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MODELLING SHALLOW HEAT TRANSFER AT KARAPITI
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SUMMARY = Temperature measurements in shallow soils together with three simple heat flow models
are used to derive the apparent thermal diffusivity, and to identify heat and mass flows.

1. INTRODUCTION

Shallow ground temperatures have been recorded
at 5 sites around the Karapiti Thermal Area,
Wairakei, New Zealand Bromley & Hochstein, (in
press).  Temperatures were recorded at the
surface, and at various depths at each site. In the
present study these data are used with three simple
heat flow models to determine the thermal
diffusivity values for the Karapiti sites, and to
investigate the shallow subsurface heat and mass
transfer processes.

Three mathematical models are used in this study.
The first (the simple conductive model), is based
on an analytic solution of the one-dimensional
heat conduction equation. The temperature at the
upper boundary is represented by a sinusoidal
function, which is provided by a Fourier analysis
of the field data. The model simplifies the field
situation by treating the soil as a uniform, semi-
infinite layer. A similar approach was reported by
Carson, (1963), Dawson & Fisher, (1964), and
Hurley & Wiltshire, (1993).

The second model also allows heat transfer by
conduction, but at the surface a more complex
heat-loss boundary condition model is used. This
allows the air temperature to be different to the
surface temperature. In the third model mass flow
is allowed giving advective/conductive heat
transfer in the soil.

The apparent thermal diffusivity determined for
three of the four sites considered (KP02, KPO3,
KPO04) has a range of values in close agreement
with Dawson & Fisher, (1964). Another site
(KPO01) shows evidence of cyclic heat input from
depth.

2. MATHEMATICALMODELS

The fundamental problem to be solved is: given
the atmospheric temperature, T(t), and the
temperature measured at various depths, T(z,f),
determine the thermal diffusivity x of the shallow
region of the geothermal system. In order to solve
this problem the following three idealised
mathematical models were considered.
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Figure 1. Aerial photo of Karapiti Thermal Area,
showing approximate data collectionpoints.

I. Simple conductive model

2
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Here g(z,¢) is the heat flux defined by
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where k is the conductivity.
II. Heat-loss surface conditions

The same differential equation (1) is used but the
heat loss at the surface is proportional to the



difference between the surface temperature (T(0,t)
and the air temperature (T,(t)). Hence the surface
boundary condition (2) is replaced by

-k E:)%(0; )=h(T(0,)-T, () Q)

In the case where the surface heat transfer % is
very large, (5)reduces to (2).

111. Mass through-flow
In this case the differential equationis
T 9T _ 3°T

N e 6
ot 0z xazz ©)

Here V is defined in terms of the mass flux g,
by

Cme

V= Q)
(PC )q}'
and
(pc)eﬁ' =pfcf¢+prcr(1_¢) (8)
The diffusivity K in (1) or (6) is defined by
k
K= ®)
(oc )eﬁ'

Equation (7) is valid for single phase flow only
(water or steam). For the sign convention used
here V is positive for upwards flow and negative
for downwards flow.

2.1 Surface temperature

The air temperature has a strong periodic
component and therefore it is appropriate to
approximate air temperature by a finite Fourier
series of the form

N
T,(t)=Co 1Y C, cos(@,t -9,) (10)
n=l
Here
w, = 2_7m (11)
T

where 7 is the total length of time in the record.
For the data considered T = 72, 96, or 144 hrs.
The dominant term in (10), is the diumal term,
correspondingto n=3, 4, or 6.

The steady component in the temperature arising
from the Cy term and the main diurnal periodic

component are considered separately. This results
in two simple representations of T (t) for models I,
11and III, namely:

@ T,()=C, (12)

(i) T,(t)=C, cos(w,t-@,) (13)
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The following solutions were obtained for (i)

Table 1. Solutions for mean temperature

Problem Solution Parameter
values
A0 =Co
! T'=40 +Boz B, =24
"%
e
B, =94
° k
Ay =Ty
By =C, -T,
111 T= AU + Boe_ﬂz 0 0 d
14
17 = —
K

Note that T, is the temperature of the deep upflow
and the deep heat flux is given by

qq =Csqmly (14)
For the boundary condition (ii) the solution for all
three problems can be written in the form

I'= icne—ﬂz Cos(wn"‘ﬂ"%; - E) (15)

The parameters in (15) are given in Table 2.

Table 2. Parameters in equation (15)
|

Problem Parameters
a a
r=1, B = NA=

1 =R
e=0,a=‘/.g
K

1 a a

;L:".,—, :—’ = —

8 p had 2

I y=JFsin-:i,e=o,r=Ja4+d“




Equation (15) can be re-written as
T(z,r)=C,,‘(z)cos(m,,:-q:,,'(z)—qp,,) (16)

here

Co (2)_-a 17
€,

and

on (2)=n+e (18)

Taking the log of (17) gives

1..[52:-(."—]]= S (19)

Cn

Thus for all three models plots of qJ,,* vs z and

ln(C,,*/C,,) vs z both give straight lines with
slopes y and -f respectively.

2.2 Model features

Model I is the one most commonly used to derive
thermal diffusivity, for example by Dawson &
Fisher, (1964), Carson, (1963), Hurley &
Wiltshire, (1993).

Note that for models I and II, y = B and both

plots should have the same slope (in magnitude).
For models I and III, A =1 and E=0, so both
plots should have a zero intercept. The plots of
mean temperature are linear for models I and 11,
and exponential for II1.

Obviously many other more complex models are
possible. For example, the authors have carried
out preliminary studies on two-layer models, and
are also investigating general nonhomogeneous
models using the TOUGHZ2 geothermal simulator.

3. DATA DESCRIPTION

Temperature measurements were taken over
periods of 4 to 8 days, at 5 sites around Karapiti.
The sites are KP01, KP02, KP03, KP04, and
KPOs.

Temperatures were recorded at the surface, and
depths of 1cm, 5 cm, 10cm, 15 cm, and 20 cm.
Soil samples were also taken at 0 - 15cm and 15
=30 cm depth for laboratory analysis of moisture
content and density determinations. (see Bromley
& Hochstein, (in press)). Some subsets of the data
were analysed separately, and there are 7 analyses
reported from 4 sites. KPOI data (Figure 2) shows
non-periodic behaviour for the first 24 hours, and
a separate analysis has been applied to the period
from 24 to 96 hours; this data subset is called
KP01_72. Repeat measurements at the same site
are called KPOla (Figure 3). This data shows the
effects of rainfall suppressing the diumal
temperature variation for the last two days of
measurement. Therefore there is also a separate
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analysis of the 96 hr period before the rainfall.
This data set is called KPOla_96. Data from the
remaining sites are referred to by the site name:
KP02, KP03, and KP04 (Figure 4, Figure 5, and
Figure 6). The data from site KPOS5 lacks the
periodicity required for a Fourier analysis.
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Figure 5. KP03: measured temperatures.




Figure 6. KP04: measured temperatures.

4. RESULTS
4.1 Fourier Analysis

The near-surface temperature measured over 4 to
6 days at the Karapiti sites show the strong
influence of daily temperature cycle, but also
show the influence of non-periodic factors such as
cloud cover, rain, barometric pressure, and steam
flow. The diurnal components in the data are
isolated by Fourier analysis, as described in (10)
and (11). The analysis provides the amplitude of
the each cycle (C), and the time of the temperature
peak (the phase shift (¢)), at each depth.
Equations (17) and (18) give the theoretical
relationship of the variation of amplitude with
depth, and the phase shift with depth, respectively.

Similarly the results in Table 1 enable the
measured mean temperatures to be used to deduce

the heat flux from depth ¢, and related
parameters.

A Fourier analysis of the Karapiti data shows that,
as expected, the diurnal term is dominant in all
cases. The C, term in the Fourier series can be
used to produce a plot of the mean temperature
versus depth (Figure 7) without the imposed
periodic fluctuations. For a uniform soil and with
no mass flow this plot should be linear. The
varying temperature gradients with depth in Figure
7 are evidence for:

(1) a layered soil structure,
(i1) variation in porosity or liquid saturation, or
(ii1) a through flow of mass

or all three of these effects.

temperature (deg C)

Figure 7. Mean temperature &) versus depth for
each dataset.
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The relatively high surface temperatures for four
KPO1 data sets suggest that model IT with the heat
loss surface condition might be appropriate for
these cases. However consideration of the diurnal
component for these data sets (see below) shows
that none of the models considered here fit these
data.

Figure 8 and Figure 9 show the diurnal amplitude
and phase angle versus depth, respectively.
Surface effects, (for instance, solar radiation and
vegetation) can be seen in the temperature
amplitude at 1cm (Figure 8).
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Figure 8. Amplitude versus depth of the diurnal
temperature variation (all datasets).

Figure 9. Phase angle versus depth of the diurnal
temperature variation (all datasets).

KPOl, KPO1_72, and KPOla show temperature
amplitude increasing with depth (Figure 8) and a
reversal of the phase angle with depth (Figure 9).
The effect is diminished when the rain-affected
data are removed (KP0la_96) although neither the
log of amplitude nor the phase shift are linear
functions of depth.

The plot of logarithm of the amplitude, and of the
phase shift, for KP02, KP03, and KP04 are
approximately linear, and a best fit line through
each set of data gives a value for B and 7 .

4.2 Model results
Model 1.

By inspection the mean temperature data for
KP02, KP03 and KP04 (see Figure 7) can be
matched approximately by Model I, and values of
q./k (Table 1)calculated by fitting straight-linesto
the data. Similarly the data for these three sites,
shown in Figures 8 and 9, can be used to obtain



values of B and y for Model I. A summary of
the results obtained are shown in Table 3.

Table 3. Results for Model I

I KP02

l KP03

| xpos

Data

q; 149.2 723 3327

B 12.52 11.99 8.20

v 7.87 10.72 8.79

K amp 2.32E-7 | 2.53E-7 | 541E-7
X phase 5.87E-7 | 3.16E-7 | 4.71E-7

’ assuminga value of 1W.m/K fork

The heat fluxes indicated by the values for g, in
Table 3 are high (at least 72.3-332.7W/m’). The
results for apparent thermal diffusivity are shown
in Figure 10together with results from Dawson &
Fisher, (1964) for pumice soils at Wairakei,
included for comparison.

Model I1.

The results for KPOI in Figure 7 with the elevated
surface temperatures suggest that Model II should
be applied to these data sets. However the plots of
in Figures 8 and 9 are not in agreement with (18)
and (19) and therefore no further fitting of Model
1l'was carried out.

Model I11.

The data from KP02, KP03 and KP04 was used
again to calibrate Model III. First the formula in
Table 1 was matched, using nonlinear least
squares giving the values for 7 and 7,; shown in

Table 4. The quality of the fit of the formula in
Table 1 to the data in Figure 7 is excellent. Next
the data from Figure 8 and Figure 9 was used to fit
B and y, and then from those parameters the

value of a was calculated using the formulae in.
Table 2. Finally the diffusivity was calculated.
Unfortunately the values of diffusivity obtained
using the amplitude data and the phase data differ
(see Table 4). These results are also shown in
Figure 10.

Table 4. Reaults for Model II1

Data KPO2 KPO3 KPO4
n=2d 4.80 4.63 5.86
T 72.9 47.7 119.7
B 2.5 11.9 8.20
y 7.87 10.72 8.79
_famp 14.1 135 6.8
Sl 1.4 15.4 12.8
Xy 3.66B-7 | 3.99E-7 1.57B-7
Kphase | FO0B7 3.07E-7 4.44E-7
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It was hoped that by using Model III, which fits
the mean temperatures very well, more
consistency between the two estimates of
diffusivity would be obtained. However this is not
the case and it is clear that the simple models
investigated here are of limited usefulness for
matching the measured data.
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Figure 10. Thermal diffusivity for pumice soils,

calculated fiom models I and III. Values
from Dawson and Fisher (1964) for
comparison. Dawson- 1 are values fiom the
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5. DISCUSSION
5.1 Factors influencing the thermal regime
Model I and Model II1

The models considered here are of limited
accuracy because they assume that the soil is
homogeneous and the flow is single phase. In fact
neither of these assumptions are really valid.

Moisture content and soil type

Thermal diffusivity is dependent on the moisture
content, and soil type. Field and laboratory
evidence suggests that there is some variation in
soil type and moisture content between sites.
Hence some variation in thermal diffusivity is to
be expected.

Lavyered structure

Soils generally have easily identifiable layers,
which may have differing thermal properties; in
addition, the existence of zones of condensation or
evaporationmay create a layered thermal structure
in the soil. The models presented in this paper do
not include the possibility of layeringin the soil.

Variations in time

The Karapiti data presented here has been
collected during relatively stable climatic
conditions, and the analysis presented here
assumes that soil parameters do not vary with
time, and that the diurnal temperature cycle is a
stablecycle.

Heat transfer processes in geothermal soils

Conduction is an important heat transport
mechanism in soil, and is the sole means of heat




transport in Model I. Model 111 also includes
advective heat transport, but only for a single
phase fluid. It is likely that phase changes are also
important at shallow depths in a geothermal soil.

Geothermal soils may also experience episodic or
periodic heat input from the subsurface. The data
for KPOI in Figure 8 with an increasing amplitude
with depth suggests that a diurnal pulse of heat
from depth may occur.

52 KP02, KP03, and KP04

Only data from KP02, KP03, and KP04 is used for
thermal diffusivity calculations. Thermal
diffusivity for these sites is between 0.16E-6 and
0.59E-6 m’/s. This is similar to the range of
0.29E-6 to 0.59E-6 m'/s reported by Dawson &
Fisher, (1964).

Some difference between sites is expected, but the
difference between K gy, and K ppgq for the

same site indicates that, although the models
provide a reasonable estimate of thermal
diffusivity, they not describing all the thermal
processes.

53 KP01, and subsets of KPOI data

The increase in amplitude of the diurnal signal
with depth, and the phase reversal means that
another periodic heat input from depth must be
occurring. For these sets of data the fit of the
model formulae to the data is very poor and
corresponding thermal diffusivity derived from
amplitude and phase plots will be inaccurate. The
simple models are not adequately describing the
heat transfer processes, or the heat input, at the
site.
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6. CONCLUSIONS

The aim of modelling is to provide information
about the physical processes occurring in the soil.
In order to achieve this simple models have been
used to represent processes that are considered to
be important in the shallow subsurface. This
approach has shown that models involving heat
conduction, and mass transport (and advective
heat transport) of a single phase fluid through a
homogeneous il layer give reasonable results but
there are other processes which affect soil
temperatures.

These studies have provided the basic conceptual
models which are being used for developing more
complex numerical models capable of including
phase changes, layered soil structures, and a range
of boundary conditions.
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