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TWO PHASE FLOW GOVERNING EQUATIONS FOR TRANSIENT GEOTHERMAL
WELL AND PIPELINE SIMULATION

A. V. GORINE

Geothermal Institute, The University of Auckland

SUMMARY - Governing equations for transient gas-liquid flow as a result of the sequential spatial-
temporal averaging procedure are presented. This set of equations forms the basis for the elaboration of
the friction losses calculation technique and one-dimensional models for transient two-phase flow in
geothermal wellbores and pipelines for bubbly, slug and churn-turbulent flow patterns. These models
comprise two transient partial differential mass conservation equations for each phase and a momentum
equation for gas-liquid mixture. The algebraic slip velocity and the perfect gas state equation are added to
complete the model. The friction losses are represented by using the concept of turbulent boundary layer
with vanishing viscosity with only a single additional empirical coefficient.

1. INTRODUCTION

The equations governing the transient flow of
two-phase fluids, the mass continuity, momentum
and energy equations, are complex in their general
form. Transient simulation of gas-liquid flows
requires not only major computing efforts but is
crucially dependent upon the development of
physically adequate models with minimum
empirical relationships and coefficients. One may
establish that the development of the topic is
taking two paths. The first one meets the nuclear
industry needs and the second approach is quite
adequate for the oil and gas industry
requirements.

In the nuclear industry, these investigations have
developed for the study of Loss-of-Coolant
Accidents (LOCAs) so that fast transients are of
major interest (TRAC-PF1, 1981), while in the oil
and gas industry, the realm of research lies in
relatively slow transients conditioned by the
transport velocities of the two-phase mixture
(Black et al., 1990; Bendiksen et al., 1991); Taitel
& Barnea, 1997;Masella et al., 1998).

It is worth noting that both of these situations can
be realised in geothermal wells and pipelines.

A geothermal well may be considered as a vertical
column with liquid flow in the lower part, which
flashes in the upper part due to the reduction of
the static pressure. Vapour generation persists
downstream of the flashing point at a lower rate as
a result of bubble nucleation and growth of
existing bubbles, with a consequent increase of
mixture velocity as the two-phase liquid gradually
rises up the well. Geothermal two-phase flow
parameters are commonly calculated from steady-
state models based on the momentum equation for
two-phase mixture with a various body of
empirical data (Ambastha & Gudmundsson, 1986;
Ansari et al., 1994; Karaalioglu & Watson,
(1999).

In the general case the evaluation of the effects of
various phenomena occurring during upward flow
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of the mixture can be carried out with the
equations for two-phase flow in pipes and heat
and mass transfer between phases.

Gas (vapour)-liquid flows have peculiar features
that are inherent in these media.

First at all, gas-liquid flows are characterised by
the presence of various forms of motion
depending on the mass flow rates and external
conditions: ranging from its simplest form of
stratified flow with continuous interface, to
foaming flow with its complex multiply
connected interfaces that are time-varying.

These peculiarities are manifested through the
forces of phase interaction (Basset force, virtual
mass force, Joukowski force etc.) and as various
inertial effects that are embodied in a generalised
turbulent shear stress tensor.

Clearly it is impossible to take into account all
effects.

A comprehensive academic simulator for transient
two-phase flow that includes detailed description
of flow patterns, taking into consideration
geometrical and regime parameters, phase
interaction, thermodynamic properties including
metastable state and heterogeneous nucleation and
very many other factors would be very complex.
This approach would become empirical because
of the very large number of coefficients that
would have to be proposed.

The computing time of such simulators would be
too large for the majority of engineering
applications.

Also the effects of channel geometry and gas
entry into the channel are strong and it is
improbable that empirical correlations will
provide the required accuracy. Such an approach
may be used to model conditions of designs that
differ only a little from those used as the basis of
the model and coefficients, but it is unlikely to be
suitable for the investigation of new and different
problems. For this, quite simple models are
needed, as free as possible of empirical
coefficients.



The potential for such models is still far from
exhausted.

The aim of this study is the elucidation of the
more important factors, the development of
physically proper qualitative patterns of
phenomenon on the basis of simplified governing
equations and to allow the possibility of devising
an engineering technique for calculation of gas-
liquid flow parameters in geothermal wells and
pipelines.

The general set of equations for transient gas-
liquid flows is proposed.

The case of high Reynolds number is used for the
calculation of friction loses on the basis of a
homogeneous model justified by the estimation of
relative phase velocity and virtual mass. In
distinction to the calculative or exquisitely
empirical techniques mentioned above, a single
additional empirical coefficient is required for the
tkiction calculation.

Simplified one-dimensional transient models are
formulated on the base of three partial differential
equations, two of which are the mass conservation
equations for gas and liquid phases, and the third
one is the momentum equation for gas-liquid
mixture. Phase and mixture velocities are
connected through the slip relationship (drift flux
model).

An additional equation that required completing
the model is the equation of state that relates the
gas phase density and the pressure. We assume
that the gas behaves as a perfect gas, i. e. the gas
is compressible whereas the liquid is considered
incompressible.

These models can be used for prediction of two-
phase gas (vapour) .. liquid flow in geothermal
wells and pipelines.

Some algebraic manipulation will be omitted for
reasons of report space and we will give final
results only except in situations being crucial
importance for understanding of physical model
and assumptions

2. THEORY OF METHOD
2.1. General equations

The problem of derivation of averaged equations
for the description of transfer phenomena in
multiphase flows has attracted the attention of
researchers for many years.

Frankl (1953) was among the first to propose the
general set of differential equations for turbulent
flow of incompressible liquid with suspended
solid particles and with no phase change. The rule
of averaging of a certain function @, over volume
£2, occupied by the n-th phase for the time 4 he
wrote in the form

5 = ¢;T¢:J
n
Pn
where @, are the functions characterising the n-th

component, such as the density p, the velocity v,
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the external force X and the molecular stress
tensor /7, with the concentration ¢, in the region
o

But Frankl’s approach did not take into account
the fluctuations of concentration and their
correlations with the kinematic characteristics of
the mixture.

To eliminate this limitation Djunin (1961)
proposed a sequential spatial-temporal averaging
procedure that is expressed as:

= D
a%,, = L (@®,d2; @, = - f&n de=| 2
Q‘;“; e At A @,

The sequential spatial-temporal averaging of @,
yields the followingrelation

a,;on = 0'1(7,: + 47:, ¢;1
Here prime denotes the fluctuations.
Averaged continuity and momentum equations are

0 n'¥n 0 T
S = pn((pnvnk +PnVi )=0 (1)
ot ox

< (qu -+g_o'_v7)+ip OpVok Vi =
ot Pn\PnVni n'n axk n¥n' nk" ni
L a (2)
= Pn (@HXm' + ‘D:JX;I'F ) “&— T nnik
k

Hereafter, the summation signs 2 over n and
overscribed bar denoting the sequential spatial-
temporal averaging of functions are omitted (but
not for the correlations); i, k =1,2,3.
It should be noted that with no phase change
equation (1) is an analog of Schmidt’s diffusion
equation (Schmidt, 1925).

Tmie 18 the component of the generalised
averaged tensor of the molecular and turbulent
shear stresses of the n-th phase:

' ’
Thnik = 11 nik@n 11 nik@n -k

+Pn vmv:;k¢7:f +@y v:ﬂ'v:.lk +Vk v;lj¢:l +v:1iv;nk 69;1)
(3)
The set of equations (1) and (2) with the shear
stress tensor (3) is most general view of governing
equations.
The employment of these equations is possible on
a basis of simplified physical models of transfer
processes in one phase or another, phase
interaction, taking into consideration flow patterns
and regimes and initial and boundary conditions.
As an example we refer to a very simplified
version of these equations that was implemented
by Djunin (1963) for the particular case of a gas-
solid particle flow, namely, the snowstorm
mechanics.
Let us take up some potentials of the sequential
spatial-temporal averaging procedure as applied to
gas (vapour) - liquid flows.
For the case of the gas-liquid flow with void
fraction ¢ in terms of the mass flow rates G we
will have the next general set of equations (again
with no phase change):




Op-’( q’] aGH\ =0
ot Oy,

90 G _
ot oy,

0
C)

at

0%

0G,;, 0G,v,, 7 O oir
& gk gi ' eik
—+ = o X | -—2—
ot &k )O.{(axgt @ g:] 6):&

where suffixes | and g denote liquid and gas
phases respectively;

pi-o)f
3 pm,,ea+e,.m

n

This set of Eqns (4) will be used as the unified
methodological basis for the following simulation
of transient gas-liquid flows.

22. Friction losses

Let us take a look at the turbulent shear stress
tensor for two-dimensional flow. Assuming that

L [} ' ' L r
Uy =Ug =U, V=V, =V

g 5 ug=u;+u'3

where u; is the bubble-rise velocity (the terminal
rise velocity of a single bubble in stagnant liquid)

I ! !

Disregarding triple correlations such as u'v'¢g,,
and using the definition (3), we have:

7= p;[usv'(l-@)f +(1 -¢W+vu'(l*¢)'J+
5)

tpuve +¢u'7+vu'_7J

But pgug;'—(? << pyuv'(1-9) because p, << g
For the gas-liquid mixture of the velocity # and

the density of p = p, (1-¢) +p,¢ the turbulent
tensor then takes the form

r=uyv'p touv'+vu'p (6)
For a flow in a channel v = 0 we can write
r=puv +upy o)

Notice that this equation was appeared in the
article by Levy (1963). But this fact has to be
regarded as a coincidence because the analogy
with compressible liquid and the correct temporal
averaging on the basis of the rules used by Levy
does not give an additional contribution like

u;v'p" into the turbulent shear stress.

The relation (7) can be used as a basis for the
calculation of friction loses in gas-liquid mixtures.
Assuming the turbulent momentum and mass
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20 2% - (1= g+ 1-0) ;|- 2

transfer to be the same, we define the fluctuation
components according to mixing length theory.
So we can write

=Fifii(ﬁ)
dy dy

where [ is the mixing length.

The relation between p and u can be found using
the assumption of similarity for the fields of the
velocity and mass concentration. Further using
various laws for the shear stress variation over the
boundary layer (channel) thickness and for the
mixing length [ one can solve Eq (8) with respect
to the distribution of velocity u. This is the
conventional approach used by the majority of
authors. But in this way some problems arise,
which are related to the application of the
turbulence models, i.e. the closure schemes, and
empirical constants from the single-phase theory
of turbulence to multiphase flow.

One can avoid some difficulties intrinsic to the
conventional approach by using the theory of
turbulent boundary layers with vanishing
viscosity, which was developed by Kutateladze &
Leont'ev (1964, 1972) for the calculation of
single-phase turbulent boundary layers. The
physical essence of the theory of turbulent
boundary layers with vanishing viscosity lies in
the fact that in considering some ideal turbulent
boundary layer, the integral characteristics of heat
and mass transfer are mainly determined by the
properties of the conservative part of the turbulent
core, and their relative changes under the complex
conditions of nonisothermality, fluid injection,
physical and chemical transformations, etc. do not
depend on empirical constants and are not related
to any kinds ofthe semiempirical theories.

The concept was used in our previous studies
(Gorin, 1978, 1982; Nakoryakov & Gorin, 1994)
for the calculation of the wall shear stress 7y in
steady-state two-phase turbulent boundary layers
and two-phase flow in tubes and on a permeable
plate and where the limiting (Re— ) relative
friction law for homogeneous two-phase flow
with variable density was formulated as:

1/2 -~ ~ 312
WEACTICA L
‘ p.\t D"n Fﬂ l_(l&pf'l’p\)a

Y, =0/¢, )R:—w:f is the
resistance.

We have used here the next notations:
w=u/u; v=tlt,; I=1/6; y=y/6;

(3

where relative

The leeyrflglas number is defined by the mixture
velocity and the liquid viscosity.

The flow of an incompressible liquid with the
density p, and the velocity u, of mixture at the
outer edge of the boundary layer (tube axis)
corresponding to those of a homogeneous mixture
is taken as a "standard" flow. These parameters



are marked by the index “0”. For the case of a
tube, instead of the boundary layer thickness &
one should use the tube radius R and the friction
factor is then defined by the mixture velocity
averaged ., over .the tube cross section

c=2ty /[/7s<”)f)

Making some simplifying assumptions one can
calculate key parameters of the two-phase
mixture:

e the mixture velocity profile

e [3;" _&] /{1 _&]
Uy P P

e the void fraction profile

@ P Pi

® the density of mixture distribution
p/p =y

The final algorithm for the calculation of the basic
parameters of steady-state gas-liquid flow in a
tube (without derivation and details) is performed
as follows.

At first, find the average parameters of the flow.

1. An average density of mixture is defined as

(¥y=y/R)

s 2p,
=2[(1-P)oh = —=Ls 9
2. The mixture velocity averaged over the cross-
section has the form

U 'p.f 2
uy=—-—=— - (10)
< ) 1“,0,'/;0_;[ Ps (1+"12+n)i|

3. The total mass flow rate per unit area is

__pf“-v_{@—l} (1)

T 1-p/p

Pi
4. The quality is
G u,/(u) 1-p,/p.
I=—g= ( > Pi p.s (12)

G p/pg-1{p)/p -1

i 1/2
Here n=- —(g—o) ln-’c—)i;
2\ 2 Pi

x 1s the Kamman

constant.

The deformation coefficient & for the velocity
profile in a single-phase flow can be calculated
fiom the well-known power velocity profiles for
the respective range of Reynolds number
(standard data).

And now we can find the Martinelly factor

XEG =Ty ("fo:

Xioso = 8k3n2x2[1 -&] @ 2 (13)

pr |- nXZ - n)

214

As was shown by Gorin and Nakoryakov & Gorin
(ibid) through the comparison of the direct
measurements of wall shear stress for two-phase
flow with the calculated results from the simple
algebraic formulae (10) — (13), the single
additional empirical coefficient k can be taken to
be equal to 1.17 for the majority of examined
experimental data in bubbly, slug and churn-
turbulent regimes.

2.3, One-dimensional models

The difficulties of correct and detailed accounting
for external forces and phase interactions, plus
mathematical difficulties make the full solution of
the general set of transient transport equations
impracticable.

The only rational way to proceed is physically
justified simplification.

The one-dimensional models are the first option,
and the potential of these models is still far fiom
exhausted.

Mass conservation equations for the gas and
liquid phases can be written as (by neglecting the
diffusion transport along longitudinal z-axis)

a a
B Pep+ - Pepig =0 (14)

/4 Oz

o-9) o
—+—\1l- =0 15
——+=—(-ok (15)
The liquid phase is considered to be

incompressible.

Hereinafter the cormer brackets denoting the
cross-sectional averaging are omitted because of
the cumbersome arrangement of formulae.

The momentum equation for a two-phase mixture
results from the summation of those for the liquid
and gas phases in a channel with the
circumference U and the cross-section S (for
circular tubes U /S =2/R):

oG 0 y
—+—Gu=————~ in4
o e & 5§ F

6 is the angle of inclination of the pipe with

respect to the horizontal.

The flow momentum G# is composed of that of

the gas and that of the liquid according to

(16a)

Gu=Gau, +Gu,

Together with the definitions of the phase mass
flow rates one can also write for the flow
momentum

l:xz + (1—):)2 :‘

Pee (1 —40),0/

so that the flow momentum equation takes the
form

Gu =G?




(16b)
where the three last terms are the friction losses,
gravitational gradient and pressure drop due to
acceleration.

The momentum equation can also be used in the
form

2ty
E=—-@——!‘E——G%—pmg5in.9

(16c)
The gas phase and mixture velocities can be
connected through the slip relation (drift-flux
model):

U, =Cu tu,

In the bubbly and the slug flow regimes, for the
local drift velocity u, one can use either (Zuber &
Findlay, 1965):

u, =ug(1-p)" (17a)
or (Wallis, 1969)
u, = upp(l-9)" (17b)

where the exponent changes from m =0 to
m =3 depending on the bubble size and u; is the
terminal rise velocity of a single bubble in an
infinite medium.

The value of the rise velocity can be calculated by
the following formulae:

1/4
" 1_53[3@;&2}

= (17¢c)

P,

for the chum—turbulentbgbbly flow regime, and
1/2

u, = 0.35{3(;” P M

P

(17d)

for the slug flow.

The constant C characterises the relationship
between the void fraction and flowing volumetric
quality, and the value of this coefficient is usually
determined by experiments. In our case ¢ can be
calculated from the profiles of the mixture
velocity, the void fraction and the density of
mixture above (Sect. 2.2) by analogy with
Bankoff (1960) or Zuber & Findlay (1965).

An additional equation required to complete the
model is the state equation that relates the gas
phase density to the pressure. One can take that
the gas phase behaves as a perfect gas (R is the
gas constant):

P =p RT (18)

For isothermal flow, the temperature 7 is
constant.
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For slow transient processes (they are
characterised by small perturbations of low
frequencies with large wavelength compared to
dimensions of structural parameters of the flow
pattern considered) the momentum equation takes
the form (quasi-equilibrium momentum balance):

dp_ZTW +G%+pmg8in8 (19)

dx R

In case of large tube diameter one can neglect by
the friction losses. So, we will have

dp du .
=G—+p,,gSind 20
pE gs (20)

So, equations (9) — (13), (14) — (16), (17) and (18)
under given boundary and initial conditions
complete the problem of simulation of #ransient
two-phase flow. Eqs (19) or (20) can be used
instead of Eq (16) depending on the character of
the problem.

Notice also that the set of Eqs (19) (or (20)), (9)-
(13), (17) and (18) is, in fact, the calculation
method for steady-state two-phase flows.

To use one or other formulae (17) for the local
drift velocity the flow regime needs to be
recognised. Current state of art does not allow
circumventing the use of one of the empirical
regime maps in spite of the fact that they were
obtained for particular cases and their use for
other cases must be assumed approximate.

The particular type of the flow momentum
equation used, i.e. (16a), (16b) or (16¢) depends
on purpose of the task and the mathematical
technique to be used.

3. CONCLUSIONS

The main purpose of this report is to present the
ideas and governing equations derived on the
basis of sequential spatial-temporal averaging
procedure for transient two-phase flow and its
simplified one-dimensional versions (models) for
geothermal wellbores and pipelines with bubbly,
slug and chum-turbulent flow regimes. The
governing equations have provided also the basis
for the friction loss calculation. The slip velocity
relation, the perfect gas state equation and the
assumption of liquid incompressibility have been
used.

The evaluation test of models is in progress now.
One should bear in the mind that in real two-phase
systems, the gas generally does not behave as a
perfect gas and the liquid phase properties can
vary with temperature and pressure.

Geothermal fluids are mixtures of water, salts and
noncondensable gases. In principle, correctives to
account for these effects can be easily added to
the present models.

It should be noted also that certain of the formulae
cited above (for example, these for the relative
phase velocities) are not final recommendations
but simply reasonable suggestions. This is also



true for the estimation of transient flow pattern
transitions. The problems mentioned are opened
for many variations and different approaches.
Subsequent extension of the developed general
approach and one-dimensional models depends on
the applications and particular versions should be
built to suit requirements and having regard to the
peculiarities of the problem.
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