

EXPERIMENTAL APPROACH TO UNDERSTANDING WATER-ROCK INTERACTIONS IN ENHANCED GEOTHERMAL SYSTEMS

G.BIGNALL, N. HIRANO, N. YAMASAKI, N. TSUCHIYA & K. NAKATSUKA

Department of Geoscience and Technology, Graduate School of Engineering
Tohoku University, Aoba 01, Aramaki, Aoba-ku, Sendai, 980-8579, JAPAN

SUMMARY – Batch- and flow-reactor autoclave systems were used to investigate granite and quartz dissolution processes, with pure water, under sub- and supercritical conditions (up to 600°C, 60 MPa), to evaluate geothermal reservoir dynamics in a potential, deep-seated, enhanced geothermal system. Development of engineered reservoirs for Hot Dry Rock (HDR) geothermal energy extraction depend on the maintenance of (fracture) surfaces areas for heat exchange, yet precipitation of quartz (as a result of retrograde solubility at >380°C), albite and other minerals occur, which effectively ‘plug’ the system. The supercritical region, above the critical point for water (~374°C, 22 MPa), is not a homogeneous state, but comprises ‘liquid-like’ and ‘vapour-like’ regions, based on the dissolution behaviour of granite and quartz. Solvent properties in the liquid-like, ‘high-pressure’ supercritical region are similar to subcritical water. In contrast, dissolution reactions in the vapour-like, ‘high-temperature/low pressure’ supercritical region are weak, and provide optimum conditions for energy utilization of an artificial HDR reservoir.

1. INTRODUCTION

Active geothermal systems, developed for their electricity generating capability, constitute a clean energy resource, but development is invariably constrained; either by resource temperatures, field pressures, a decline in mass output during production, or by environmental/cultural concerns.

In NE Japan, production drilling at the Kakkonda geothermal field intersected Kakkonda Granite, with a rock temperature at ~3.5 km depth of >500°C (Doi, *et al.*, 1998). Utilization of deep-seated supercritical geothermal reservoirs (>374°C and 22 MPa for pure water), underlying conventionally developed geothermal systems, has the potential to supply huge amounts of renewable thermal energy, by extending the depth of a geothermal reservoir, or by the engineered development of an enhanced HDR/HWR (Hot Dry Rock / Hot Wet Rock) geothermal system.

Several HDR projects have been initiated in Japan (e.g. Higashi-Hachimantai, Ogachi and Hijiori) and in other countries (Figure 1). Water-rock interactions at supercritical conditions, however, and the physical character of fracture systems in Deep-seated Geothermal Reservoirs (DSGR) remain poorly understood, and prompted our multi-group, 5-year project (Hashida *et al.*, 2000).

In this paper, we detail the major findings of our experimental programmes, which aim to deduce granite/mineral dissolution and fracture characteristics at sub- to supercritical conditions, in a hypothetical, granite-hosted DSGR.

2. SCHEMATIC MODEL OF DSGR

Figure 2 shows a schematic representation of our magmatic-hydrothermal system, with a convective region overlying a deeper conductive zone, which may potentially host a DSGR. In a conventional geothermal system, the main upflow zone or reservoir (e.g. at A) may be tapped by <2.5-3 km wells sited to intersect faults/permeable features (that supply fluids to surface features, B).

Multiple magmatic intrusions (C) are the ‘heat source’ for many active, ‘high-temperature’ geothermal systems, (e.g. in the Philippines; Reyes, 1990), with the brittle-plastic transition in the intrusive rocks occurring at ~370-400°C (D).

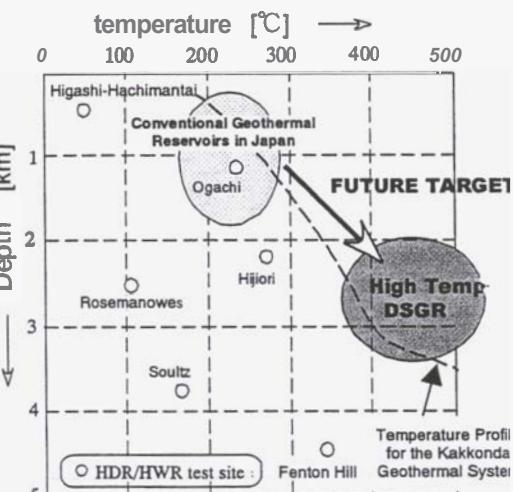


Figure 1: Temperature-depth conditions for HDR test sites in Japan and elsewhere, and potential (future?) DSGR resources.

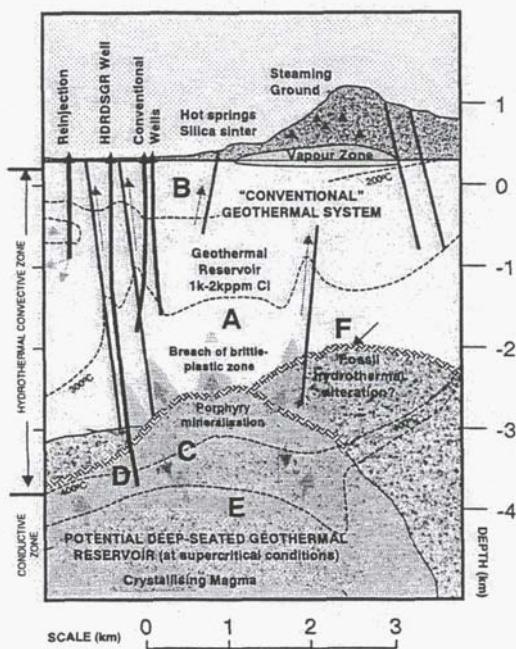


Figure 2. Model of a magmatic-hydrothermal system, with a convective region at intermediate depths and a supercritical geothermal reservoir at >3 km (see text for explanation of symbols).

Some wells have penetrated the brittle-plastic transition, but typically have little permeability.

The core (E) of the intrusion is partly crystallized, and exsolves fluids that accumulate near the top of the pluton, where high pressures may produce fracturing, brecciation and expulsion of fluid across the brittle-ductile transition into overlying rocks (Fournier, 1999). Countering processes that increase permeability is deposition of quartz and other minerals (in veins and breccia matrix; e.g. at F). The circulation of fluid at hydrostatic pressure, and resultant self-sealing, has major implications for the energy utilization of supercritical DSGR's.

3. EXPERIMENTAL PROGRAMME

Many workers have reported on their experimental and theoretical approach to understanding the dissolution of silicate minerals at elevated temperature-pressure conditions (e.g. Savage *et al.*, 1992; Chigira and Watanabe, 1994).

Quartz dissolution has an important role in fluid-granite interaction processes at supercritical temperature-pressure conditions, and therefore the focus of our water-rock interaction experiments.

Savage *et al* (1987) demonstrated, using batch-type autoclave systems, that the dissolution of granite at $<300^{\circ}\text{C}$ was controlled mainly by the

decomposition of feldspar. In contrast, Takahashi *et al.* (1988) and Wang *et al.* (1997; *submitted*) argue that quartz dissolution is the dominant process controlling granite dissolution at temperature conditions exceeding 300°C .

3.1 Experimental Methodology

Hydrothermal dissolution/fracturing experiments, were conducted on synthesized (impurity-free) quartz (30 x 15 x 3 mm) and medium-grained Iidate Granite (1 cm³ cube), with distilled water. Our batch-autoclave apparatus incorporates a specially designed hot-water injection unit (Figure 3). It is necessary to collect reaction solutions for compositional analysis, to determine sample reaction rates, and the unit allows equal volumes of fresh solution to be injected into the autoclave, and maintain desired pressure conditions.

The effective volume of our batch autoclave system is 300cm³, with the main body of the autoclave being made of hastelloy-C, with other parts manufactured by SUS-316. The maximum temperature and pressure in our experiments was 600°C and 60 MPa respectively, with an average heating rate of 10°C/min.

The rate of dissolution, determined during long-term experiments (ranging from 24 to 200 hours), was calculated per unit surface sample area, which was assumed to be constant. Reacted solutions were collected, and analysed by ICP (HITACHI P4000), with sample weight change, petrology and morphological characteristics also examined.

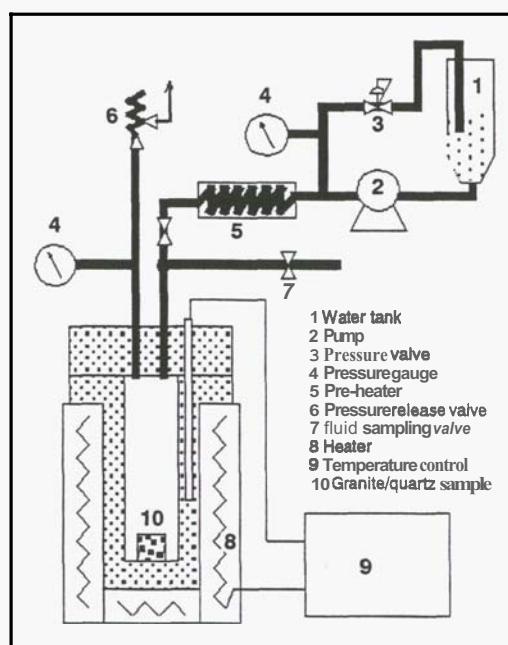


Figure 3. Schematic illustration of our batch-type autoclave system.

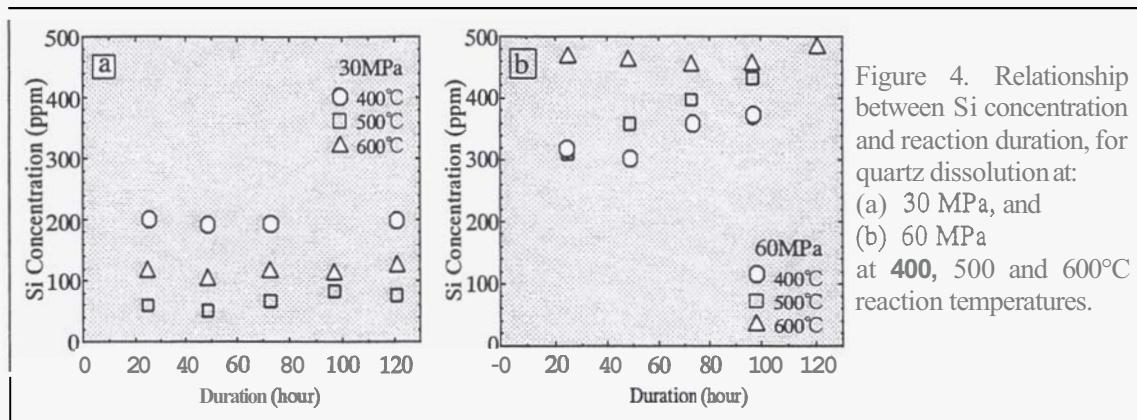


Figure 4. Relationship between Si concentration and reaction duration, for quartz dissolution at:
 (a) 30 MPa, and
 (b) 60 MPa
 at 400, 500 and 600°C reaction temperatures.

3.2 Results

Quartz Solubility Experiments

Silica solubility is a complex function of temperature and fluid density. According to Wang *et al.* (1997), quartz solubility in pure water, under saturated vapour pressure, is dependent on the ionic product of water (K_w), which is itself a function of temperature and pressure, with the highest ionic product for a given pressure (under 100 MPa) occurring in the range of 300°C – 400°C.

Si concentration of reacted fluids, after quartz dissolution in pure water, at 30 MPa and 60 MPa, for 400, 500 and 600°C is shown in Figure 4a. The high Si concentration of fluid from the 30 MPa/400°C experiment, compared to 500°C and 600°C, is an effect of a greater ionic product.

Whilst the solubility/dissolution behaviour of quartz is clearly controlled by the ionic product, fluid pressure has a great influence at supercritical conditions. The Si concentration of reacted fluids from the 60 MPa/600°C experiments quickly reach an equilibrium state (Figure 4b), whilst Si concentrations for reaction experiments undertaken at 400°C and 500°C have yet to reach an equilibrium condition, even after 100 hours.

Dissolution Rate

The relationship between quartz dissolution rate (0 to 24 hours) and specific volume is shown in Figure 5. With increasing specific volume, dissolution rate decreases exponentially; and therefore the specific volume is a suitable thermodynamic variable by which to demonstrate the solvent capability of a hydrothermal fluid.

The rate expression of quartz dissolution, under sub- and supercritical conditions can be described by following n-th order kinetic equation:

$$r = k V^n$$

where r is dissolution rate, k is apparent kinetic constant, V is specific volume of fluid, and n is apparent reaction order.

In Figure 6, the slope of lines approximating change of dissolution rate at low specific volume is minus unity, which means dissolution rate is proportional to water density. At higher specific volume (at supercritical conditions) the slopes are much steeper, and indicate that the fluid loses its capability as a solvent (i.e. it is less effective in dissolving the (granite) rock).

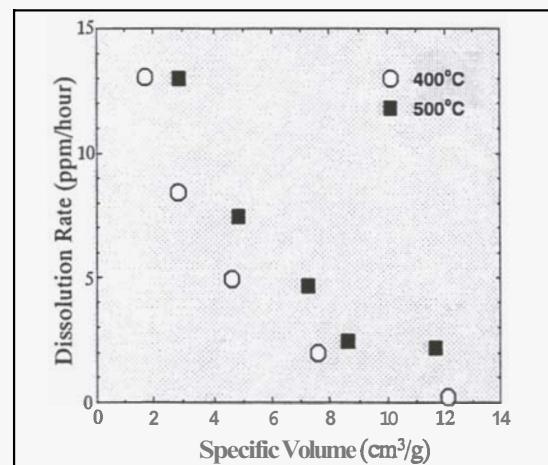


Figure 5. Relationship between specific volume of supercritical water and dissolution rate of quartz, at various (reaction) temperatures.

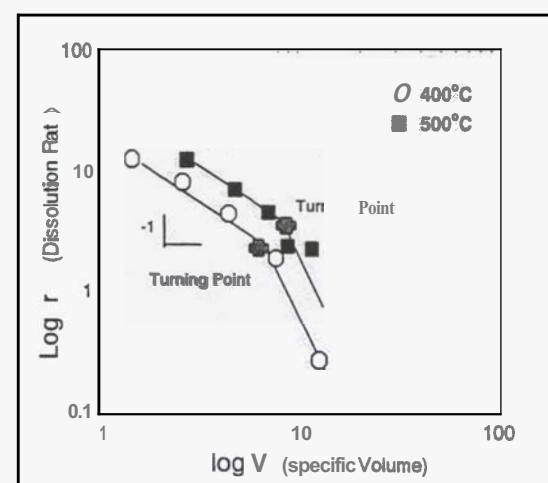


Figure 6. Logarithmic diagram showing the relationship between specific volume and dissolution rate of quartz.

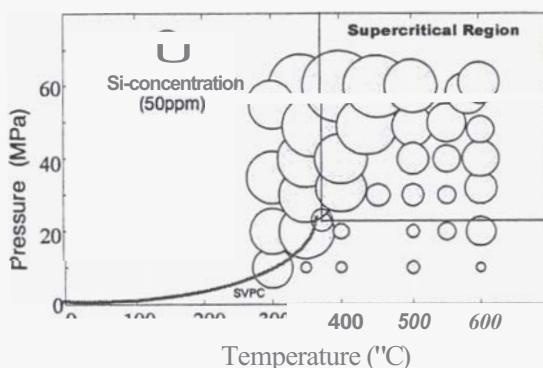


Figure 7 Dissolution of granite, indicated by Si-concentration. SVPC is the Saturated Vapour Pressure Curve of pure water.

The dissolution of granite is represented by the Si-concentration of reacted fluid (Figure 7). High Si-concentrations were determined at conditions less than the critical temperature for pure water, but have low Si-concentrations at high temperature/low pressure conditions. Water-rock interactions (i.e. granite dissolution) occur in both the sub- and supercritical regions, from 300°C to 450°C, but chemical reactions are weaker at high temperature.

Quartz/Granite Fracturing

A series of batch-autoclave experiments, in pure water-quartz/granite systems, were conducted at a range of sub- to supercritical conditions (from 250°C to 600°C; 0.1MPa to 60MPa; 24 to 120 hours), to deduce the range of temperatures and pressure at which (artificial) quartz and granite fracturing might occur in a DSGR system.

There is no obvious fracturing of **quartz** under dry conditions (0.1 MPa, even up 600°C), but quartz

is fractured at 3MPa/600°C, in the presence of water. The boundary of quartz fracturing is shown in Figure 8, and coincident with the subcritical, vapour-phase for pure water.

At elevated temperatures (>550°C) the distinction between unfractured and fractured quartz approximates the phase boundary conditions that differentiate α - and β -quartz, although hydrothermal fracturing does occur in the stability field of α -quartz.

The temperature-pressure conditions conducive for granite fracturing are shown in Figure 9, although apparent discrepancies with results from triaxial high temperature/pressure experiments require further consideration (Hashida *et al.*, 2001). Petrographic examination reveals that the fractures predominantly occur in quartz, and not in feldspar or other primary mineral phases.

Flow reactor Experiments

Results of 'first-stage' flow autoclave experiments, using a simple, 1m-flow reactor operating at sub- to supercritical conditions (up to 450°C, 35MPa), were reported by Wang *et al.* (1997), Bignall *et al.* (2000; *accepted*). Recently, we constructed a 'second-generation' flow reactor that allows fluid-rock interactions at conditions up to 600°C and 60MPa, and 0.15cm³/m flow rate, in three 1-m Hastelloy-C autoclave units (Figure 9).

In our flow-reactor experiments, distilled water is heated and injected into the pressurized autoclave system, with the temperature in each reactor tube (**A**, **B**, **C**) controlled by an independently operated heating system. In our 350°C (inlet)/30MPa

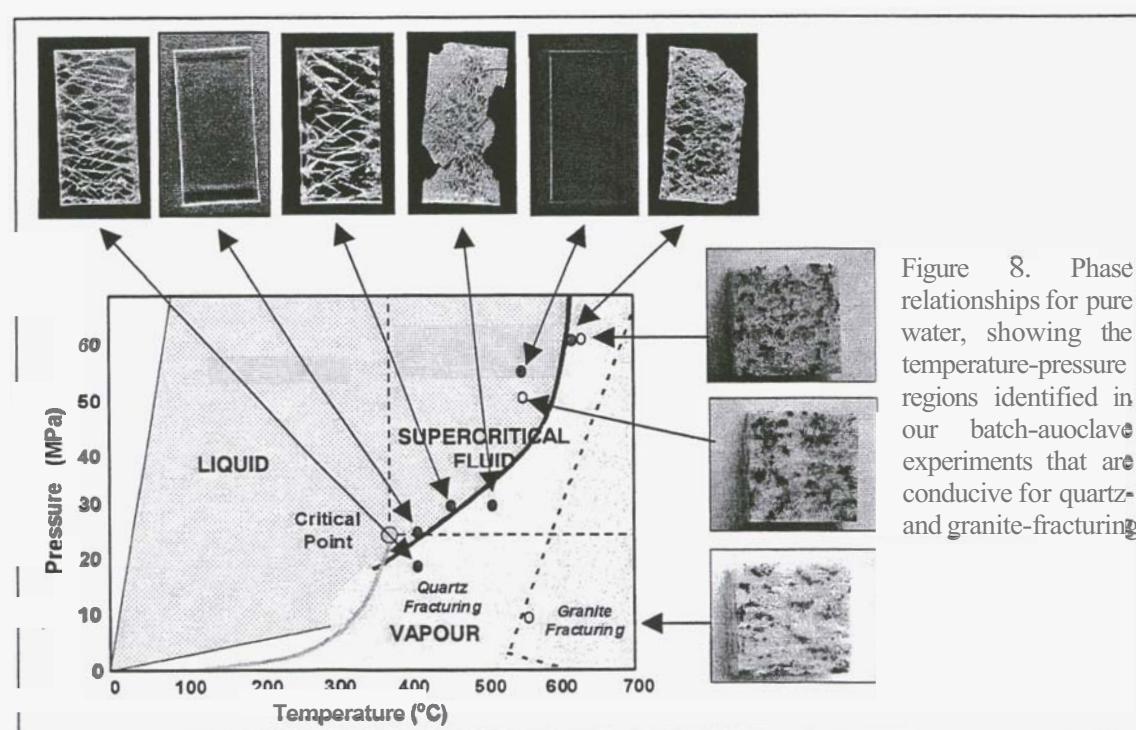


Figure 8. Phase relationships for pure water, showing the temperature-pressure regions identified in our batch-autoclave experiments that are conducive for quartz- and granite-fracturing.

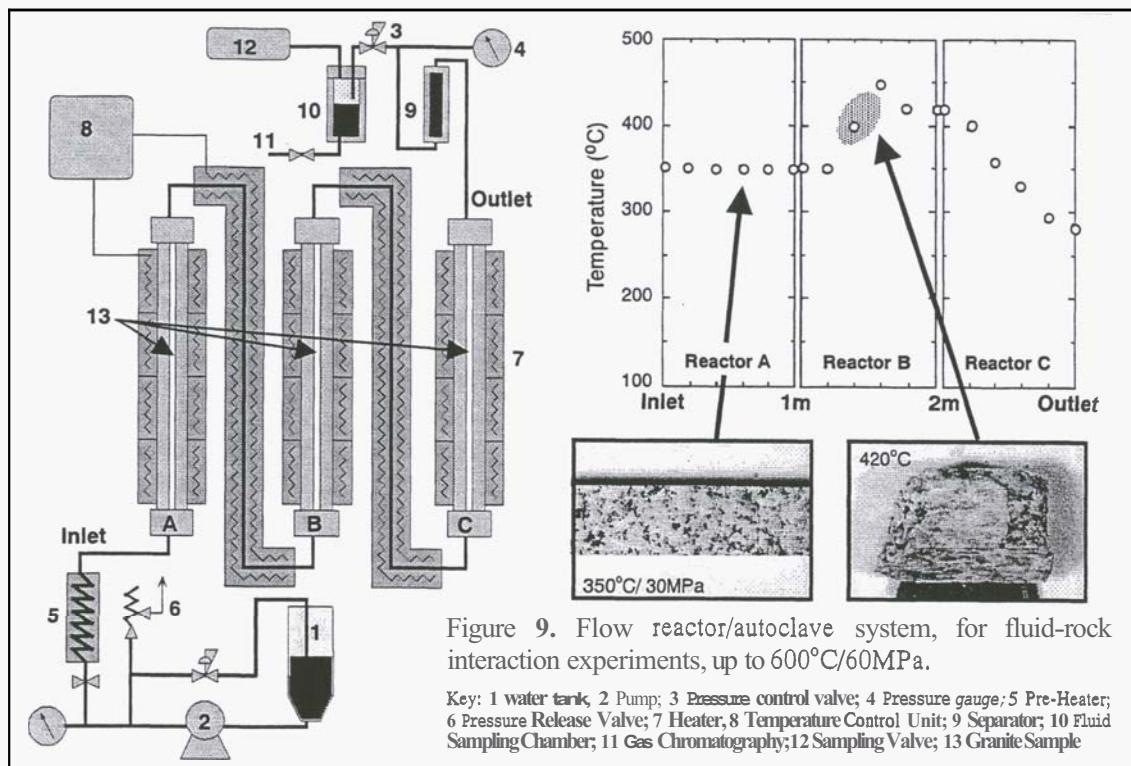


Figure 9. Flow reactor'autoclave system, for fluid-rock interaction experiments, up to 600°C/60MPa.

Key: 1 water tank; 2 Pump; 3 Pressure control valve; 4 Pressure gauge; 5 Pre-Heater; 6 Pressure Release Valve; 7 Heater; 8 Temperature Control Unit; 9 Separator; 10 Fluid Sampling Chamber; 11 Gas Chromatography; 12 Sampling Valve; 13 Granite Sample

experiment (Figure 9), granite is leached near the 'inlet' of Reactor A (where temperatures are subcritical), with dissolution of quartz and feldspar. In Reactor B, the internal temperature is set at 350°C (inlet) and 420°C (outlet), and in this region there is a strong weight gain, with precipitation of quartz, lesser albite and sericite.

The occurrence of quartz is attributed to retrograde quartz solubility, at about 380-400°C, (after Fournier, 1985), with quartz precipitation occurring upon heating of the 'hydrothermal' fluid.

4. DISCUSSION

Fluid-rock interactions are intrinsically linked to water-rock ratios in the hydrothermal system, the surface area of fracture/permeable channels and to the nature of those surfaces, as well as the chemical composition of the reactive fluid. The character of hydrothermal solutions, however, and the nature of their fluid-rock interactions also vary, according to physical (T-P)conditions.

At high-pressure, supercritical conditions, the fluid shows greatest potential as a solvent, similar in behaviour to a 'subcritical liquid'. In contrast, weaker water-rock interactions occur at high-temperature, supercritical conditions.

The supercritical region has been regarded as a homogeneous state, but our granite/quartz dissolution experiments show that the supercritical region can be divided into two sub-phases

(Tsuchiya *et al.*, 2001), based on variations in the intensity of the water-rock interactions (i.e. granite dissolution), and consistent with the results of Nishikawa and Morita (2000) who described density fluctuations in the supercritical region of pure water.

In Figure 10, we show the two temperature-pressure regions, within the supercritical region - one liquid-like and the other vapour-like. The boundary, between the two subtly different 'sub-phases' is based on the T-P conditions that define the inflection points for the rate of quartz dissolution (Figure 6), and Si-concentration data from granite dissolution experiments (Figure 7).

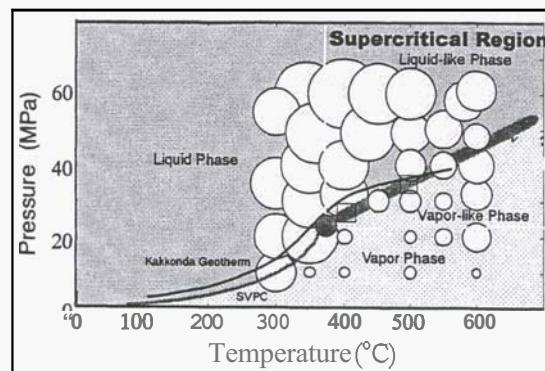


Figure 10. Liquid- and vapour-like phases, within the supercritical region. Open squares are 'turning points', indicative of change in dissolution rate (from Figure 6). Circles show Si-concentration, indicative of granite dissolution (from Figure 7).

5. CONCLUSIONS

DSGR's have the potential to provide effectively renewable energy resources, from rock masses hotter and/or deeper than those reached by present, conventional development.

Key factors for the utilization of DSGR's are the creation, and maintenance of a large surface area for heat exchange (such as a high density fracture network and/or a porous media), at conditions where weak water-rock interaction might preserve the heat exchange surface without plugging.

Supercritical water is not a homogeneous phase, but can be subdivided into two 'sub-phases', one liquid-like and the other a vapour-like.

The vapour-like region, at relatively low pressure, supercritical conditions, has the greatest potential to satisfy criteria necessary for efficient utilization of a supercritical DSGR.

6. ACNOWLEDGMENTS

This study was financially supported by Grant-in-Aid for Research for the Future Program (JSPS-RFTF 97P00901).

7. REFERENCES

Bignall, G., Yamasaki, N. and Hashida, T. (2000). Laboratory Simulation of Granite-Fluid Interactions up to Supercritical(HDR) Conditions. World Geothermal Congress, (WGC-2000), 3671-77. Kyushu-Tohoku, Japan, May28-June10, 2000.

Bignall, G., Tsuchiya, N., Yamasaki, N. and Hashida, T. (2001, *accepted*). Application of a Recyclable, Flow-Through Reactor System, for Laboratory Simulation of Deep-seated Geothermal Reservoirs. *Appl. Geochem.*

Chigira, M. and Watanabe, M. (1994). Silica precipitation behavior in a flow field with negative temperature gradients. *J. Geophys. Res.*, 99, B8, 15539-15548.

Doi, N., Kato, O., Ikeuchi, K. Komatsu, R., Miyazaki, S., Akaku, K. and Uchida, T. (1998). Genesis of the Plutonic-Hydrothermal System around Quaternary Granite in the Kakkonda Geothermal System, Japan. *Geothermics* 27, 663-690.

Fournier, R.O. (1985). The behaviour of silica in hydrothermal solutions. Geology and geochemistry of epithermal systems. *Reviews in Economic Geology*, 2, 45-61.

Fournier, R.O. 1999. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. *Econ. Geol.*, 94,1193-1211.

Hashida, T., Hayashi, K., Niituma, H., Matsuki, K., Tsuchiya, N. and Nakatsuka, K. (2000). Investigation of Heat Extraction from Supercritical Geothermal Reservoirs. World Geothermal Congress (WGC-2000), 3725-3730. Kyushu-Tohoku, Japan, May 28-June 10,2000.

Hashida, T., Bignall, G., Tsuchiya, N., Takahashi, T. and Tanifuji, K. (2001). Fracture Generation and Water-Rock Interaction Processes in Supercritical Deep-seated Geothermal Reservoirs. GRC Annual Meeting, San Diego, August 26-29, 2001. *Transactions*, 25, 225-229.

Nishikawa, K. and Morita, T. (2000). Inhomogeneity of molecular distribution in supercritical fluids. *Chem.Phys. Lett.* 316,238-242.

Reyes, A.G. (1990). Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment. *J. Volcanol. Geotherm. Res.*, 43,279-309.

Savage, D., Cave, M.R., Milodowski, A.E. and George, I. (1987). Hydrothermal alteration of granite by meteoric fluid: an example from the Carnmenellis Granite, United Kingdom. *Contrib. Mineral. Petrol.*, 96,391-405.

Savage, D., Bateman, K. and Richards, H.G. (1992). Granite-water interactions in a flow-through experiment system with applications to the Hot Dry Rock geothermal system at Rosemanowes, Cornwall, U.K. *Appl. Geochem.*, 7,224-241.

Takahashi, H. Shoji, T., Nitoh, M. and Kojima, T. (1988). Effects of water/rock interaction upon crack-like reservoir performance in HDR. *J. Geotherm. Res. Soc. Japan*, 10,193-210.

Tsuchiya, N., Hirano, N., Bignall, G. and Nakatsuka, K. (2001). Supercritical Water-Rock Interaction for Development of Deep-seated Geothermal Reservoirs. *Proc. 10th Symposium Water-Rock Interaction*, WRI-10, 209-212. Villasimius, Italy, July 10-15 2001.

Wang, Y., Yamasaki, N., Tsuchiya, N., Nakatsuka, K. and Nishiuchi, S. (1997). Hydrothermal dissolution of granitic rock in fluidized tube reactor in a temperature gradient. *J. Geotherm. Res. Soc. Japan*, 18, 253-262.

Wang, Y., Hirano, N., Tsuchiya, N., Nakatsuka, K., Yamasaki, N., Ishida, T. (*submitted*). Hydrothermal dissolution of granite in the range from 200°C to 350°C. *J. Geotherm. Res. Soc. Japan*.