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Resumen 

Con base en principios generales de conservación de la masa, del momentum y de la Ley de Darcy, 

junto con el concepto de derivada advectiva de la densidad del sistema roca-fluido, se presenta el 

desarrollo de un modelo poroelastoplástico general en 3D. Para ilustrarlo en forma práctica, se deduce 

otro mucho más simple de geometría radial, el cual se aplica a la deformación poroelástica de un pozo 

productor. El modelo 3D se aplicó al cálculo de la deformación elastoplástica de un domo salino en una 

zona geotérmica de aceite del Golfo de México. El fluido y la roca del reservorio se consideran como 

dos medios continuos cambiantes en el espacio-tiempo. Los cambios en la roca son muy lentos y 

pequeños comparados con los cambios en el fluido, pero deben tomarse en cuenta al estudiar las 

deformaciones poroelastoplásticas. La densidad total de una roca porosa comprende la presencia del 

fluido de densidad f en los poros junto con la densidad de la fase sólida s. La densidad global es un 

promedio de ambas densidades  = f + s s. Las hipótesis en este modelo son: H1) Los esfuerzos 

cortantes en el fluido son nulos y sólo actúa la presión de poro. H2) La densidad de la roca sólida es 

constante. H3) La viscosidad del fluido es constante. H4) La permeabilidad de la roca es constante. H5) 

La densidad del fluido sólo depende de la presión. H6) El fluido es monofásico (líquido). H7) La 

poroelasticidad de la roca sólo se manifiesta en el cambio de porosidad. H8) La velocidad de 

deformación de la roca es muy pequeña. No obstante las restricciones de estas hipótesis, el modelo 

radial resultante es sumamente práctico y didáctico, ayudando a comprender la mayoría de los procesos 

geomecánicos involucrados, incluyendo mecanismos no-isotérmicos. 

 

Palabras clave: Poroelasticidad, poroelastoplasticidad, modelado matemático, Ley de Darcy, derivada 

advectiva, deformación, criterio de falla. 

 

 

Introducción 

 

La literatura mundial geomecánica describe la subsidencia en acuíferos, en yacimientos de petróleo y 

en reservorios geotérmicos a causa de su explotación (Bundschuh & Suárez, 2010; Suárez et al, 2014). 

Este fenómeno es una consecuencia directa de las deformaciones permanentes e irreversibles de la roca 

porosa. En sistemas geotérmicos mejorados (EGS) se aplica estimulación artificial para fisurar la roca 

aumentando porosidad y permeabilidad. La poroelasticidad sólo estudia el comportamiento de las rocas 

porosas elásticas con fluidos viscosos tales como agua salmuera, gas y petróleo. Una roca poroelástica 

se caracteriza por su porosidad, sus módulos elásticos y las propiedades físicas de los fluidos que 

contiene. La deformación de la roca poroelástica puede ser lineal o no lineal, isotérmica o no-

isotérmica. La extracción de fluido en reservorios geotérmicos provoca la reducción de la presión 

interna del poro y de la apertura efectiva de poros y fisuras, deformando con frecuencia la roca en 

forma permanente e irreversible, o sea, poroelastoplástica. 

 

La poroplasticidad de rocas geotérmicas, puede exhibir dilatación plástica producida por tensiones 

positivas o contracción plástica producida por compresiones negativas. Ambos procesos son 

irreversibles, produciendo deformaciones permanentes que pueden reducir la capacidad de 

almacenamiento del reservorio. Hay otros efectos importantes geotermomecánicos en geotermia y en 

reservorios de hidrocarburos. Las altas presiones y temperaturas aumentan la ductilidad y bajan el 
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punto de cedencia de la roca. Por lo tanto, los efectos combinados de alta temperatura y alta presión 

confinante inducen flujos plásticos, produciendo deformaciones más allá del límite de deformación 

elástica (Bundschuh & Suárez, 2010). La teoría actual de flujo en la plasticidad (Coussy, 2004; Chin, 

2005; de Souza et al., 2008) asume que existe una regla de flujo para calcular la deformación plástica 

de la roca. También se asume que la tensión total en rocas geotérmicas se puede descomponer en dos 

partes: una de ellas elástica o reversible y la otra plástica o irreversible. Esta partición puede ser aditiva 

o multiplicativa; ambas son útiles en la ingeniería de reservorios geotérmicos. La descomposición 

aditiva se utiliza en pequeñas deformaciones plásticas, aplicando la ley de Hooke a la porción elástica. 

La deformación total ε es igual a la deformación plástica εp, más la deformación elástica εe (ε = εe + εp). 

La descomposición multiplicativa puede usarse para grandes deformaciones plásticas, suponiendo que 

el tensor del gradiente de la deformación F es igual al producto de un tensor elástico y un tensor 

plástico o F = Fe · Fp. Para determinar la parte plástica de la deformación total en los dos tipos de 

descomposición, se requieren tres conceptos: una regla de flujo, un criterio de cedencia y un modelo de  

endurecimiento (Lee, 1969; Coussy, 2004; Souza et al., 2008; Anandarajah, 2010). La regla de flujo  

plástico define la evolución de la distorsión plástica; la ley de endurecimiento caracteriza la evolución 

del límite de cedencia según el criterio correspondiente. El objetivo principal de este artículo es 

introducir estos aspectos importantes de la teoría de la plasticidad aplicada a un par de ejemplos 

poroelastoplásticos de reservorios deformables. 

 

El Modelo General PoroElástico y en Coordenadas Radiales 

El modelo desarrollado, cuyos detalles y nomenclatura se muestran en el Anexo, es el siguiente: 
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Una vez calculada la deformación de la roca, la divergencia de la velocidad del sólido puede calcularse 

empleando la compresibilidad del poro: 
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. El modelo definido 

por la ecuación (1) puede escribirse con un solo coeficiente formado por ambas compresibilidades: 
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Este modelo, en coordenadas radiales o cilíndricas, deviene simplemente (ver Anexo): 
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                       (3) 

 

Esta ecuación no lineal, con condiciones de frontera e inicial apropiadas, permite el cómputo de la 

presión del fluido p(r, t), así como el cálculo exacto de la porosidad, suponiendo constante la compresi-

bilidad del poro una vez calculada la presión:  
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Los esfuerzos totales en rocas geotérmicas están físicamente limitados por el criterio de falla de 

Drucker-Prager extendido. Usando datos de campo publicados, este modelo se aplicó para computar el 
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posible colapso radial de un pozo productor y la deformación poroelastoplástica de un domo salino en 

el Golfo de México, el cual está relacionado a un acuífero geotérmico. 

 

El Modelo General PoroElastoPlástico 

En notación tensorial para las distorsiones, el modelo aditivo elastoplástico es el siguiente: 

       0 0,  y  e p e p e pt t t t        ε ε ε ε ε ε ε ε ε ε ε           (4) 

 

El punto sobre las ε significa derivada en el tiempo; el último término en la ecuación (4) es una 

condición inicial para la distorsión total. Se asume que la deformación elástica del tensor εe se calcula 

con la ley de Hooke y por lo tanto lo único elemento desconocido es el tensor plástico εp; su cálculo 

soluciona el problema elastoplástico. La parte elástica puede resolverse empleando la teoría clásica de 

Biot en condiciones no-isotérmicas (Bundschuh & Suárez, 2010). Sea Ψ el potencial de energía libre, 

que se supone función de las ε y de un conjunto de variables internas α = {αi , i = 1, n} tales como la 

porosidad plástica; las αi se llaman variables de endurecimiento. Se asume que ese potencial puede ser 

descompuesto en la suma de un elemento elástico Ψe y uno plástico Ψp (de Souza et al, 2008):  

     e p e e p, ,  =   ε ε α ε α       (5) 

La parte plástica Ψp describe el endurecimiento o ablandamiento de la roca. En la mecánica de la 

descripción se asume que las rocas geotérmicas son lineales e isotrópicas. Usando la descomposición 

del potencial energía libre, la ley general elástica para calcular el tensor σ y la fuerza termodinámica 

del endurecimiento τ es: 

;   
pe

e

 =  = 


 


 
σ τ

ε α
      (6) 

El flujo plástico ocurre cuando la tensión alcanza un valor crítico. Este principio experimental se 

representa con un potencial de flujo Y (σ, τ), positivo, negativo o cero, lo cual define tres dominios 

diferentes: 

        0 ,   0 ,   0E P Y Y ,   Y ,   Y ,          σ σ τ σ σ τ σ σ τ   (7) 

ΩE es el dominio elástico, donde no ocurre cedencia plástica; ΩP es el dominio de tensiones 

plásticamente admisibles y ΩY es el dominio de tensiones donde la plasticidad puede ocurrir. El 

conjunto {Y
 
(σ, τ) > 0} no tiene significado físico y se dice que ese proceso termodinámico es 

imposible que ocurra. La siguiente condición es la construcción de una regla de flujo plástico que 

define leyes de evolución para las variables internas, que se asocian con la función disipat iva del 

proceso. Las variables internas son las εp y el conjunto . La regla del flujo plástico (de Souza et al., 

2008) se define como  p = ,ε N σ τ ; N es el tensor de flujo y   es un multiplicador plástico. El 

modelo de endurecimiento (Coussy, 2004; de Souza et al., 2008) es dado por   = ,τ H σ τ . H es el 

módulo generalizado de endurecimiento, el cual define la evolución de las variables i. Estas 

ecuaciones son leyes evolutivas que requieren criterios de carga/descarga, o bien, condiciones que 

determinen cuándo hay evolución de las distorsiones plásticas y de las variables internas. Las 

condiciones son tres:    0 ,  0 ,  0Y ,  Y ,   σ τ σ τ . En cedencia plástica 0;  una ecuación 

complementaria, deducida de las condiciones anteriores, implica la siguiente condición de consistencia:

   0 0Y , Y ,   σ τ σ τ . Las matrices N y H se computan con el potencial de flujo Y
 
(σ, τ) y el 



Asociación Geotérmica Mexicana – Memorias del XXII Congreso Anual                                         Marzo de 2015 

4 

 

multiplicador plástico   con la fórmula tensorial indicada (de Souza et al., 2008), donde el tensor De es 

la elasticidad isotrópica, y los “:” representan el producto tensorial interno: 

   
2

e e 2
,  ,  : : : :

pY Y
, ,  /




  
           

N σ τ H σ τ N D ε N D N H H
σ τ α

   (8) 

El Criterio de Cedencia (yielding) de Drucker-Prager 

Este criterio (Drucker-Prager, 1952, en: Coussy, 2004; de Souza et al., 2008) establece que: “the plastic 

yielding begins when the second invariant I2 of the deviatoric stress and the hydrostatic pressure p, 

reach a critical combination”. El segundo invariante es una función del desviador s de la tensión:  

 2

: 1
,   ,   

2 2
i j i j i j i j i jI s s p s p      

s s
s s σ I     (9) 

Primer ejemplo: Modelo radial poroelástico 

El modelo general construido en el Anexo, permite deducir un modelo más simple, radial de la forma:  
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  (10) 

Donde p = p (r, t), CT es la compresibilidad total, μf la viscosidad del fluido y kr es la permeabilidad 

radial de la roca. Todas estas variables pueden considerarse constantes o bien dependientes únicamente 

de la presión. La permeabilidad kr se aproxima con la fórmula de Pearson y la porosidad con la 

correlación indicada en el Anexo. Se supone un reservorio cilíndrico contenido en una roca isotrópica 

de espesor uniforme, parcialmente homogénea, donde las principales variables cambian con el radio. 

Un pozo productor (o inyector) de líquido se encuentra situado en el centro del medio poroso y toda la 

formación circundante se deforma por efecto de la extracción o de la inyección constante efectuada. El 

reservorio se encuentra sometido a las siguientes condiciones de frontera e iniciales: 

 

1. Desplazamiento radial inicial nulo ur (r, 0) = 0 

2. Desplazamiento en pozo no deformable ur (r  rw, t) = 0 ( 0, si el pozo se deforma). 

3. Desplazamiento de frontera externa ur (r  rE, t) = 0 ( 0 si esta frontera se deforma). 

4. Velocidades del fluido y del sólido en r = rE, vf = vr = 0 si ur = 0. 

5. Presión inicial del fluido en el reservorio p (r, 0) = pi 

6. En la frontera interna en el pozo: 
  0

02

fw

r w

qp r ,t

r k r h









 

7. En la frontera externa del reservorio   0Ep r ,t / r    

Los efectos poroelásticos sobre la presión y la deformación en el reservorio conteniendo líquido pueden 

estimarse con este modelo a partir de su estado inicial. La porosidad y permeabilidad son variables 

debido a la distorsión radial. Se considera una producción constante de líquido y los límites externo e 

interno son fijos. Sea el coeficiente  2e b / G   , donde b es el coeficiente de Biot-Willis, λ es el 

coeficiente drenado de Lamé y G es el módulo del esfuerzo cortante. El reservorio es sensible a la 

tensión o compresión: mientras mayor sea ξe, mayor será el desplazamiento, como se observa en las 

figuras 1 y 2. Usando las propiedades y valores indicados, se realizaron tres cómputos. Los resultados 

mostrados corresponden a 150 días (t1) de producción de líquido. Las figuras 1 y 2 ilustran el efecto 

que tiene el coeficiente ξe sobre el perfil de presión y el desplazamiento radial de la roca. 
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Figura 1: Efecto del coeficiente poroelástico en el perfil p (r, t) al tiempo t1. 

 

 

Figura 2: Efecto del coeficiente poroelástico en el desplazamiento ur (r, t) al tiempo t1. 

 

Segundo ejemplo: Deformación poroelastoplástica de un domo salino 

Se ha encontrado una concentración anormalmente elevada de sales disueltas y minerales en muestras 

de pozos activos en yacimientos de aceite, ubicados en la parte sur del Golfo de México a 6000 m de 

profundidad. Esto indica la presencia de domos salinos subyacentes al reservorio. Estos domos influyen 

en la composición química del aceite y de salmuera caliente que acompañan a la producción. La 

extracción de hidrocarburos en este sitio se relaciona con fenómenos geotérmicos típicos acoplados a la 

geomecánica activa de los domos de sal. La migración masiva se produce en condiciones no-

isotérmicas a temperaturas mínimas de 160° C y a presiones arriba de 1284 bars. El sistema geológico 

de interés está situado a 1000 m bajo el nivel del mar. La ubicación del reservorio se encuentra 5000 m 

por debajo del nivel del mar. La geometría aproximada del domo salino se muestra en la Figura 3. La 

profundidad total del modelo es de 7000 m, el ancho es de 8000 m y la longitud es de 8000 m. La 

computación de este ejemplo es sólo con fines ilustrativos, no es necesario incluir un mapa detallado 

del sitio real. La simulación elastoplástica adopta un criterio de cedencia de Drucker-Prager modificado 

que incluye el daño plástico (Shen et al., 2012). El potencial plástico YDP es, para este caso: 
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 
2 2

0 2DP tY t g I p t g           (11) 

ξ is un parámetro que define la excentricidad de la superficie de carga en los esfuerzos effectivos; σt0 es 

el umbral del esfuerzo tensional en el cual inicia el flujo plástico;  es el ángulo de dilatancia; I2 es el 

segundo invariante del meridiano compresivo y p es la presión. El criterio de falla de Drucker-Prager 

modificado es una generalización del criterio clásico de Mohr-Coulomb. 

 

Para simular la deformación del domo causada por la extracción de aceite y salmuera, utilizamos el 

modelo 3D descrito por Shen, Bai & Standifird (2012). El modelo incluye un análisis de deformación 

visco-elasto-plástica y el flujo del fluido relacionadas con el declive de presión. El modelo fue resuelto 

mediante el método de elementos finitos. La simulación numérica adopta el criterio de Drucker-Prager, 

que incluye plasticidad y daño plástico discutido previamente. En la ley de flujo ( )n m

cr crA t  , los 

parámetros tienen los siguientes valores: A = 10
-21.8

; n = 2.667; m = -0.2. La fuerza cohesiva y ángulo 

del modelo (Shen et al, 2012) están dados por: d = 1.56 MPa,   = 44°. La densidad, módulo de Young 

y coeficiente de Poisson del reservorio son 2200 kg/m
3
, 0.9 ×10

10
 Pa y 0.34, respectivamente. Los 

valores respectivos para el domo son 2100 kg/m
3
, 1.5 ×10

10
 Pa y 0.30, respectivamente. La variación 

de la presión de poro en el reservorio es debida a la extracción de aceite. Va desde su valor original de 

82 MPa a 70 MPa, que es un valor normal de decaimiento de presión (120 bar). Las cargas aplicadas al 

modelo a escala del campo incluyen: presión del agua de mar, gravedad de la formación y de la sal, que 

se equilibra con la geotensión inicial. Se considera desplazamiento cero en las cuatro zonas laterales y 

en la parte inferior (Figura 3). En la simulación se incluyó la producción de aceite cubriendo un periodo 

entre enero de 1992 con 5000 bpd (barriles por día), 80,000 bpd en julio de 2004 y hasta diciembre de 

2010 con 15,000 bpd, distribuidos entre 19 pozos productores. La Figura 4 muestra el perfil de presión 

calculada. 

 

 

 

 

 

 

 

 

 

 

Figura 3: Contorno del desplazamiento/expansión   Figura 4: Contorno de la variación de la presión  
vertical (U3) del domo salino por la producción.   de poro por la extracción entre 1992 y 2010. 

Discusión y conclusiones 

 

- En este artículo presenté el problema general de elastoplasticidad de rocas geotérmicas. Introduje una 

breve descripción de la teoría del flujo plástico y se desarrollaron y resolvieron dos ejemplos de 

aplicación. El primer ejemplo aplica un modelo general poroelástico y un caso particular simplificado 
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cuando el sistema tiene geometría radial con flujo en un medio isotrópico. Los resultados numéricos 

presentados muestran gráficamente el efecto que la poroelasticidad tiene sobre el perfil de presión y el 

desplazamiento radial de la roca. Estos resultados pueden ampliarse al estudio numérico del colapso de 

pozos. Como puede verse en las figuras 1 y 2, si el coeficiente ξe aumenta, entonces el desplazamiento 

radial aumenta con menor caída de presión. Para el caso donde los límites del reservorio quedan fijos, 

en la frontera exterior la presión es mayor y el desplazamiento radial es menor. Se observa en la Figura 

2 que el máximo desplazamiento radial es de 0.350 m y ocurre a los 300 m de distancia del pozo. 

 

- En el segundo ejemplo se resuelve un problema tridimensional poroelastoplástico, correspondiente a 

la deformación permanente de un domo salino situado en el Golfo de México, relacionado con un 

yacimiento de petróleo en explotación. Este caso involucra fenómenos geotérmicos típicos acoplados a 

la extracción de aceite con invasión de salmuera caliente. El domo experimenta una expansión continua 

visco-elasto-plástica originada por la extracción y depresión correspondiente. Se modeló la 

geomecánica de esta distorsión usando el criterio de Drucker-Prager modificado y elementos finitos. La 

expansión máxima calculada es de 0.348 metros en la parte superior del domo. Esta deformación afecta 

el perfil de presión de poro según se aprecia en la Figura 4. La disminución de la presión está limitada a 

la región del reservorio definida en la misma Figura 4. Los valores de presión de poro permanecen sin 

cambios en las regiones más allá del yacimiento al establecer condiciones de muy baja permeabilidad. 
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Anexo Técnico 

A.1. La derivada advectiva de la densidad 

El fluido y la roca del reservorio se suponen como dos medios continuos evolucionando en el espacio-tiempo. 

Los cambios en la roca son muy lentos y pequeños comparados con los cambios en el fluido, pero deben tomarse 
en cuenta para estudiar las deformaciones poroelásticas. La derivada advectiva de la densidad de la fase fluida o 

sólida es la tasa de cambio global en el tiempo (derivada convectiva o total) de la densidad de la fase considerada 

como una función de cuatro variables  (x, y, z, t). Esta derivada total D/Dt se computa así: 
 

 

        Donde   , ,   y   

D dx dy dz dt
x,y,z,t v

Dt x dt y dt z dt t dt t

dx dy dz
v r t x t , y t ,z t

dt dt dt

     


    
      

    

 
  
 

  (A1) 

 

El vector v es el campo de velocidades de la fase roca o fluido y r (t) es la posición de cualquier partícula del 

medio. De la fórmula anterior se deduce que la derivada advectiva se origina porque la densidad de la fase 

cambia con el tiempo experimentando una variación espacial por el movimiento de partículas de la fase fluida o 

sólida. Si v = 0 o el gradiente de la densidad es nulo, entonces D/Dt  es igual a la derivada temporal tradicional.  
 

A.2. El Principio de Conservación de la Masa en Rocas Porosas 

La densidad total de la roca debe tomar en cuenta la presencia del fluido (f) en los poros junto con la fase sólida 

(s). La densidad global es un promdio de ambas densidades  = f + s s. La masa total M = Mf + Ms es la 

suma de las masas de ambas fases en el tiempo t  0. Las definiciones matemáticas son (Bundschuh y Suárez 
Arriaga, 2010): 

 

   masa sólida:  , ,   masa fluida:  , 

s f

s s s f f

V V

M r t dV M r t dV       (A2) 

Sea iv r / t    la velocidad vectorial de una partícula en el volumen de la fase Vi (i = f, s); φs = Vs / VB  es la 

fracción de granos sólidos con respecto al volumen global de roca porosa VB y φf  = φ = Vp / VB  es la fracción de 

poros interconectados o porosidad de la roca en el volumen VB. Por esa misma definición tenemos que φs + φ = 

1. La densidad total de la roca porosa es entonces:  = f + (1- ) s. La masa permanece constante al 
conservarse durante el movimiento, y la derivada advectiva D/Dt de cada una de las integrales en la ecuación (2) 
es cero: 

 
  0

i

i ii
i i i

V

DM
v dV

Dt t

 
 

 
   

 
        (A3) 

 
Esta es la forma integral del principio de conservación de la masa para una roca porosa continua. Suponiendo 

que Vi representa cualquier volumen arbitrario de la fase i, el integrando de la ecuación (3) debe ser cero: 

 

 
 

 
 

 
    0

i i i i i i

i i i i i i i i i i i i

D
v v v v

t Dt t

     
       

 
         

 
    (A4) 

 

La fórmula (4) es la ecuación de continuidad o Principio de Conservación de la  Masa en derivadas parciales. La 

divergencia de la velocidad del fluido es la derivada advectiva del volumen específico del fluido f  = 1/f: 
 

 1 1f B f B Bf

f

f f f B B

D V V DV DMD
v

Dt V M Dt V V Dt Dt

 



 
      

 
 

    (A5) 
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Aplicando el mismo razonamiento a la fase sólida (i = s) de masa constante:  

 

   
 

 
1 21 1s s s s

s s s s s s s s s s

s s s

D DV DVD D
v v V V V V

Dt Dt Dt Dt V Dt

 
   

 

  
          

 
 

 

La divergencia de la velocidad del sólido es la derivada advectiva de la deformación volumétrica del sólido: 

0 0 0 0 0 0

0 0 0

1s s s
s x y z s

s s

y z x x z y x y z V DV D
v

x y z V V Dt Dt


   

      
         

 
     (A6) 

 
La variable εs = εx + εy + εz es la deformación volumétrica (dilatación o compactación) de la fase sólida. La 

misma definición se aplica a la deformación volumétrica global εB = ΔVB / VB  de la roca porosa. 

 

A.3. Ecuaciones Elásticas para Rocas Hookeanas  

Las ecuaciones de los sólidos elásticos simples sin porosidad relacionan 

esfuerzos y deformaciones como una función lineal tensorial. En este 
caso el volumen es el sólido VB = VS y εB = εS , porque no hay poros. 

Cuando las relaciones tensoriales entre esfuerzo y deformación son 

lineales, la roca sólida se dice que es Hookeana, porque obedece a la Ley 
Elástica de Hooke. En un sistema inercial de referencia OXYZ en tres 

dimensiones, estas relaciones son: 

1
tensiones: 2 deformaciones: kk

S B S S S= G
E E

  



    σ I ε ε I σ    (A7) 

;   3 3
1 2

s x y z k k x y z M s B s

E
K          


        


     (A8) 

Donde E es el módulo elástico de Young, el parámetro ν es el módulo de Poisson, KB es el bulk modulus o 
módulo volumétrico. Su inverso es la compresibilidad de la roca CB = 1/KB . Por último, G es el coeficiente de 

rigidez o módulo de Lamé, o coeficiente de corte (shear coefficient). El otro módulo de Lamé, , expresa la 
respuesta de la roca a la tensión o compresión. Sea us = (ux, uy, uz) el vector del desplazamiento de las partículas 

sólidas. Usando notación tensorial, las componentes de la matriz simétrica anterior para rocas isotrópicas son: 

 

1 1
2 ;  , , , 

2

ji
i j s i j i j i j i j k k i j

j i

uu
 = G i j x y z

E E x x

 
       

 
       

   

        (A9) 

 

Los once símbolos empleados en el modelo son de uso común: i j representa las seis tensiones aplicadas [Pa]; εij 

son las seis deformaciones [ad], que describen la respuesta elástica global del sólido. Los coeficientes , G, E y  

quedaron definidos; ij es el tensor unitario o de Kroenecker (δii = 1, δij = 0 si i  j); M es la tensión promedio. El 

término εs = εB = εkk  es la deformación volumétrica de la roca sólida y kk = xx + yy +zz es la traza del tensor 

de esfuerzos S. Estos tensores S y S son simétricos a consecuencia de la Segunda Ley de Newton aplicada a la 
dinámica de sólidos (Bundschuh y Suárez Arriaga, 2010).  

 

A.4. La Ley de Darcy generalizada para el movimiento del fluido relativo al sólido  

Debido a que la roca puede deformarse por efectos de los cambios de presiones tanto en los granos sólidos como 

en el fluido contenido en los poros, es necesario formular las ecuaciones de flujo del fluido, que es lineal y 

laminar, con referencia al flujo o deformación de la roca sólida. La Ley de Darcy en este caso se escribe: 
 

    f s f

f

v v p g 


     
K

     (A10) 

Z 

Y 

  d0 
O 

x0 

 x  xy 

x 

A 

E 

 Fx VB 

X 
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Donde vf, vs son las velocidades promedio de las partículas del fluido y del sólido respectivamente con respecto a 

un referencial inercial OXYZ arbitrario; K es el tensor de permeabilidad absoluta de la roca; p y ρf son la presión 

y la densidad del fluido, respectivamente; μf es la viscosidad dinámica del fluido. 
 

A.5. Momento lineal de los esfuerzos en la roca elástica  

La Segunda Ley de Newton en rocas elásticas establece que la suma de esfuerzos es igual a la aceleración:  

  
2

2
0s s

u
p

t



   


σ δ                                     (A11) 

La ecuación (13) viene de la forma integral de la Segunda Ley de Newton para sólidos. Es cero porque se supone 

que las partículas sólidas se mueven muy despacio, a velocidad casi constante (Bundschuh y Suárez Arriaga, 

2010). 
 

A.6. Modelo final resultante con flujo darciano acoplado a la roca elástica  

Las ecuaciones y principios antes mencionados permiten plantear en forma lógica y clara el modelo propuesto al 

inicio de este artículo. 
 

 
 

 
   

 
 

 
   

     

0 masa del fluido, Ec. 4

0 masa de la roca, Ec. 4

Ley de Darcy relativa a la roca, Ec. 12

2

f f

f f f f

s s s s
s s s s s s

f s f

f

S S B S

D
a ) v v

t Dt

D
b ) v v

t Dt

c ) v v p g

d ) = G

   
   

   
   

 


 


      




      



     



K

σ I ε  

   
2

da

2

Ley de Hooke para la roca sólida, Ec. 9

0 2  Ley de Newton, dinámica de la roca, Ec. 13s s

u
e ) p

t



    


σ δ

       (A12) 

 

Este es un modelo general tridimensional, donde las principales funciones han sido definidas. Otros símbolos 

empleados se describen a continuación: 
 

       

   
 

1 ;  ;  

La derivada advectiva o total del fluido:   

permeabilidad:  ; divergencia de esfuerzos: 

yx z
s s s s s s s s s s s s s s

f f

f f

i i i s

vv v
v v v v v

x y z

D
v

Dt t

k e e

         

 


 
            

  


   



   K σ 

   13 614 1 8126 15 2 es la ecuación de Pearsd on ,onde:  10 0 987 10 m  1976

i i i i j i i

. .

i

p e e e e p

k k . .





 

     

      

δ     (A13) 

 
Las hipótesis que simplifican este modelo son:  
 

H1) Los esfuerzos cortantes en el fluido son nulos, por tanto solo actúa la presión de poro. 

H2) La densidad de la roca sólida es constante. H3) La viscosidad del fluido es constante. 

H4) La permeabilidad de la roca es constante. H5) La densidad del fluido solo depende de la presión. 

H6) El fluido es monofásico (líquido). H7) La poroelasticidad de la roca se ve en el cambio de porosidad.  

H8) La velocidad de deformación de la roca es muy pequeña y casi despreciable en algunas ecuaciones. 
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A.7. Consecuencias de las hipótesis en el modelo final  

Las consecuencias de las hipótesis anteriores en el modelo son: De la ecuación (6) y de la (14.b): 

 

1 1
0

1

s s s s s
s s s s s s s s s

s

D D DD
v v v v v

t Dt Dt Dt Dt t

    
   

 

 
               

  
  (A14) 

 

De la Ley de Darcy (14.c) y de la conservación de la masa fluida (14.a): 

       

     
 1 1 1

f f f s f f f f f s f f

f f

f

f f f f s

f f f f f

v v p g v v p g

p g p g v
t

           
 

 
    

    

 
              

 
 

 
              

   

K K

K K

 (A15) 

 

De la definición de compresibilidad del fluido y de la regla de la cadena para derivadas compuestas: 

 

 
1

;  ;  
f f f f

f f

f

p
C p p

p p t p t

   




    
    

    
    (A16) 

 

Combinando algebraicamente las ecuaciones (16) y (17): 

   
1 f

f f f s

f f f

D D p
p g p p g C v

p Dt Dt

 
   

  

  
              

   

K K
   (A17) 

 

Finalmente de las ecuaciones (15) y (18) obtenemos el modelo final: 

 

   

1

1 1

f f f f s

f f

f f s f

D D p
p g C p p g C v

Dt Dt

D D D p D D p D p
C C v C

Dt Dt Dt Dt Dt Dt


   

 

   
  

 

 
                

 
 

      
 

K K

   (A18) 

 

Una vez calculado el tensor de la deformación de la roca, la divergencia de la velocidad del sólido puede 

calcularse empleando la última parte de la ecuación (15), o la compresibilidad del poro: 

 
 11 1 1

1 1

s
p

s

C
p p p

 


  

   
  

    
     (A19) 

 

De aquí y de la ecuación (15) deducimos que: 

1 1

1 1

s
s p

D D Dp Dp
v C

Dt Dt p Dt Dt

  


 


    

  
   (A20) 

 

Si ambos lados de esta ecuación dependen únicamente de la presión, entonces puede resolverse 

independientemente de las anteriores. Por tanto el modelo de la ecuación (19) puede igualarse a un coeficiente 

formado por ambas compresibilidades, la del fluido y la del poro: 
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     f f f p f

f f

D p
p g C p p g C C

Dt
  

 

 
            

 
 

K K
   (A21) 

 

A.8. Escritura del Modelo en Coordenadas Cilíndricas y Radiales 

Los operadores diferenciales en coordenadas cilíndricas para funciones arbitrarias son: 

     ;   , , ;   r zu r, ,z v v v v r, , z  σ  

 Gradiente de la función u:    
1 1

, , ;  ,  ,  r z

u u u u u u
u u u u

r r z r r z


 

      
        

      
 

 Divergencia del vector  v:    
1 1 z

r

v v
div v v r v

r r r z





 
    

  
 

 Divergencia del tensor  σ:     ,  0r r
r zr, , z e e

r r
    

 
    


        


σ σ  

Debido a que sólo existe la componente radial, los demás términos son nulos. Así, la ecuación diferencial del 

modelo se simplifica con la pura coordenada radial r
 
: 

  

 
2

1 fr
r p f

f f

Ck p p p
r k C C

r r r r t


 

      
           

 (A22) 

 

Suponiendo que la permeabilidad, la viscosidad y las compresibilidades son constantes: 

 

   
22

2

1r
f p f

f

k p p p p
C C C p

r r r tr




     
     
      

 (A23) 

 

A esta última ecuación faltan por agregar las condiciones de frontera y la condición inicial. Con estas, la 

solución de la ecuación (A23) permite el cómputo de la presión del fluido p (r, t). Por otra parte, la ecuación 

(A19) puede integrarse exactamente para calcular la porosidad, suponiendo constante la compresibilidad del 

poro una vez calculada la presión: 
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