

TURBINE WASHING TO REMOVE NOZZLE DEPOSITION AT WAIRAKEI

C. J. MORRIS & L. G. BACON

Contact Geothermal, Wairakei

SUMMARY-Deposition of **steam** evaporates on the nozzles of the IP turbines at Wairakei **has** become more pronounced since the **shift** in production to “dry” **steam** wells and operation with superheat conditions within wellbores and pipelines. This deposition, and the outages **needed** to remove it, **resulted** in significant production losses. A simple turbine washing system was designed and installed to dissolve deposits with the turbine on load. The washing procedure is done for **short** periods on an as-needed basis. It **has** been cost effective and there is no indication **that** the additional water **has been** detrimental to the life of the turbine.

1 INTRODUCTION

Deposition of evaporates in turbines is a common problem at steam dominated geothermal fields. Tsujimura et al (1980) goes into the problems in considerable **detail**. Various strategies have been developed to deal with the **scaling**, **most** of which involve some form of turbine washing and with varying degrees of success. Triyono (1998) lists the washing regimes **at** seven fields.

2. HISTORICAL PERSPECTIVE

Historically, Wairakei **has** not had a scaling problem in its turbines. There **has been** some deposition on the back of the first stage **fixed** blading or nozzles in turbines **G1** and **G4** fed with IP (3.5bg) saturated **steam** but it **has** generally been less than 3mm thick and easily removed during surveys. In many cases, the thermal stresses that occur during an outage have been enough to cause any deposition to crack and flake off.

Wairakei has historically been fed by separated **steam** from liquid enthalpy wells. These wells are situated 3 - 4 km from the power station and the long distances, together with poor insulation on the older pipelines, allowed chemical laden water carried over **from** incomplete separation to be scrubbed out. There was deposition in the HP machines very early on when production was concentrated in the Eastern borefield, but as the production centre moved away from **station**, the deposition decreased and the scrubbing effect increased. In fact, the scrubbing was **so** efficient **that** corrosion in the mild steel pipelines became a major threat in the 1980s (Thain et al., 1981). This corrosion was stopped by injecting **small** quantities of separated geothermal water back into the **steam** pipelines to maintain <1mg/l of **silica** in pipeline condensate **just** prior to entry into the **station** (Bacon and Stacey, 1984) **Most** of the blade deposition **seen** since that time **was**

thought to be related to excessive injection of the silica laden water.

During the **past fifteen** years, production at Wairakei **has** gradually **shifted** from liquid enthalpy wells in the western borefield to “dry” **steam** wells at Te Mihi, a further 2 - 3 km away from station. By 1994, this **steam** was transported to the **station** in a large (1.2m diameter) well insulated pipeline (R Line). About 40% of Wairakei’s **steam** comes currently from Te Mihi **steam** wells.

The majority of Te Mihi **steam** wells that feed into R line are not in fact “dry”, although no separators exist. At normal operating pressures, the **steam** is up to about 0.5% wet, the velocity within the wellbore is **high** and water is carried within the **steam** in minute droplets. They do not separate out because of their small size and the **high** velocity. The efficient insulation on R Line also **means** there is little condensate to provide for scrubbing. Thermodynamically, conditions are such that superheat development occurs either down hole or **within** surface pipelines.

Under superheat conditions, deposits formed within Surface pipelines. These deposits **started** to form when the wells and pipelines were first commissioned. The commissioning of new wells **caused** the deposition **rates** to increase, particularly within 500 m of the well. **Inspections** had **shown** the deposition was up to 100 mm thick **on** the pipe walls with it being thicker **near** obstructions like flow measuring orifices. Rough order calculations indicate there could be about 10 tonne of **material** deposited in the pipes. Attempts were made to wash or waterblast **this material** off during outages but with **mixed success**.

In July 1998, two new wells were **connected** into R line. These significantly **increased** the velocities in the line and **also** changed the flow paths where R

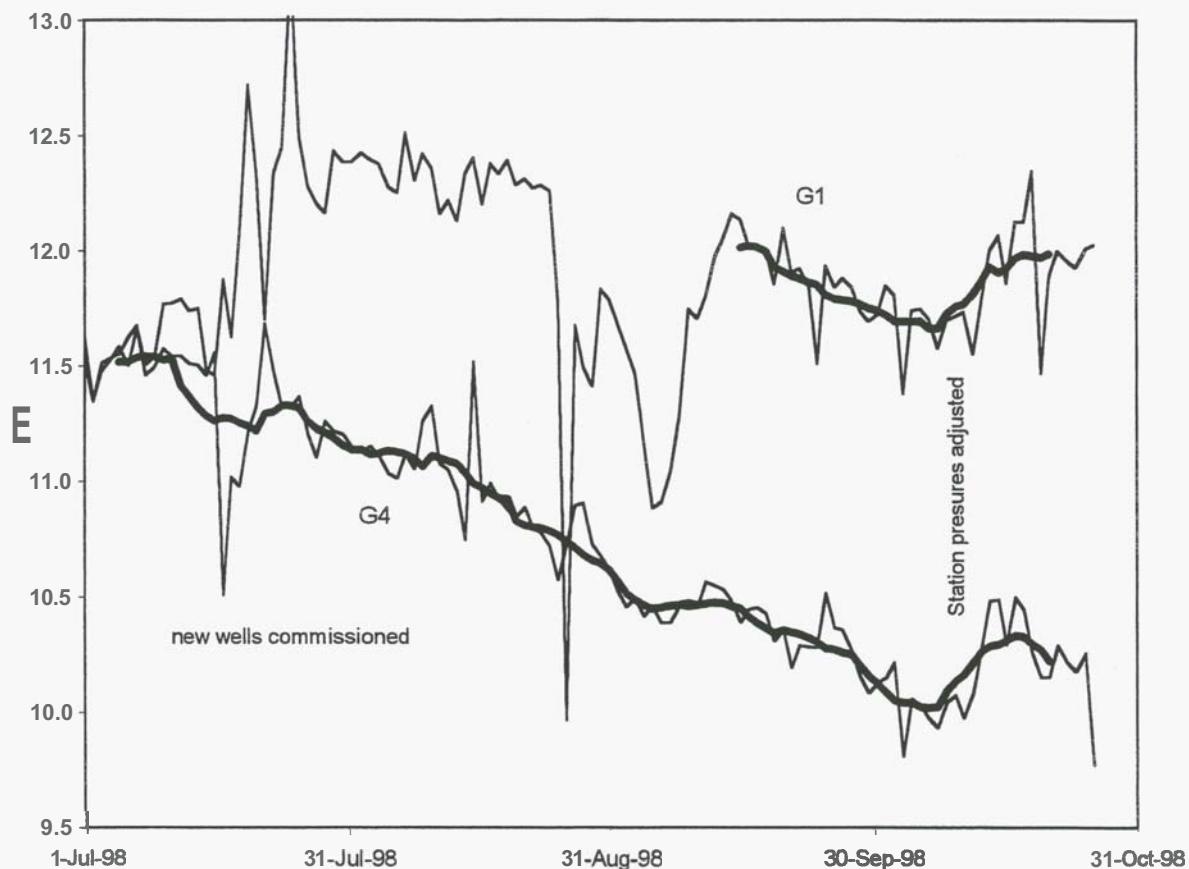


Figure 1. Turbine output decline from deposition associated with new wells

line was interconnected with the western borefield wells. Under the old flow regime, the western borefield **steam** which was wet, flowed into R line at A10. When the new wells were connected, the R line **steam** flowed into the lines from the western borefield. This change in flow regime meant that as the **steam's** velocity increased, the **dryness** of the **steam** increased. The IP turbines started to clog up the day the new wells were commissioned. G4 is thought to have declined in output first because its machine nozzles were already partially clogged. Within 3 months, one of the turbines had a 20% decline in output. Figure 1 shows the effect of the well commissioning and output decrease. The figures shown are the average generation for the day so are affected by other station and machine activities. Trend lines have been added to remove these day to day fluctuations.

When the steam containing chemicals in the water droplets enters the IP turbines, there is an additional 1.5 bar pressure drop across the nozzles. This provides an additional 30kJ/kg heat to flash any remaining droplet water. The chemicals dissolved in that water will then either be carried through the turbine as dust or deposit on the trailing face of the nozzle blades.

The nozzles are the diaphragms or **fixed** blades in front of the first stage turbine or moving blades. The turbines consist of a number of stages where, in simplistic terms, there is a pressure drop across the fixed blades and a velocity drop across the turbine blades. As well as the velocity drop, the blades extract sufficient energy out of the **steam** to cause water droplets to form in the **steam**. This water is centrifuged outwards where it is collected and removed by drains built into the diaphragms. Depending on operating conditions and design, up to 10% of the inlet **steam** can be converted to water inside the turbine. The reason why the deposition usually forms only on the nozzles is that the water droplets continually wash the other blading. The IP machines at Wairakei are more prone to deposition than the MPs because they have only three stages to drop the pressure from 3.5bg to 0.2bg while the MPs have 8 stages so consequently there is smaller **pressure** drop per stage.

The evaporate particles also cause erosion of components in the **steam** path, particularly those that are small or in regions of high velocity. The tenons that fix the shrouds to the tips of the blades are particularly prone to this erosion.

Station **operating** conditions are such that the IP machines, with clean nozzles, **need** to be operated with partially closed throttles to prevent overloading of the generators. **This operating state adds** to superheat development at the nozzles. **As** the nozzles block, the throttles **are** opened to bring the output back up. Once the nozzles are fully **open**, deposition causes the output to gradually drop **at** a rate of approximately **5%** per month. The trigger point for nozzle cleaning is generally at a time when load has dropped by about **10%**. Monitoring of the machine outputs indicated that deposition removal needed **to** be done approximately every three to five months. Machine monitoring **has** shown sudden improvements in output **occurring** after the turbines was taken out of service for a day's **maintenance**. The reason for this is that the isolation valves leak and **steam passing** the valves provided a source of condensate in the turbines to soften and redissolve deposition.

When turbines were out of service for **three** months during overhauls, the two wells that caused most of the deposition problems were **also** taken out of service **as** their **steam** was not needed. The turbine nozzles continued to clog up, albeit at a slower **rate**. **This** continued deposition was attributed to a change in the flow regime in the **steam** mains allowing material previously deposited on the pipe walls to redissolve and be re-entrained in the **steam** flow.

3. EVAPORATE DEPOSITS

During a machine survey in May 1999, samples were collected from the nozzles of **G4** turbine. The deposit was relatively soft and **easy** to break into **sub** millimetre sized particles. The analysis of the deposit (Brown, 1999) showed **a** mixture of quartz, silicates and burkeite. A condensed form of the analysis is shown in the Table 1.

Table 1 Chemical Analysis of Deposit

Na ₂ O	42.9%
SiO ₂	15.8%
Cl	9.1%
S	8%
Fe ₂ O ₃	4%
Al ₂ O ₃	2.2%
K ₂ O	1.8%
No other components over 1%	

It **needs** to be emphasised that such deposits are not precisely representative of the chemistry of droplets at their formation. In **this** situation, partitioning of minerals may occur within the **steam** transmission system **as a** result of the evaporative process causing the least soluble minerals eg amorphous **silica**, to deposit first followed by the more soluble minerals. The

chemical makeup of deposits at any particular location in the system is therefore dependent upon the thermodynamic conditions **through** which the droplets have passed. If superheat development is rapid then deposits are likely to have a chemical composition similar to the original droplet fluid. In the **case** of shallow "dry" **steam** wells **near** the field **boundary** the chemical makeup of deposits will be more likely to be closer to that shown in Table 2. **This** fluid **was** collected from a well during **a** long term output **test**.

Table 2 Chemical Analysis (mg/l) of Discharge from 'Dry' Steam Well

pH	8.8
HCO ₃	1140
Na	490
K	18
Ca	0.3
Cl	5
SO ₄	28
SiO ₂	140

4. CLEANING OPTIONS

Analysis of the problem indicated **that** two solutions needed to be worked on, i.e.

- steamfield thermodynamics and
- turbine deposit removal

The latter was the most urgent. It also offered **an** immediate solution to generation losses.

The deposition **was** removed by **turbine dismantling** on **three** occasions, two of which coincided with machine surveys. The turbine rotors were removed and the nozzles water blasted with a 3000 bar, **4 l/m** water blaster. **This** proved **to** be a very effective cleaning method but it needed **a** three day outage and had a significant **impact**, both on staff resources and lost generation.

Overseas experience indicated **that** turbine washing was the most viable option for turbine scale control. A good **summary** is given in Triyono (1998). It does not however address the thermodynamic or mineral solubility **aspects** of deposit formation and hence is purely palliative.

Steam line scrubbing in the steamfield was **seen** as a more suitable long term option. It will be difficult to implement however because of the lack of **a** suitable water source (to remove superheat) and the **steam** velocities involved. **Initial calculations indicated** that about **750 m** of lagging needed to be removed from the pipelines to desuperheat the steam. Doing this would **mean** the performance would be subject to the vagaries of the weather with a significant difference in condensate formation **on a** cold,

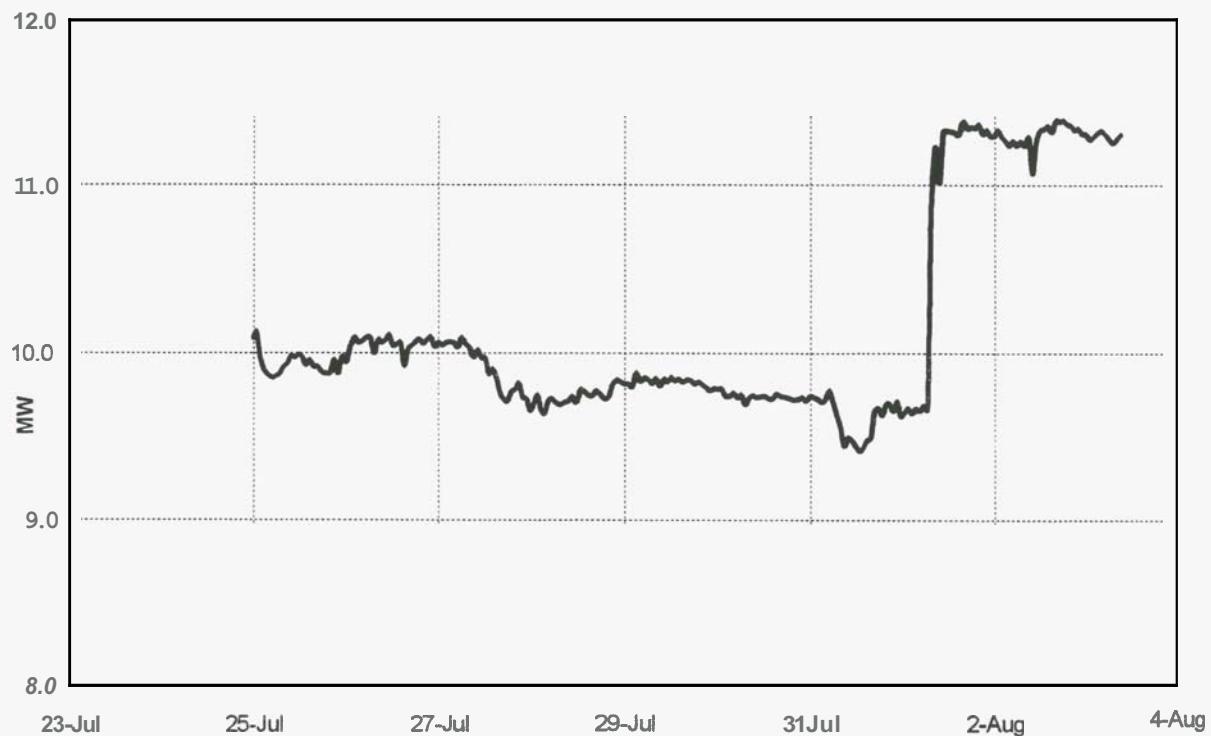


Figure 2

Turbine generation during a turbine wash

windy, wet day compared to a calm one in summer.

There was also not enough condensate flow from any bank of **steam** traps to provide sufficient de-oxygenated water for pipeline injection. Using ground or **tap** water would involve significant operating **costs** for oxygen scavenger chemicals.

5. TURBINE WASHING SET-UP

The decision **was** made to inject water upstream of the turbine stop valves **so** that the **high steam** velocity and turbulence generated by the stop valves and **throttles** provided thorough mixing of the **wash** water and **steam**. No spray nozzles were **fitted**, eliminating the risk of components breaking and damaging the turbine. The water **was** injected through a simple port in the pipe wall.

Wairakei **was** designed to supply **steam** at a number of pressures from the steamfield. The lower pressure (LP) **steam** is produced primarily **from secondary** flash separators and hence **has** very low non condensable gases and separator carryover. The LP **steam** enters the main **station** manifold at about 0.1bg via a back pressure

turbine that also produces about 20t/hr of LP condensate. The decision was made to use **this** for turbine washing. The water **has** very little chemical contamination and is already de-oxygenated. The washing **system** was also designed **so that it needed** minimal staff input during operation.

Tapping points were fitted to the LP **manifold** drains pipework upstream of the float traps. From here, water flows through isolation valves into a common sump. **This** feeds a multistage centrifugal pump **sized** to provide a shut in head of 11bg and a capacity of 8t/h at 9bg. The discharge line **passes** to a standpipe between the two LP turbines. **Steam** hose is **used** to connect the **fixed** line to the isolation valves on the inlet bypasses. **Small** non-return valves have been **fitted** on the **steam** hoses to prevent back flow during start up.

The pump motor was provided with a **manual starter** and there is no **installed** instrumentation. Running the turbine wash **system** is therefore a simple matter of connecting the **steam** hoses to the bypasses, opening five isolation valves and pushing the start button. Monitoring of the washing is done by noting the generation and throttle openings.

6. RESULTS

The wash sequences **that** have been done to **date** are without doubt, successful. Payback time for the installation was about one week of the increased generation. There was a **full** generation recovery within **10 minutes** of the washing starting for the **first** wash sequence. Subsequent washes took slightly longer to get performance recovery. However, the machines were back to **near** fully clean performance within **12** hours. Figure 2 shows the generation from a turbine over a turbine wash. The operators, having to partially close the throttles during washing to prevent generator overloading, decreased the efficiency of the washing and **this has** meant **that** it is not possible to "fully" wash the nozzles clean.

The water flowing from the **casing** drains, especially during the early stages of washing, was **silty** and particles up to **1mm** in diameter could be observed. These were thought to be silica particles **that had** been left when the rest of the deposition had dissolved. It **was** noticed during the washing that there was about a slight (< 2%) drop **in** performance **caused** by the **washing**. As the **steam** entering the **first** stage blades was no longer superheated but wet, this result was not unexpected.

During one washing sequence, a transient vibration alarm came up after about three hours. **This** was thought to have been **caused** by debris breaking off and passing **through** the blades. There have **been** no other problems **so far**.

Because of other problems, the turbine cover was removed on one machine just after washing. Careful inspection **indicated** that there was no visible water damage. The nozzles had no significant deposition restricting the throat area. The trailing faces of the blades had not washed completely clean and were covered with patches of deposition less than 0.5mm **high**.

7. CONCLUSIONS

Turbine washing on an **as** needed basis is a simple, **cost** effective **means** of restoring turbine

performance. **This confirms** the experiences of other geothermal **station** operators. It is **also** possible to install a cheap, reliable effective washing system.

However, turbine **washing** is **seen** only as a palliative measure. From a station management viewpoint, it would be more effective to remove the **material** by pipeline desuperheating.

8. ACKNOWLEDGEMENTS

The authors wish to thank **Contact** Geothermal for allowing this paper to be published.

9. REFERENCES

Bacon, L and **Stacey, R** (1984). **The Transport of Water Droplets Down Saturated Geothermal Steamlines and the development of the Corrosion Inhibition System at Wairakei.** *Proceedings of Conference 24, Corrosion Technology – 984 and Beyond, Australasian Corrosion Association, Paper 48.*

Brown, K.L. (1999). **Deposition of Solids in the Te Mihi Wells, the Te Mihi Steam Pipelines, and the Turbine Inlets.** Report for **Contact Energy, GEOKEM**, Auckland

Thain, I.A., Stacey, RE., and Nicholson D.J., (1981). **Zero Solids Condensate Corrosion in Steam pipes at Wairakei.** GRC *Proceedings Vol 5, 43-46.*

Triyono, S. (1998). **A Permanent Turbine Washing System on Kamojang Geothermal Power plant Indonesia; a Proposal** . Diploma Project 98.24 Geothermal Institute, University of Auckland Auckland

Tsujimura K, Tagami S, Miyazaki M, and Randolph J, (1980). **Geothermal Steam Turbines.** In: *Sawyer's Turbomachinery Maintenance Handbook*, Volume 2 1st Edition, Turbomachinery International Publications, p. 3-1 to 3-36.