particles treated as occasional participants in the
volume flux of the eruption column.

The model is of a moving column (jet) of a steam-
dominated mixture of water vapour and liquid
water droplets which issues from the ground from
a circular region of radius ry. As it rises, it
entrains air from the surrounding atmosphere, at
ambient temperature 7,

Consequently, the fluid flow model is worked out
first. This is of a two-phase water mixture
erupting, with air being entrained from the
surrounding atmosphere.

The resulting jet rises vertically and grows in
radius, r(z), at height z above ground level (which
is at z = 0). It is assumed that the flow has
reached steady-state. As air is entrained into the
flow, the total vertical mass flux M increases from

Th t f the fl del is that of , )
© BEOTIELY Dt e Fow dmodel 18 at o @ M(0) = My to M(z) > M, due to air entrainment.

column of circular horizontal cross-section with a
vertical axis (see Figure 1). The vertical fluxes
are based on the average vertical speed of the
fluid mixture. Where there are multiple
components (liquid water + water vapour + air) it

The total water flow (liquid + vapour) remains
constant (M,,) while the air flow (M,) increases
with z. The total mass flow is M = M,, + M,,.



The mass fraction of water per unit volume (X,,)
decreases from X,,(0) = 1 as z increases. That for
air (X, = 1 — X,,) increases from X,(0) = 0 as z
increases.

The liquid mass fraction of the water flux M,, is
denoted Y, and that of vapouris ¥, =1-Y,. So

M,=YM, =YX M and M, =Y X M. The
total gas mass flow is then

M,=M,+M,=Y,X M+X,M

=[YV+ 1_Xw}\lw
XW

where M,, is constant.

Mass conservation

Conservation of mass requires that the vertical
rate of mass increase in the column is equal to the
mass entrainment rate of air around the column
surface:

dM _ dM,
& = = 2 Pan EO) M

where the upwards mass flux within the column is
M=M,+M,+M, =pm’w )

Here, r(z) is the radius of the column (circular
cross-section of the flow), and w(z) is the mean
vertical speed in the flow. It is assumed that the
pressure within the column is the same as in the
surrounding air. The density p(z) of the mixture
is given by p=p,+p,+p,, With each
component contributing a partial pressure to the
total pressure of p,,, (the ambient pressure). Note
that the density p, of the air component of the
stream is not the same as the atmospheric density
Pams> Since the air component within the jet is at a
reduced partial pressure.

E(w) is the volume entrainment rate of air per unit
surface area of the column, modelled here by the
formula

E(w) = kow/wp )’ 3)

where k& and n are constant dimensionless
parameters. The fluid mass flux issuing from the

ground is given by M, =p,m,"w, where the
subscript 0 indicates values at z = 0.

Momentum conservation
The surrounding air that is being entrained is
assumed to have zero initial vertical momentum.

The momentum of the flow is reduced by
gravitation and by the effective inertia of the
entrained air; also, since it is assumed that the
pressure in the column is uniform and the same as
the surrounding atmosphere, there is no pressure
work:

2 (Mw)=-pmg 4)

Energy conservation

The energy equation takes into account changes
in the kinetic and internal energy of the flow, and
may be written in the form:

di(%Mw2+M[u[ +Mu,+M,u,)
: ()

_ 2 d a
=—pmrgw+ dz Ugtm

where the u; are the specific internal energies of
various components. Simplified formulae for

some of the thermodynamic variables are given in
the Appendix.

Since the water mass flux M, is constant, it is
useful to use X, the mass fraction of the water in

the flow, defined by M, = X M . This means
that the air mass
M, =XM=(»1-X M.

Equations (1) and (2) and some rearrangement

gives a pair of differential equations for the
system variables X,, and w:

fraction is

Substitution into

2

dXW Xw n
=2 Lamkw(w/ wy) (6)
dz M,
dw X, 2 2 n
—=———[pmg+kwi(w/wy)" 1 (7)
dz M

w

Some simplification of Equation (5) involving use
of the Appendix formulae gives

ar 4w -c,(I'-T,) dX,
dz  [X,e,+(—-X,))e,1X, dz

®)

3. RESULTS

Numerical integration of the three coupled
ordinary differential equations (6 — 8) gives
results with the following general features: the
radius of the column increases with height as the
flux increases due to entrainment, while the
velocity decreases due to gravitational and inertial
slowing. The radius diverges to an infinitely
large value as the speed drops to zero. The
(maximum) height of the column where this
occurs is not known ab initio, and is found as part
of the solution.






14 14 4
12 = 12 1w
10 10 1 10+
..\\ 1 III.
£ 8 8 1 B
N B I 6 1 3
4t 4 1 4
2 il 2 1 2 b
0 | = 0 i o =il
1] 10 20 30 a 10 [::] 30 100
v (m) w (mis) T (a€)
1 - 14 - . ] -
12 | 12 12 f
104 10} | 10 |
\ |
- 1 1
£° B\ { 8 ]
MoBE [ 4 {
\ | /
4 4 % 1 4
\\ /
2 2 s 2
i . | )
ok . L el o — — = o=
o7 [:X:} 0.9 1 04 0.6 [18:} 1 o 0.5 1
e () pv (bar abs) pa (bar abs)

Figure 2(a). The radius, vertical speed, temperature, water mass fraction, partial pressure of the vapour

and partial pressure of the air in the column as functions of height.
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Figure 2(b). The total water, and the liquid and vapour mass fractions, the air mass fraction,
and the liquid and gas saturations of the mixture, in the column as functions of height.
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Figure 2(c). The total mass flux, the air flux, and the total liquid, vapour and gas fluxes,

in the column as functions of height.



Using the parameters listed in Table 1 gives the
results shown in Figure 2. [A non-zero but very
small value of the air concentration at the ground
is required in order that all components are
available during the whole integration procedure.]

Table 1. Parameters for the example calculation shown

in Figure 2.
7o Im
Wo 20ms!
To 99.6 °C
Yo 0.8
X 0.999999
P=Pam 1 bar abs.

Totm 20 °C

k 0.1

n 2

From Figure 1(a) it can be seen that the maximum
column height for this example is about 12.2 m,
where the calculated radius of the column
becomes infinitely large and the vertical speed
drops to zero. The temperature of the column
reduces from the initial temperature to about 80
°C near the top. The water mass fraction reduces
from 1 to about 0.7 as more and more air is
entrained.

Figure 2(b) shows how the liquid and vapour
mass fractions contribute to the total water mass
fraction in the mixture. It also shows how the air
mass fraction rises as entrainment takes place. Of
some interest also is that the liquid saturation of
the mixture reduces from its initial (small) value,
showing that the mixture "dries" as it rises.

Figure 2(c) depicts the various component and
phase mass fluxes vs height; these results follow
from the those in Figures 2(a) and (b). The liquid
mass flux M, reduces with height; this
corresponds to some evaporation of the liquid
water component. This is somewhat surprising,
since it might be anticipated that the vapour
would condense as it rises. Whether this is a
feature of all examples can only be found by
further testing.

4. RELEASE OF MATERIAL FROM THE
COLUMN

Information about the fountain dynamics enables
release heights of particular sized rock particles or
water droplets to be found. It can be assumed that
water droplets or particles will rise to a height in
the column where their weight is exactly balanced
by the upward force (drag) exerted by the
hydrothermal eruption column. (Below this

height, the lift will exceed the weight and the
particles will continue to rise.)



Settling speed of particles

The settling speed S of a particular particle
depends on its size, shape and weight. For a
particle that is approximately spherical, with
diameter d, the requirement that the particle's
weight be exactly balanced by the drag exerted by
the upward moving jet is expressed by

4 (daV 1 dYV
ppgﬂ(zj =EPCD7Z{EJ s? Q)

where p, and p are the densities of the particle

and gas respectively, and the drag coefficient Cp
is a function of the Reynolds Number,

_pds
'Ll B

Re (10)

where pu is the dynamic viscosity of the gas
mixture. Here, we assume the form (Perry et al.,
1984):

CD:Ii—4(1+O.l4Re°'7) for Re<1000

(S

and (11)
C,=0447 for Re>1000.

For a given particle size and density, Equations
(9-11) can be solved to give S.
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Figure 3. The top graph shows the settling speed of a
spherical water droplet vs its release height. The

bottom graph shows the speed of the eruption jet vs its
height for the example given in Figure 2.



Release heights of particles

From the vertical speed of the fluid column, w(z),
and the settling speed of a particular particle, S,
we can calculate the release height of that particle.
For example, in Figure 3 a plot of a spherical
water droplet’s settling speed versus its radius is
shown above the speed of a gas jet versus its
height (from the example shown in Figure 2,
calculated with the parameters given in Table 1).

By comparing the two graphs we can obtain a
relationship between the water droplet's radius
and its release height. The release heights for
water droplets of particular radii are given in
Table 2.

Table 2. Water droplet radius vs release height for the
example using parameters shown in Table 1 and results
shown in Figure 2.

r z (m)

0 12.2
0.0005 11.4
0.001 10.0
0.002 7.6
0.003 5.6
0.004 4.0
0.005 2.7
0.006 1.7
0.007 0.8
0.008 0.2
0.0086 0

Once the heights to which rock particles are lifted
is known, wind velocity and turbulence
parameters allow calculation of the dispersion and
deposit profiles of the aerosols and liquid
droplets. Solutions of the advection-dispersion
equation may be used to describe the airborne
concentrations after release. SExample mass
deposit profiles are provided by McKibbin (2006,
in these Proceedings).

5. SENSITIVITY ANALYSIS OF MODEL

The model is sensitive to the initial column radii
and eruption speeds chosen. For a given initial jet
speed, the initial radius must be greater than a
particular value to produce reasonable results. In
Figure 4, minimum initial radii are shown for
given initial speeds for calculations using the
parameters shown in Table 3. The initial mass
fraction of water per unit volume X, and liquid
mass fraction of the water flux isY,, are shown
on the graph for each case.

Results show that the slower the initial speed of
the jet, the larger the jet radius at the eruption

vent is required for the model to produce
reasonable results.

Table 3. Parameters for the calculation
shown in Figure 4.

T, 98.7°C
P=Pam 1 bar abs.
Toim 20°C
k 0.1
n 2

W,

Figure 4. For the parameters shown in Table 3,
minimum initial radii of the “eruption vent” are shown
for a given initial jet speed.

For example, for initial jet speeds of 20 ms ',
minimum jet radii at the vent of between 0.5 and
0.9 m are required, while for speeds of 30 ms ',
radii of 0.1 — 0.3 m are required, and for speeds of
40 ms ', radii of only about 0.1 m are required.



SUMMARY

This work is a first attempt at modelling the
fountain of boiling water and rock particles that
are ejected in a hydrothermal eruption.
Information about the jet dynamics will
eventually help us to connect the flow below
ground beneath the surface expression of the
eruption (as previously studied in Smith, 2000;
Smith and McKibbin, 1998, 1999, 2000) to the
calculation of the dispersion and deposit profiles
of the aerosols and liquid droplets [as modelled in
McKibbin (2006, elsewhere in this Proceedings)].

A quantitative model for the boiling water jet and
rock particles ejected from a hydrothermal
eruption is proposed and heights at which the
water droplets and rock particles exit from the
column to be deposited are calculated. A typical
example is used to illustrate calculated column
shapes, fluid speed, phase compositions and
particle exit heights.

General features of the results are that the radius
of the column increases with height as the flux
increases due to air entrainment, while the
velocity decreases due to gravitational and inertial
slowing, and the radius diverges to an infinitely
large value as the speed drops to zero.

For the model to produce reasonable results, the
initial jet radius must be greater than a certain
amount for a given initial jet speed. Typical
examples are provided to show the relationship
between the minimum jet radius at the eruption
vent and initial jet speeds.
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APPENDIX

Thermodynamic variables
Densities

£, =p,/461.527/T kgm™
Pa=Pa/287.099/T kg m™

Internal energies
u,=2375 x 10° + ¢(T - 273.15) Jkg'
where ¢,=1310 Jkg' K
Uy = co(T—273.15) Tkg'
where ¢,=1010 Jkg' K
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