PRESSURES IN THE WAIRAKEI GEOTHERMAL FIELD (NZ) IN ITS NATURAL STATE

A. McNABB1 AND G. DICKINSON2

¹ Dept. of Mathematics, Massey University, Palmerston North, NZ
² Statistics New Zealand, Wellington, NZ

ABSTRACT - The near-surface pressure distribution in the Wairakei Geothermal Field prior to exploitation is estimated from early bore hole measurements and drilling logs. Pressure distributions in a bore were rarely measured but can be calculated from the recorded temperature profiles. For a number of **bores**, a depth and corresponding pressure was estimated, to associate with the undisturbed field conditions, by examining drilling logs for major circulation losses in uncased sections and temperature patterns for internal flows between feeding fissures. In the shallower boiling zone of the field, some points of rapid temperature rise were found in cased sections of bores. These were interpreted **as** being heated by flow of boiling fluid in fissures outside the casing, and pressures were obtained for these depths **from** the highest temperatures recorded at them, assuming the fluid to be pressurised water at its boiling point.

1. INTRODUCTION

The Wairakei Geothermal Field in the central **Neth** Island volcanic zone was the first of the more that twenty fields in this zone to be explored and drilled for power generation potential. Bores were drilled, monitored for a few weeks, discharged and intermittently shut down for further monitoring. As part of this monitoring process, **DSIR** measured temperature distributions down the bores and often repeated the measurements in new bores to see how the distribution changed as the bore warmed up. The limiting temperature profiles attained after a week or **so** provided a picture of the temperature distribution in the undisturbed field.

A natural desire to find out how the field would respond to large withdrawals led to a policy of discharging the bores to atmosphere in the late fifties. A consequence of this policy was an early drop in pressure in the deep field, where pressures exceeded boiling pressures, when production exceeded the natural output of the whole field. These deep pressure drops were found to propagate across the whole field in a few days, while the shallower boiling zones, protected by compressibilities many thousand times greater, showed a great inertia to pressure and temperature changes. Many of the bores drilled later in the development of the field were unsuitable for providing information about the natural deep pressure state of Wairakei but could give some information about the boiling zone in the upper half kilometre of the field.

These temperature measurements taken in the fifties and early sixties and preserved in the **DSIR** bore log data files were studied by the authors at Applied Mathematics Division of **DSIR** in **1973-74** for information on the Wairakei field in its undisturbed state. The results of this early study have existed as a geothermal circular (McNabb & Dickinson, **1975**) but have not appeared in any published or generally accessible file. A realisation that the undisturbed near-surface pressure and temperature distributions can be used to identify important large-scale field parameters and a growing interest in deeper aspects of geothermal fields has prompted us to make our analysis more readily available.

2. PRESSURES BELOW THE BOILING ZONE

The temperatures at Wairakei were found, in general, to follow a boiling-point-with-depth relationship till temperatures reached about 250 °C and below that depth increased slowly at about 20 °C per km presumably due to a process of dispersive mixing of the rising hot fluid with surrounding cold ground water. Pressures were not measured as such in the drill holes at Wairakei until 1960, by which time pressures in the deep bores had changed substantially. However, pressures can be calculated from temperature distributions assuming conditions to be hydrostatic in the bores if the wellhead pressure is known and the water level is given. Unfortunately, a water level was often not recorded and it must be assumed that in these cases the bores were full. On this basis Table 1 was compiled, recording for a selection of bores (mostly those drilled before 1959): a pressure at a specified depth for each bore, the coordinates of the bore and the height of the casing head flange. The choice of depth was made for each bore after studying the early heating curves, drill logs (where available) and by looking for temperature curves indicating flow in the bore between fissures.

Regression Analysis

A regression analysis of **this** data gave the following linear fit **-** Least squares fit on **31** data points:

CHF height of casing head flange [feet above sea level]

z depth of feeding fissure below CHF [feet]

P pressure at depth z [psig]

S distance south - Maketu coords

W distance west - Maketu coords

P = 433.1 + 0.3775 z - 0.3240 CHF + 0.0377 x 10⁻² (S - 300,000) + 0.3186 x 10⁻² (W - 100,000)

= $44.21 + 0.3775 z - 0.3240 (CHF - CHF) + 0.0377 x <math>10^{-2} (S - S) + 0.3186 x 10^{-2} (W - W)$

where $\underline{\mathbf{W}}$, $\underline{\mathbf{S}}$, $\underline{\mathbf{CHF}}$ are mean values of \mathbf{W} , \mathbf{S} , \mathbf{CHF} .

Standard errors of coefficients:

depth z	:	0.0120
CHF		0.1650
S		0.3192 x 10 ⁻²
W		0.5031×10^{-2}
6		0.0252

3. PRESSURES ABOVE THE BOILING ZONE.

Temperatures in the top 1500 feet of most bores prior to 1959 tended to fall from a high of about 250 °C at the deeper zones to temperatures nearer 40 'C at the surface. These temperature curves have been described as boiling-point-with-depth curves in that they approximate the temperatures that would exist in a column of water if pressures were hydrostatic and the fluid everywhere at its boiling point.

In many bores it was observed that, after the injection of cold water and consequent cooling of the neighbourhood of the hole, certain points in the cooled section showed a rapid temperature recovery. This was presumably because hot geothermal fluid circulated past the casing. If temperatures below 250 °C measured at these points are assumed to be of water at its boiling point then a further set of pressure-depth values is obtained relevant to the initial state of the aquifer if measured before production from the borefield had significantly changed the state of the system in the boiling region.

Table **2** is a record of such pressure-depth figures tabulated together with bore coordinates and height of casing head flange (CHF).

Regression Analysis

A linear regression analysis in this case gave the following relationship (we use the previous notation):

Least squares fit on 104 data points:

$$p = 0.02669 + 0.3620 z - 0.47869(CHF - CHF*) + 0.1493 x 10-2 (S - S*) + 0.9912 x 10-2 (W - W*)$$

where $\underline{\mathbf{W}}^*$ etc are means for the current sample and \mathbf{are} very close to those of the previous sample of 31 points.

Standard errors of coefficients:

$depth \mathbf{z}$:	0.0085
CHF		0.0667
S		0.2698×10^{-2}
W		0.2421×10^{-2}
6		0.0274

4. COMBINED ANALYSIS

A combined regression for the samples of **31** and **104** points was found to be

$$p = k + 0.3657 z - 0.4566 (CHF - CHF) + 0.0803 \times 10^{-2} (S - S) + 0.8576 \times 10^{-2} (W - W)$$

The k here is not of physical significance and the means are the overall means.

Standard errors of coefficients:

depth z	0.0068
CHF	0.0598
S	0.2068×10^{-2}
W	0.2094×10^{-2}
6	0.0269

Plots of residuals in all cases show no evidence of systematic deviation from the linear regression equations. Also, the shallow gradients of pressure-depth lines are significantly different from cold and hot hydrostatic curves but closer to hot than cold.

Hot hydrostatic coefficient:

Shallow sample coefficient:

Deeper sample coefficient:

Cold hydrostatic coefficient:

0.3404

0.3620

0.3775

5. INTERPRETATION

The sample of 104 shallow pressure-depth data was broken into two samples of **62** and **42** above and below the **900** foot depth. The separate least squares fits were tested and shown to be parallel and then coincident. The least squares fit of the deeper pressure-depth data of **31** samples was then compared with the shallower **104** sample points. The regression planes were found to be parallel but not coincident. The pressure displacement of **17.5** psi could be explained **as** a partial pressure of C02 in the steam. This figure is compatible with CO₂ concentrations measured in the hot fluid. From this analysis we conclude the Wairakei Geothermal Field on the large scale does not appear to find the mudstones separating the deep field from the shallower boiling zone as a hydrological barrier in any detectable sense.

ACKNOWLEDGMENTS

This work was undertaken with the support of Maths Physics Research Limited operating under FRST Contract **94-MAU-36-448** to fund research on Interactive Heat and Mass Transport.

REFERENCE

McNabb, **A.** and Dickinson, **G.E.** (1975) Pressures in the Wairakei field in its natural state. *A.M.D.*, *D.S.I.R. Internal Report*.

Table 1

PRESSURE-DEPTH DATA **FROM**WAIRAKEI TEMPERATURE CHARTS

Table 2

PRESSURE-DEPTH DATA **FROM**WAIRAKEI TEMPERATURE CHARTS

Bore No.	Coord. South (Maketu)	Coord West (Maketu)	CHF (feet)	Depth (feet)	Pressure (psig)	Bore No.	Coord. South (Maketu)	Coord West (Maketu)	CHF (feet)	Depth (feet)	Pressure (psig)
10	315070	105199	1173	1094	408	1	314614	107367	1252	450	226
11	312623	112916	1489	800	286	1	314614 314614.	107367	1252 1252 1252	200	115
12	320234	113310	1394	1500	610	3	310166	107367 116663	1482	250 360	146 142
19	315076	110183	1296	2600	999	4/2	315172	107430	1246	450	210
21	313289	111045	1409	1980	785	7/2	315172	107430	1246	950	400
22	313031	112230	1394	1700	676	5	300137	119162	1543	790	320
23	313195	106513	1239	1200	507	7	311334	114662	1518	850	373
24	314618 314618	112763 112763	1393 1393	1200 2400	47 1 924		311334 311334 311334	114662 114662 114662	1518 1518 1518	400 500 850	135 135 289
25	314282	112265	1362	1400	542	11	312622	112916	1483	880	303
26	313975	112713	1398	1600	631		3 12622 3 12622	11291 6 11291 6	1483 1483	500 880	170 192
27	314304	111810	1326	2000	786	14	313851	109808	1285	569	242
28	315669	113455	1378	1600	640	16	312962	110465	1347	800	295
29	314530	112686	1372	1700	676		312962 312962	110465 110465	1347 1347	950 700	380 267
30	314839	112622	1343	1800	736	16/1	312962	110403	1347	700	276
31	313864	111178	1317	1000	419	17	312222	110988	1458	650	202
34	319026	109897	1312	1800	746	1 /	312222	110988	1458	600	185
35	317918	105872	1161	1800	727	18	314800	111370	1302	600	313
36	316278	104326	1143	1200	540	10	314800	111370	1302	900	408
37	314348	108455	1271	1400	600	19	315076 315076	110183 110183	1296 1296	700 1400	311 528
38	3 14959	107616	1251	1600	674		3 15076 3 15076	110183 110183	1296 1296	1000 1100	440 455
39	314904	107958	1250	1350	592		315076	110183	1296	1000	423
40	314636	107739	1257	1400	606		315076 315076	110183 110183	1296 1296	900 800	407 373
41	314759	107587	1253	1500	664		315076	110183	1296	700	328
42	315031	107805	1250	1100	477	20	314274 314274	111758 111758	1321 1321	400 1600	207 628
43	314706	107925	1253	1300	605		314274	111758	1321	600	277
44	314904	113444	1389	1900	738	21	3 13289 3 13289	111045	1409	950 550	315
45	314470	109725	1281	2300	926	22	313289	11 1045 112230	1409 1394	550	201
46	315099	112957	1357	1700	688	22	313031	112230	1394	600 200	210 68
47	312817	112702	1461	1100	387	24	314618 314618 314618 314618	112763 112763 112763 112763	1393 1393 1393 1393	600 1400 1200 600	230 559 492 210

Table 2 continued...

Table 2 (continued)					Table 2 (continued)						
Bore No.	Coord. South (Maketu)	Coord West (Maketu)	CHF (feet)	Depth (feet)	Pressure (psig)	Bore No.	Coord. South (Maketu)	Coord West (Maketu)	CHF (feet)	Depth (feet)	Pressure (psig)
25	314282 314282 314282	112264 112264 112264	1362 1362 1362	530 500 1000	278 221 351	51 52	314391 314391 314728	111568 111568 110560	1313 1313 1293	1200 400 800	476 189 352
26	314282	112264	1362 1398	1600 600	622 225	32	314728	110560	1293	1400	550
26	313975 313975	112613 112613	1398	1500	660	53	3 14262	108129	1284	900	361
27	314303	111810	1326	500	210	54	312601 312601	111999 111999	1457 1457	600 1000	188 326
28	315669 315669	113455 113455	1378 1378	800 1200	320 477	55	314101 314101	111581 111581	1338 1338	800 550	320 225
29	314530 314530	112686 112686	1372 1372	700 1600	240 598	56	3 14737 314737	113680 113680	1428 1428	600 1 000	230 381
30	314838	112622	1343	1500	511	57	314600	113146	1450	400	154
31	313868	111178	1317	800	303	58	315300	107485	1273	500	190
37	314348 314348	108455 108455	1271 1271	700 1200	317 492	59	314470 314470	109421 109421	1255 1255	700 400	320 201
39	314904	107958	1250	900	450	60	314598	108989	1271	500	193
40	314636	107739	1257	1000	388		3 14598 3 14598	108989 108989	1271 1271	1100 800	400 302
41	314759 314759	107587 107587	1253 1253	1400 1200	510 477	61	314668 314668	108749 108749	1267 1267	900 550	369 259
42	315031	107804	1250	900	328	75	314007	111476	1318	500	220
43	314706 314706	107925 107925	1253 1253	400 1200	180 476	78	313365 313365	112000 112000	1350 1350	600 750	206 278
44	314904	113444	1389	1400	510	81	3 14207	111700	1321	500	225
45	314460 314460	109725 109725	1281 1281	600 900	282 368		314207	111700	1321	1000	381
46	315098	112957	1357	700	303	201	312180	118286	1719	1000	241
47	312817	112702	1461	1100	387	202	314643	117138	1630	1100	381
40	312817	112702	1461	500	168	203	317189	115076	1544	1000	327
48	314527	112310	1338	600	252	21 1	3 1 7 9 6 2	113420	1458	900	332
49	315094 315094	1 12483 112483	1372 1372	1400 600	561 252						