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RESUMEN

El estado térmico de la corteza en México es pobremente conocido comparado con la situacion en
Estados Unidos y Canada. Este estudio tiene el objetivo principal de mejorar la comprension del
régimen térmico de México a través de una nueva compilacion de datos medidos y estimados sobre
flujo de calor. Las mediciones de flujo de calor en México estan relativamente dispersas; por lo tanto,
no hay suficientes datos para caracterizar exactamente las provincias de flujo de calor y desarrollar un
mapa geotérmico consistente. La etapa 1 de este proyecto corresponde a una actualizacion del nimero
de mediciones de la base de datos de flujo de calor superficial de México usando una variedad de
fuentes de datos de mas de 100 sitios (mediciones de temperaturas transitorias de pozos y perfiles
térmicos). La base de datos térmica actualizada considera las zonas continentales y marinas de México.
Los nuevos valores de flujo de calor estan principalmente localizados a lo largo de la peninsula de Baja
California, la parte central del norte de México y el Cinturén Volcanico. De los nuevos datos, se obtiene
que los valores mas altos y mas bajos de flujo de calor son 1263 mW/m? y 4 mW/m?, respectivamente,
y ambos se localizan en el Cinturén Volcanico Transmexicano.

Palabras clave: Flujo de calor superficial, provincias de flujo de calor, mapa geotérmico.

Update and review of the heat flow database for México: Stage 1 (2015)
Abstract

The thermal state of crust in México is poorly known compared to the US and Canada. This study has
the predominant objective of better understanding the thermal regime of México through new estimated
and compiled heat flow information. Heat flow measurements in México are relatively sparse; therefore,
there are not enough data to accurately characterize heat flow provinces and develop a consistent
geothermal map. Stage 1 of this project corresponds to update the number of measurements of the
surface heat flow database of México by using a variety of data sources from 108 sites (measurements
from transient borehole temperatures and thermal profiles). The updated thermal database considers
México’s continental and offshore zones. The new heat flow values are mainly located along the Baja
California Peninsula and the Trans Mexican Volcanic Belt. From the new data, we obtain that the highest
and the lowest heat flow values are 1263 mW/m? and 4 mW/m?, respectively, both located in the Trans
Mexican Volcanic Belt area.

Keywords: Superficial heat flow, heat flow provinces, geothermal map.

1. Introduction
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Geothermal resources are receiving renewed attention because they constitute a viable and renewable
energy option. This attention can be attributed in large part to technological advances and the large
growth of development worldwide (Balat et al., 2007; Chamorro et al., 2012; Zarrouck and Moon, 2014;
Bertani, 2015; DiPippo, 2015; Lund et al., 2015). The exploration and exploitation of geothermal
resources, especially for Enhanced Geothermal System (EGS) requires a better understanding of the
lithospheric thermal regime. Although many high-enthalpy geothermal resources in México have already
been discovered and exploited (e.g. Gutiérrez-Negrin, 2015; Gutiérrez-Negrin et al., 2015), medium and
low enthalpy resources are far more abundant (e.g. Iglesias et al., 2011, 2015). These resources may
constitute an important resource for direct use energy. Their exploitation depends on a good knowledge
of the geothermal potential in México. This knowledge is hampered by a lack of high quality heat flow
measurements.

The lack of heat flow measurements in México have led to indirect methods for estimating the thermal
regime. Previous geothermal studies provide evidence about the location of low, medium and high
enthalpy geothermal systems suitable for exploitation/utilization (e.g. Ziagos et al., 1985; Prol-Ledesma
and Juarez, 1986; Arango-Galvan et al., 2015; Gutiérrez-Negrin et al., 2015; Iglesias et al., 2015). The
first heat flow values in México were reported by Von Herzen (1963) for the ocean crust and Smith
(1974) for the continent. Since that time, the number of measurements has increased greatly but data
location mostly correspond to oil and gas exploration sites and geothermal areas and their periphery.

The purpose of this study is to update and expand the heat flow database for México to develop a better
understanding of México’s potential from the perspective of geothermal energy. New heat flow estimates
from 108 sites are combined with published continental and marine heat flow measurements to update
the geothermal database in México (e.g. Smith, 1974; Smith et al., 1979; Von Herzen, 1963, 1964). We
use the updated heat flow map to address the question of whether there is enough heat for economic
geothermal exploitation outside of the known Mexican geothermal fields.

2. New heat flow values

All boreholes used in this study exceed 100 m in depth, have at least three temperature-depth
measurements and have stratigraphic information. Of the 113 borehole provided by Comision Federal
de Electricidad (CFE) and Petroleos Mexicanos (PEMEX), 108 satisfy these criteria. Temperature-depth
data consist of either thermal recovery data logs, also known as transient borehole temperatures logs
(TBT), or bottom-hole temperatures (BHT). These sites are dominantly around the Cerro Prieto
geothermal system and along the Baja California Peninsula (Fig. 1). A few additional sites also come
from the north central and central areas of México.

TBT and BHT are generally measured directly after drilling and before the borehole has returned to
thermal equilibrium conditions. During the drilling process, fluids are circulated through the borehole to
lubricate and cool the bit. These fluids generally decrease the temperature within the borehole and
corrections must be applied to estimate equilibrium temperature, which is known as stabilized formation
temperatures (SFT). TBT data consist of temperature, depth, and the elapsed time since circulation
stopped known as the shut-in time (Fig. 2). Shut-in times are commonly up to 24 or 36 hours in the
geothermal or oil industry (e.g. Kutasov, 1999). BHT are similar to TBT but in this case the temperature
is measured just one time at the bottom of the borehole (Fig. 2). These temperatures are thought to be
closer to equilibrium temperature because are less influenced by the circulating fluids. Of the 108
borehole data reported here, 63 are based on TBT (MEX0001 to MEX0063) and 45 are based on BHT
(MEX0064 to MEX0108).
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To estimate heat flow in the presence of thermal conductivity variations we use the Bullard method
(Bullard, 1939),

Ti=To+ qQoR, (4)

where T; is the temperature, Ty is the surface temperature intercept, qo is the heat flow, and R is thermal
resistance that can be expressed as,

az;
Ri =205 (5)

where Kk(z); is the thermal conductivity over the ith depth interval, dz;, and the summation is performed
over n depth intervals from the surface to the depth of interest z. In practice go and T, are estimated by
plotting T(z) against summed thermal resistance.

3. New and compiled heat flow data from México. Location and classification of the heat
flow according to their energy scale

We compiled published and unpublished heat flow data in México, from conductive and non-
conductive systems, to better define different heat flow values scale in a map. Additionally, published
heat flow with their respective standard deviations and site location, are included in this work. The
compiled database contains data from 1465 sites, which includes continental and oceanic zones (Gulf
of California, the Pacific Ocean, Gulf of México and the Yucatan Basin). Published data sources
consulted include the following papers: Von Herzen (1963, 1964); Von Herzen and Maxwell (1964); Epp
et al. (1970); Erickson et al. (1972); Henyey and Bischoff (1973); Lawver et al. (1973); Smith (1974);
Lee and Henyey (1975); Lawver and Williams (1979); Smith et al. (1979); Williams et al. (1979); Reiter
and Tovar (1982); Lonsdale and Becker (1985); Ziagos et al. (1985); Prol-Ledesma et al. (1989);
Khutorskoy et al. (1990); Becker and Fisher (1991); Sanchez-Zamora et al. (1991); Nagihara et al.
(1996); Flores-Marquez et al. (1999); Chavez et al. (2000); Fisher et al. (2001); Garcia-Estrada et al.
(2001); Blackwell and Richards (2004); Wilhelm et al. (2005); Rosales Rodriguez (2007); IHFC (2011);
Lorenzo Pulido et al. (2011); and Prol-Ledesma et al. (2013).

Overall compiled and calculated (new) heat flow values were summarized in histogram plots (Fig. 3):
(a) the new 108 heat flow calculations; (b) continental heat flow observations, published and new data;
and (c) off-shore heat flow values. Fig. 3 illustrates the ranges of most values. The histogram plots in
Fig. 3 present the large variation of values in the new and published heat flow data, that show a statistical
non-normal distribution, which is produced by the combination of stable and thermally perturbed
conductive systems.

Since continental heat flow observations in Mexico have a non-uniform distribution (see Fig. 3), there
large areas with no heat flow sites or large distances between each heat flow sites (except eastern
México, along the Gulf of México coast). Thus, the updated heat flow data were divided into two energy
flux subsets with the objective to aid visualization of the location and distribution of the data presented
in Fig. 3, besides to distinguish the location of low, medium and high enthalpy sites. Additionally, this
helps to characterize with a high accuracy or confidence level the actual thermal status of any particular
zone. These energy flux subsets were proposed as follow: 0-120 mW/m? (Fig. 4); and 120-1300 mW/m?

(Fig. 5).

The offshore heat flow data from México (inside the exclusive economic zone) are summarized in the
histogram plot of Fig. 3c. Four offshore sections were analyzed: Gulf of California, the Pacific Ocean,
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the Gulf of México and the Yucatan Basin. Due to space and the scale in the histogram plot, the values
of 6250, 7115, 8910 and 15,436 mW/m? were not plotted but considered in the analysis of data.
Following a similar procedure shown in Fig. 4 and 5, three different energy flux subsets were proposed
to analyze the 961 compiled offshore heat flow data, to characterize the heat flow distribution in the
ocean crust. Several works have made rigorous analysis of the marine heat flow where they consider
that heat flow is in function of the ocean lithospheric age and affected by hydrothermal circulation (e.g.
Parsons and Sclater, 1977; Stein and Stein, 1992, 1994; Hasterok et al., 2011; Spinelli and Harris, 2011;
Goutorbe and Hillier, 2013; Hasterok, 2013). Fig. 6 presents the 517 heat flow values of the subset 0-
150 mW/m? including a histogram plot; these values represent approximate heat flow from ocean
lithospheric age greater than 10 Ma. The subset 150-600 mW/m? is presented in Fig. 7, where 341 heat
flow sites are shown in the map and the corresponding histogram. In Fig. 8, 103 high heat flow values
from the subset 600-16000 mW/m? are located in a map with a histogram.

According to the geographic/tectonic differences, as additional observation, to combine all the data into
different heat flow maps and histograms (see Figs. 6-8), this can show us how heat flow vary as a
function of oceanic crustal age, because ridges are thought to have higher heat flow and old oceanic
crust has low heat flow. However, in this work the purpose of the data combination is to observe with
detail heat flow variations in the ocean floor, as well as the location of the thermal anomalies as shown
in Figs. 7-8, and their numerical distribution as described in the histograms.

Current technology and production costs in geothermal industry do not allow commercial exploitation of
thermal submarine resources presently; however, it may be feasible in a non-distant future; therefore,
this data will be highly valuable when this happens (e.g. Suarez-Bosche et al., 2000; Prol-Ledesma et
al., 2008; Hiriart et al., 2010; Torres-Vera et al., 2010).

As we can observe from Fig. 4 to Fig. 8, several heat flow sites are superimposed or cluster in some
areas; hence, the different histograms included in each heat flow map help to visualize the numerical
variation according to the different heat flow values subsets defined in this section.

4. Conclusions

A comprehensive update and review of the thermal database from México gives a reliable idea of the
current heat flow values and their distribution in México (inland and offshore).

Thermal gradients can be obtained and interpreted in terms of heat reserves stored in subsurface from
the regional geothermal heat flow measurements. This interpretation will assist locating low, medium
and high enthalpy resources suitable for exploitation and/or utilization (electric or direct use). The
exploitation of this energy source depends on the regional requirements and the available technology.

Future steps of this work will include definition of tectono-thermal provinces and their local anomalies,
and also analysis of the relationship between borehole measurements and indirect geochemical
characterization of heat flow; that will increase the knowledge of heat flow in México, and will allow
construction of an updated (and highly necessary) geothermal map of México.
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Fig. 1. The updated heat flow data base: Green (new heat flow sites); Brown (All compiled continental and off-shore sites). Location of the Mexican
geothermal fields (Cerro Prieto, Las Tres Virgenes, Los Azufres and Los Humeros) and zones with possible exploitation energy (Ceboruco, Cerritos
Colorados and Acoculco) are shown as reference of the areas with known thermal anomalies.
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Fig. 2. (A) Plots of the transient borehole temperature (TBT) from the MEX0044 borehole. Last measured Transient Borehole Temperature (TBT,). (B)
Plot of the Bottom Hole Temperature (BHT) logged during drilling activities and the BHT corrected.
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Fig. 3. Histogram plots of the overall heat flow measurements from México: (a) the new heat flow calculations; (b) all compiled continental heat
flow values; and (c) all the compiled off-shore heat flow observations (due to space and the scale in the histogram plot, the values of 6250, 7115,
8910 and 15436 mW/m? were not included but considered in the analysis of data). The plots include the number of data (n), and the maximum and
minimum numerical values.
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Fig. 4. Continental heat flow map of México (Update 2015). Histogram plot, location and distribution of the heat flow sites considered in the interval
0-120 mW/m?2.
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Fig. 5. Continental heat flow map of México (Update 2015). Histogram plot, location and distribution of the heat flow sites considered in the interval
120-1300 mW/m?2.
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Fig. 6. Offshore heat flow map of México (Update 2015). Histogram plot, location and distribution of the heat flow sites considered in the interval 0-
150 mW/m?.
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Fig. 7. Offshore heat flow map of México (Update 2015). Histogram plot, location and distribution of the heat flow sites considered in the interval
150-600 mW/m?2.
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Fig. 8. Offshore heat flow map of México (Update 2015). Histogram plot, location and distribution of the heat flow sites considered in the interval
600-16000 mW/m.
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