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SUMMARY - The propagation and structure of a finite amplitude wave is studied in this paper. The
characteristics of the soil structure are used for consideration of pressure (density, velocity, or
temperature) disturbances in a volume containing porous medium. The exchange processes are considered
for heat transfer in an integral form and for momentum exchange in the Darcy form. Because of the high
interaction between the skeleton and internal gas the finite amplitude wave is largely dissipative. It is
shown that during the wave propagation the wave amplitude will decrease with the distance by
exponential curve. The analysis provides a basis for estimating the capabilities and efficiency of the
implementation of the finite amplitude wave for diagnostic of geothermal reservoirs.

1. INTRODUCTION

The necessity of considering wave propagation in
porous media stems from the fact that this
phenomenon occurs in a large number of
geophysical  situations and  engineering
applications. Of special interest is the harnessing
of the wave propagation for diagnostics of
geothermal reservoirs and enhancement of
transport phenomena with intent of increasing
thermal energy that can be drawn from this zone.

The key problem is in obtaining a wave equation
for kinematic characteristics taking into account
main properties of a porous medium, wave-
porous-medium interaction, and an inherent
feature of these type processes, namely heat and
momentum transfer between phases.

Propagation and structure of a finite amplitude
wave employed for underground diagnostics could
be modelled by the finite amplitude wave
propagation in material with the porosity close to
underground massive porosity.

The relationships governing propagation of
acoustic waves in porous media have been used by
Nikolaevskiy et al. (1970) while Marble (1970),
Davidson (1975, 1976), Popov (1968), Rytov and
Vladimirsky (1938) investigated the propagation
of weak (primarily acoustic) pulses in gases
containing liquid droplets or solid particles.

The porous media could be modelled by an
assembly of the spherical particles, with
population m in a given unit volume considered
constant, regularly packed with the space between
them filled with air.

Any disturbances, which can happen in the area
next to this granular material, will propagate
through the media. The signal will go through the
rigid phase and also through the gas phase of the
porous media. Consideration of the interphase
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processes is vital for studying of processes in
these media. In all above studies the phase
interactions were treated by applying the Newton-
Richman law for description of heat transfer and
the Stokes law for description of mechanical
interaction. However, the application of these laws
is valid only in the case of quasi-steady processes,
whereas for unsteady conditions, which are rather
frequently encountered in practice, it is incorrect
to represent heat transfer and friction between
phases in this form.

In the present work we shall concentrate on the
derivation and analysis of equations for
description of the evolution of finite amplitude
perturbation, allowing for relaxation processes
induced by unsteady heat and momentum transfer
between the phases. Only right calculation of the
exchange processes will allow obtaining
appropriate data for dissipation.

2. THEORY

Let us consider the propagation of the non-steep
pressure waves with finite amplitude through the
granular material. This wave propagates through
porous part of the media. Two dimensional, finite
amplitude perturbations propagate through a fill
made up of spherical particles of uniform radius

O and density p, We assume that a sufficient

number of particles lie along a wavelength, so that
the porous mixture can be regarded as a
continuum.

It is assumed that the solid skeleton of the above
porous media is absolutely rigid, then the
equations of conservation for the mass,
momentum and energy, and the equation of state
need to be formulated only for the gaseous phase.

Let finite-amplitude perturbation propagates
through an infinite granular material, modelled by



the absolutely rigid solid skeleton (porosity A =
const). When considering the porous media it is
possible to model this media as an infinite volume
regularly packed by spherical particles of the
uniform radius & with
occupied by gas, Figurel .

interparticle space

Figure 1: Model of porous medium

For this case we can assume that only part of the
surface of those particles will participate in the
interphase heat and momentum exchange, then the
equations of conservation for the mass,
momentum and energy, and the equation of state
need to be formulated only for the gaseous phase
with correction for the thermal and momentum
interaction between phases.

Neglecting viscosity and thermal conductivity, in
the conservation equations, we obtain the
following set of equations, analogous to that given
by Nikolayevskiy et al. (1970), for describing the
evolutions of waves in granular material with
allowance for thermal and force interaction:
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where © and # are the density and velocity of

the gas; R is the specific gas constant, ¢, is the

specific heat capacity at constant volume, @ is the
thermal diffusivity of the particle and VvV is
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kinematic viscosity of the gas and 9; is theta
function (Gradshtein & Ryzhik, 2000).

Here and later subscripts refers to the derivative
with respect to the x = coordinate in the direction

of wave propagation and with respect to time £ .

In the above set, Equations (1) are equations of
continuity, motion and energy for an ideal gas.
The interactions between phases are accounted
through unsteady conditions of the exchange
processes between phases. The heat exchange is
obtained from solution of the general conduction
equation for the spherical particle
6’,—a9"—@€, =0 2)
¥
where @ is the relative particle's temperature, and
¥ is its instantaneous radius.

The last equation is solved in spherical
coordinates under the following initial and
boundary conditions:

8=6,=0 at t=0
9[,.:6:6'5:9(!) at t>0 3)
-aﬁ =0 at t>0
a!";r=0

where () is a temperature in the gas phase.

The solution of Equation (2) under initial and
boundary conditions (3) is (Carslaw & Jaeger,
1989)
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The heat flux to the single particle is
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where ;n.p is the thermal conductivity of the

particle material.

For the force of interaction between a spherical

particle and the gas surrounding it is, in general
case (Landau & Lifshits, 1987)



Hie= 27:p5(u+—

The first term in relation (5) allows con51derat10n
of the force responsible for the induced mass and
is significant in considering the motion of gas
bubbles in a liquid, and can be neglected in our
case of relative motion between solid skeleton and
a gas in porous area as insignificant.

The second term in Eq. (5) is the Stokesian
frictional drag, which is much smaller than the
Basset force (third term of Eq. (5) in the case of
unsteady flow over the particles.

We can assume now that we are able to use the
equation of state for ideal gas and also we can
neglect by the first term of the relation for the
particle's drag force, because it is responsible for
the induced mass.

The term describing heat transfer between phases
in this energy equation can have another form if
the medium is modelled let us say, by cylinders or
plates, instead of having it be modelled by
ensemble of spherical particles.

Let us consider the propagation of small
perturbations in two-phase medium consisting of
the gas and rigid particles.

We shall assume that deviations of density,
velocity and temperature (P—p,)/ p, , u/C,

and (8—8,)/9, from equilibrium are first-
order infinitesimals (here C = f)/ O is the

speed of sound; o, and ¥, are the unperturbed

density and temperature, while p , ¥ ,and 9 are

the instantaneous values of the density, velocity of
the perturbation and temperature).

Substituting p=p, tp', w=u', and

9=39, +8' (p', &, and u' are the values of

density, temperature and velocity perturbations in
Egs (1) and dropping infinitesimals of an order
higher than two, we will obtain, by following the
procedure presented by Rudenko and Soluyan
(1975), the next wave equation
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where x is the ratio of the specific heat capacity
at a constant pressure to the specific heat capacity
at constant volume and 7 is the period of
perturbation.

The inverse substitution # /C = p / p, and
978, = (x-1)p/p,

or
u/C=39 /[(x-1)%]

and

Pl py =8 [k ~1)8,]

yields the similar equations for density increment

£ or temperature increment 9.

Equation (6) is valid for arbitrary relationships

between characteristic particle heating time 7,

and the period 7" of the applied perturbation.

It is thus seen that the propagation of waves in a
bulk granular material can be described by a
single, nonlinear evolution equation.

It is evident that the principal contribution to the
decay of waves is made by the unsteady
interaction between phases. These effects make a
much greater contribution to decay of waves than
viscosity and heat conduction.

3. ANALYSIS

The obtained Eq (6) describing the propagation of
the perturbations through porous part of the
granular material belongs to the category of the
Burgers equation which was extensively used in
studies of the wave propagation in two-phase
medium with low gas content and with the
dissipation related to the heat and momentum
exchange between phases.

The Burgers equation is well known and it has an
analytical solution in the limiting case of strong
dissipation in the single-phase medium and weak
dispersion.

The evolution Equation (6) allows for an easier
way to consider the propagation of the
perturbations in porous media, as compared to the
initial systems of the equations (1).



Figure 2 shows the evolution of the wave front in
the granular material consisting of the
polyethylene granules with uniform radius

O =1mm, with air filling all the internal volume
of this media, porosity M = 0.42m* I m?,
T =107 sec.

Figure 2. Propagation of the perturbation in the
granular material. (Dimensionless amplitude of

perturbs-tion % /C versus dimensionless time

t/T for different distances fiam the entrance to
the system)

The amplitude of the perturbation in the granular
material is decreasing with the high rate. This
graph is obtained by numerical solution of
Equation (6).

The dissipation of the pressure wave is shown in
Figure 3.
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Figure 3. The dissipation of pressure wave in the
porous medium represented in Figure 1.

(Dimensionless amplitude of the wave u/C
versus dimensionless distance x/ /)

This pressure wave is dissipating with the rate in
inverse proportion to the length of the granular
material.

4. CONCLUSION

The derived dimensionless Equation (6) allows
consideration of the pressure pulses dissipation in
porous media with different phase properties. This
equation also enables the calculation of the wave
profile evolution and defines the effects of the
interphase exchange processes on the propagation
of the perturbations. The derived equation
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facilitates the analysis and evaluation of the
effects of interphase exchange processes on the
dissipation of the pressure pulses in any porous
media.

The analysis of the propagation of the pressure
pulses in porous media provides a basis for
estimating the capabilities and efficiency of the
implementation of the finite amplitude wave for
diagnostic of the geothermal reservoirs.
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