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Resumen

Con base en principios generales de conservacion de la masa, del momentum y de la Ley de Darcy,
junto con el concepto de derivada advectiva de la densidad del sistema roca-fluido, se presenta el
desarrollo de un modelo poroelastoplastico general en 3D. Para ilustrarlo en forma practica, se deduce
otro mucho mas simple de geometria radial, el cual se aplica a la deformacion poroeléstica de un pozo
productor. EI modelo 3D se aplicé al calculo de la deformacion elastoplastica de un domo salino en una
zona geotérmica de aceite del Golfo de México. El fluido y la roca del reservorio se consideran como
dos medios continuos cambiantes en el espacio-tiempo. Los cambios en la roca son muy lentos y
pequefios comparados con los cambios en el fluido, pero deben tomarse en cuenta al estudiar las
deformaciones poroelastoplasticas. La densidad total de una roca porosa comprende la presencia del
fluido de densidad ps en los poros junto con la densidad de la fase solida ps. La densidad global es un
promedio de ambas densidades p = @ps + @s ps. Las hipotesis en este modelo son: H1) Los esfuerzos
cortantes en el fluido son nulos y solo actua la presion de poro. H2) La densidad de la roca sélida es
constante. H3) La viscosidad del fluido es constante. H4) La permeabilidad de la roca es constante. H5)
La densidad del fluido solo depende de la presion. H6) El fluido es monofasico (liquido). H7) La
poroelasticidad de la roca solo se manifiesta en el cambio de porosidad. H8) La velocidad de
deformacion de la roca es muy pequefia. No obstante las restricciones de estas hipotesis, el modelo
radial resultante es sumamente préactico y didactico, ayudando a comprender la mayoria de los procesos
geomecanicos involucrados, incluyendo mecanismos no-isotérmicos.

Palabras clave: Poroelasticidad, poroelastoplasticidad, modelado matematico, Ley de Darcy, derivada
advectiva, deformacion, criterio de falla.

Introduccién

La literatura mundial geomecanica describe la subsidencia en acuiferos, en yacimientos de petroleo y
en reservorios geotérmicos a causa de su explotacion (Bundschuh & Suarez, 2010; Suarez et al, 2014).
Este fendmeno es una consecuencia directa de las deformaciones permanentes e irreversibles de la roca
porosa. En sistemas geotérmicos mejorados (EGS) se aplica estimulacion artificial para fisurar la roca
aumentando porosidad y permeabilidad. La poroelasticidad s6lo estudia el comportamiento de las rocas
porosas elasticas con fluidos viscosos tales como agua salmuera, gas y petroleo. Una roca poroelastica
se caracteriza por su porosidad, sus mddulos elasticos y las propiedades fisicas de los fluidos que
contiene. La deformacion de la roca poroelastica puede ser lineal o no lineal, isotérmica o no-
isotérmica. La extraccion de fluido en reservorios geotérmicos provoca la reduccion de la presion
interna del poro y de la apertura efectiva de poros y fisuras, deformando con frecuencia la roca en
forma permanente e irreversible, o sea, poroelastoplastica.

La poroplasticidad de rocas geotérmicas, puede exhibir dilatacién plastica producida por tensiones
positivas 0 contraccion plastica producida por compresiones negativas. Ambos procesos son
irreversibles, produciendo deformaciones permanentes que pueden reducir la capacidad de
almacenamiento del reservorio. Hay otros efectos importantes geotermomecanicos en geotermia y en
reservorios de hidrocarburos. Las altas presiones y temperaturas aumentan la ductilidad y bajan el
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punto de cedencia de la roca. Por lo tanto, los efectos combinados de alta temperatura y alta presion
confinante inducen flujos plasticos, produciendo deformaciones méas alla del limite de deformacion
elastica (Bundschuh & Suérez, 2010). La teoria actual de flujo en la plasticidad (Coussy, 2004; Chin,
2005; de Souza et al., 2008) asume que existe una regla de flujo para calcular la deformacion plastica
de la roca. También se asume que la tension total en rocas geotérmicas se puede descomponer en dos
partes: una de ellas eléstica o reversible y la otra plastica o irreversible. Esta particién puede ser aditiva
0 multiplicativa; ambas son Utiles en la ingenieria de reservorios geotérmicos. La descomposicion
aditiva se utiliza en pequefias deformaciones plasticas, aplicando la ley de Hooke a la porcion elastica.
La deformacion total ¢ es igual a la deformacion plastica &, mas la deformacion elastica . (& = & + &).
La descomposicién multiplicativa puede usarse para grandes deformaciones plasticas, suponiendo que
el tensor del gradiente de la deformacion F es igual al producto de un tensor elastico y un tensor
plastico o F = F. - Fp. Para determinar la parte plastica de la deformacion total en los dos tipos de
descomposicidn, se requieren tres conceptos: una regla de flujo, un criterio de cedencia y un modelo de
endurecimiento (Lee, 1969; Coussy, 2004; Souza et al., 2008; Anandarajah, 2010). La regla de flujo
plastico define la evolucion de la distorsion plastica; la ley de endurecimiento caracteriza la evolucion
del limite de cedencia segun el criterio correspondiente. El objetivo principal de este articulo es
introducir estos aspectos importantes de la teoria de la plasticidad aplicada a un par de ejemplos
poroelastoplasticos de reservorios deformables.

El Modelo General PoroElastico y en Coordenadas Radiales
El modelo desarrollado, cuyos detalles y nomenclatura se muestran en el Anexo, es el siguiente:

- (K e ) LK e 1 Dg Dp o .
V'(;‘(Vp—Pf Q)J‘*Cfvp'la_f’(Vp_Pfg)-ga"‘(l’cf Dt VVi+9Ci—- 1)

Una vez calculada la deformacion de la roca, la divergencia de la velocidad del solido puede calcularse

- - -1 o(1- -
empleando la compresibilidad del poro: ¢C, = L (1-¢) _ 1 a—(p. El modelo definido
¢, 0p 1l-¢p oOp l-@dp
por la ecuacion (1) puede escribirse con un solo coeficiente formado por ambas compresibilidades:

Dt
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Este modelo, en coordenadas radiales o cilindricas, deviene simplemente (ver Anexo):

C 2
li ﬁr@ + _fkr @ — ¢(Cp+cf)a_p (3)
ror{ u; or 7 or ot

Esta ecuacion no lineal, con condiciones de frontera e inicial apropiadas, permite el computo de la
presién del fluido p(r, t), asi como el célculo exacto de la porosidad, suponiendo constante la compresi-

Dy
(1_%)efcp(pfpo) + @y

bilidad del poro una vez calculada la presion: €D( p) =

Los esfuerzos totales en rocas geotérmicas estan fisicamente limitados por el criterio de falla de
Drucker-Prager extendido. Usando datos de campo publicados, este modelo se aplicd para computar el
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posible colapso radial de un pozo productor y la deformacion poroelastopléastica de un domo salino en
el Golfo de México, el cual esté relacionado a un acuifero geotérmico.

El Modelo General PoroElastoPlastico

En notacion tensorial para las distorsiones, el modelo aditivo elastopléstico es el siguiente:
g=g,+g, > g, =8-¢, & £(1)=£(t)-£,(1), y &(t,) =5, (4)

El punto sobre las & significa derivada en el tiempo; el Gltimo término en la ecuacion (4) es una
condicion inicial para la distorsion total. Se asume que la deformacion eléstica del tensor &, se calcula
con la ley de Hooke y por lo tanto lo Unico elemento desconocido es el tensor plastico &,; su calculo
soluciona el problema elastoplastico. La parte elastica puede resolverse empleando la teoria clésica de
Biot en condiciones no-isotérmicas (Bundschuh & Suérez, 2010). Sea ¥ el potencial de energia libre,
que se supone funcion de las & y de un conjunto de variables internas a = {o;, i = 1, n} tales como la
porosidad plastica; las a; se llaman variables de endurecimiento. Se asume que ese potencial puede ser
descompuesto en la suma de un elemento elastico ¥, y uno plastico ¥, (de Souza et al, 2008):

w(se,sp,a)= v.(g,)+v,(a) (5)

La parte plastica ¥, describe el endurecimiento o ablandamiento de la roca. En la mecanica de la
descripcion se asume que las rocas geotérmicas son lineales e isotropicas. Usando la descomposicion
del potencial energia libre, la ley general elastica para calcular el tensor ¢ y la fuerza termodindmica
del endurecimiento t es:
=p e, 1= ple )
oe oa

e

El flujo plastico ocurre cuando la tensién alcanza un valor critico. Este principio experimental se
representa con un potencial de flujo Y (e, 1), positivo, negativo o cero, lo cual define tres dominios
diferentes:

Q. ={c|Y(e,7) <0}, Q. ={c|Y(o,7) <0}, Q ={c|Y(0.,7) =0} (7)

Qe es el dominio elastico, donde no ocurre cedencia plastica; Qp es el dominio de tensiones
plasticamente admisibles y Qy es el dominio de tensiones donde la plasticidad puede ocurrir. El
conjunto {Y (o, 1) > 0} no tiene significado fisico y se dice que ese proceso termodindmico es
imposible que ocurra. La siguiente condicion es la construccion de una regla de flujo plastico que
define leyes de evolucion para las variables internas, que se asocian con la funcion disipativa del
proceso. Las variables internas son las & y el conjunto a.. La regla del flujo plastico (de Souza et al.,

2008) se define como s‘:p:yN(c,r); N es el tensor de flujo y » es un multiplicador plastico. El

modelo de endurecimiento (Coussy, 2004; de Souza et al., 2008) es dado por"r:yH(c, r). H es el

mddulo generalizado de endurecimiento, el cual define la evolucion de las variables a;. Estas
ecuaciones son leyes evolutivas que requieren criterios de carga/descarga, o bien, condiciones que
determinen cuando hay evolucién de las distorsiones plasticas y de las variables internas. Las

condiciones son tres: Y(o,7) <0, y >0, 7Y (o,7)=0. En cedencia plasticay = 0;una ecuacion
complementaria, deducida de las condiciones anteriores, implica la siguiente condicién de consistencia:
7}Y(c, 1:) =0 = Y(c, r) = 0. Las matrices N y H se computan con el potencial de flujo Y (e, 7) y €l
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multiplicador plastico y con la formula tensorial indicada (de Souza et al., 2008), donde el tensor De es
la elasticidad isotropica, y los “:” representan el producto tensorial interno:

82
N(c,‘r)=%, H(c,‘r)=—%, 7=N:De:é/[N:De:N—H~ WP-HJ (8)

oa’
El Criterio de Cedencia (yielding) de Drucker-Prager

Este criterio (Drucker-Prager, 1952, en: Coussy, 2004; de Souza et al., 2008) establece que: “the plastic
yielding begins when the second invariant I, of the deviatoric stress and the hydrostatic pressure p,
reach a critical combination”. El segundo invariante es una funcion del desviador s de la tension:
ss 1
IZ(S)ZTZESHSH’ s=o—pl, Sij:O-ij_pé‘iJ ©)
Primer ejemplo: Modelo radial poroelastico
El modelo general construido en el Anexo, permite deducir un modelo mas simple, radial de la forma:

k (o*p 10p opY op
—(C.+C &P 2P e P2 & 10
Cr=(C+Ci) = yf{62r+r6r+ f[@r Cro(p) ot 10)

Donde p = p (r, t), Cr es la compresibilidad total, us la viscosidad del fluido y k; es la permeabilidad
radial de la roca. Todas estas variables pueden considerarse constantes o bien dependientes Gnicamente
de la presion. La permeabilidad k; se aproxima con la férmula de Pearson y la porosidad con la
correlacién indicada en el Anexo. Se supone un reservorio cilindrico contenido en una roca isotrépica
de espesor uniforme, parcialmente homogenea, donde las principales variables cambian con el radio.
Un pozo productor (o inyector) de liquido se encuentra situado en el centro del medio poroso y toda la
formacion circundante se deforma por efecto de la extraccion o de la inyeccion constante efectuada. El
reservorio se encuentra sometido a las siguientes condiciones de frontera e iniciales:

1. Desplazamiento radial inicial nulo u, (r, 0) =0
2. Desplazamiento en pozo no deformable u; (r <, t) =0 (# 0, si el pozo se deforma).
3. Desplazamiento de frontera externa u, (r > rg, t) = 0 (# O si esta frontera se deforma).
4. Velocidades del fluido y del s6lidoenr =rg, vi=v, =0siu, = 0.
5. Presion inicial del fluido en el reservorio p (r, 0) = p;
6. En la frontera interna en el pozo: op(r,.) Ll

or 27k, r,h,

7. En la frontera externa del reservorio o p(rE ,t)/ or=20

Los efectos poroelasticos sobre la presion y la deformacidn en el reservorio conteniendo liquido pueden
estimarse con este modelo a partir de su estado inicial. La porosidad y permeabilidad son variables
debido a la distorsion radial. Se considera una produccién constante de liquido y los limites externo e

interno son fijos. Sea el coeficiente & =b/(4+2G), donde b es el coeficiente de Biot-Willis, 1 es el

coeficiente drenado de Lamé y G es el mdédulo del esfuerzo cortante. El reservorio es sensible a la
tension o compresion: mientras mayor sea &, mayor sera el desplazamiento, como se observa en las
figuras 1 y 2. Usando las propiedades y valores indicados, se realizaron tres computos. Los resultados
mostrados corresponden a 150 dias (t;) de produccién de liquido. Las figuras 1 y 2 ilustran el efecto
que tiene el coeficiente & sobre el perfil de presion y el desplazamiento radial de la roca.
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Figura 1: Efecto del coeficiente poroeldstico en el perfil p (r, t) al tiempo t;.
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Figura 2: Efecto del coeficiente poroeldstico en el desplazamiento u,(r, t) al tiempo t;.

Segundo ejemplo: Deformacién poroelastoplastica de un domo salino

Se ha encontrado una concentracién anormalmente elevada de sales disueltas y minerales en muestras
de pozos activos en yacimientos de aceite, ubicados en la parte sur del Golfo de México a 6000 m de
profundidad. Esto indica la presencia de domos salinos subyacentes al reservorio. Estos domos influyen
en la composicion quimica del aceite y de salmuera caliente que acompafian a la produccién. La
extraccion de hidrocarburos en este sitio se relaciona con fendmenos geotérmicos tipicos acoplados a la
geomecanica activa de los domos de sal. La migracion masiva se produce en condiciones no-
isotérmicas a temperaturas minimas de 160° C y a presiones arriba de 1284 bars. El sistema geoldgico
de interés esta situado a 1000 m bajo el nivel del mar. La ubicacion del reservorio se encuentra 5000 m
por debajo del nivel del mar. La geometria aproximada del domo salino se muestra en la Figura 3. La
profundidad total del modelo es de 7000 m, el ancho es de 8000 m y la longitud es de 8000 m. La
computacion de este ejemplo es s6lo con fines ilustrativos, no es necesario incluir un mapa detallado
del sitio real. La simulacion elastoplastica adopta un criterio de cedencia de Drucker-Prager modificado
que incluye el dafio plastico (Shen et al., 2012). El potencial plastico Y pp €s, para este caso:
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Yor =/ (E ooty 6) +12 —ptg 6 (11)

£ is un parametro que define la excentricidad de la superficie de carga en los esfuerzos effectivos; aio €S
el umbral del esfuerzo tensional en el cual inicia el flujo plastico; & es el angulo de dilatancia; I, es el
segundo invariante del meridiano compresivo y p es la presion. El criterio de falla de Drucker-Prager
modificado es una generalizacion del criterio clasico de Mohr-Coulomb.

Para simular la deformacion del domo causada por la extraccion de aceite y salmuera, utilizamos el
modelo 3D descrito por Shen, Bai & Standifird (2012). EI modelo incluye un analisis de deformacion
visco-elasto-plastica y el flujo del fluido relacionadas con el declive de presion. EI modelo fue resuelto
mediante el método de elementos finitos. La simulacién numérica adopta el criterio de Drucker-Prager,
que incluye plasticidad y dafio plastico discutido previamente. En la ley de flujo 2, = A(5,,)"t", los
parametros tienen los siguientes valores: A = 10%*%; n = 2.667; m = -0.2. La fuerza cohesiva y angulo
del modelo (Shen et al, 2012) estan dados por: d = 1.56 MPa, 8 = 44°. La densidad, modulo de Young
y coeficiente de Poisson del reservorio son 2200 kg/m®, 0.9 x10™ Pa y 0.34, respectivamente. Los
valores respectivos para el domo son 2100 kg/m?, 1.5 x10™ Pa y 0.30, respectivamente. La variacion
de la presion de poro en el reservorio es debida a la extraccion de aceite. Va desde su valor original de
82 MPa a 70 MPa, que es un valor normal de decaimiento de presion (120 bar). Las cargas aplicadas al
modelo a escala del campo incluyen: presion del agua de mar, gravedad de la formacion y de la sal, que
se equilibra con la geotensidn inicial. Se considera desplazamiento cero en las cuatro zonas laterales y
en la parte inferior (Figura 3). En la simulacion se incluyé la produccion de aceite cubriendo un periodo
entre enero de 1992 con 5000 bpd (barriles por dia), 80,000 bpd en julio de 2004 y hasta diciembre de
2010 con 15,000 bpd, distribuidos entre 19 pozos productores. La Figura 4 muestra el perfil de presion
calculada.
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Figura 3: Contorno del desplazamiento/expansion Figura 4: Contorno de la variacion de la presion
vertical (U3) del domo salino por la produccion. de poro por la extraccion entre 1992 y 2010.

Discusién y conclusiones

- En este articulo presenté el problema general de elastoplasticidad de rocas geotérmicas. Introduje una
breve descripcion de la teoria del flujo plastico y se desarrollaron y resolvieron dos ejemplos de
aplicacion. El primer ejemplo aplica un modelo general poroelastico y un caso particular simplificado
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cuando el sistema tiene geometria radial con flujo en un medio isotrépico. Los resultados numéricos
presentados muestran graficamente el efecto que la poroelasticidad tiene sobre el perfil de presion y el
desplazamiento radial de la roca. Estos resultados pueden ampliarse al estudio numérico del colapso de
pozos. Como puede verse en las figuras 1y 2, si el coeficiente & aumenta, entonces el desplazamiento
radial aumenta con menor caida de presién. Para el caso donde los limites del reservorio quedan fijos,
en la frontera exterior la presion es mayor y el desplazamiento radial es menor. Se observa en la Figura
2 que el maximo desplazamiento radial es de 0.350 m y ocurre a los 300 m de distancia del pozo.

- En el segundo ejemplo se resuelve un problema tridimensional poroelastoplastico, correspondiente a
la deformacién permanente de un domo salino situado en el Golfo de México, relacionado con un
yacimiento de petrdleo en explotacion. Este caso involucra fendmenos geotérmicos tipicos acoplados a
la extraccion de aceite con invasion de salmuera caliente. El domo experimenta una expansion continua
visco-elasto-pléastica originada por la extraccion y depresion correspondiente. Se model6 la
geomecanica de esta distorsion usando el criterio de Drucker-Prager modificado y elementos finitos. La
expansion maxima calculada es de 0.348 metros en la parte superior del domo. Esta deformacién afecta
el perfil de presion de poro segun se aprecia en la Figura 4. La disminucion de la presion esta limitada a
la region del reservorio definida en la misma Figura 4. Los valores de presion de poro permanecen sin
cambios en las regiones mas alla del yacimiento al establecer condiciones de muy baja permeabilidad.

Referencias

Anandarajah, A., 2010. Computational Methods in Elasticity and Plasticity. Springer, 633 p.

Bundschuh, J., and Suéarez-Arriaga, M.C., 2010. Introduction to the Numerical Modeling of
Groundwater and Geothermal Systems - Fundamentals of Mass, Energy and Solute Transport
in Poroelastic Rocks. Taylor & Francis Group, 479 p.

Chin, L.Y., Raghavan, R., and Thomas, L.K., 2000. Fully Coupled Geomechanics and Fluid-Flow
Analysis of Wells with Stress -Dependent Permeability. SPE Journal, 5:1, pp. 32-45.

Coussy, O., 2004. Poromechanics. Ed. John Wiley & Sons, Ltd.

De Souza, E.A.N., Peric, D., and Owen, D.R.J., 2008. Computational Methods for Plasticity, Ed. John
Wiley & Sons, Ltd., 791 pp.

Lee, E.H., 1969. Elastic-Plastic Deformation at Finite Strains. Journal of Applied Mechanics, 36:1, pp.
1-6.

Shen, X., Bai, M., and Standifird, W., 2012. Drilling and Completion in Petroleum Engineering —
Theory and numerical applications. Volume 3, Multiphysics Modeling series, Taylor & Francis
Group, 233 p.

Suarez, M.C., Samaniego, V.F., and Shen, X., 2014. Salt domes deformation coupled to the flow of
geothermal brine and oil. Proceedings of the 14™ International Conference of the International
Association for Computer Methods and Advances in Geomechanics (IACMAG), Kyoto, Japan,
September 22-25, 2014.

(Anexo Técnico en paginas siguientes)



Asociacion Geotérmica Mexicana — Memorias del XXII Congreso Anual Marzo de 2015

Anexo Técnico
A.1l. La derivada advectiva de la densidad

El fluido y la roca del reservorio se suponen como dos medios continuos evolucionando en el espacio-tiempo.
Los cambios en la roca son muy lentos y pequefios comparados con los cambios en el fluido, pero deben tomarse
en cuenta para estudiar las deformaciones poroelésticas. La derivada advectiva de la densidad de la fase fluida o
solida es la tasa de cambio global en el tiempo (derivada convectiva o total) de la densidad de la fase considerada
como una funcidn de cuatro variables p (x, Y, z, t). Esta derivada total Dp/Dt se computa asi:

_p(xyzt) 8pdx 8pdy Op dz 6pdt 8p
Y oxdt aydt azdt otd ot

dx dy dz

Donde V= (dt i dt) y F(t)=(x(t).y(t).2(t))

(A1)

El vector v es el campo de velocidades de la fase roca o fluido y r (t) es la posicion de cualquier particula del
medio. De la formula anterior se deduce que la derivada advectiva se origina porque la densidad de la fase
cambia con el tiempo experimentando una variacién espacial por el movimiento de particulas de la fase fluida o
solida. Si v =0 o el gradiente de la densidad es nulo, entonces Dp/Dt es igual a la derivada temporal tradicional.

A.2. El Principio de Conservacion de la Masa en Rocas Porosas
La densidad total de la roca debe tomar en cuenta la presencia del fluido (ps) en los poros junto con la fase sélida
(ps). La densidad global es un promdio de ambas densidades p = @ps + @s ps. La masa total M = M¢ + M; es la

suma de las masas de ambas fases en el tiempo t > 0. Las definiciones matematicas son (Bundschuh y Suéarez
Arriaga, 2010):

masa s6lida: M, = I(ps p,(F,t)dV, masa fluida: M, = I¢pf (F, t)dv (A2)
Vs Vf
Sea v, =0r / ¢t la velocidad vectorial de una particula en el volumen de la fase V; (i = f, s); ¢s = Vs / Vg es la

fraccion de granos solidos con respecto al volumen global de roca porosa Vg y ¢ = ¢ =V, / Vg es la fraccion de
poros interconectados o porosidad de la roca en el volumen Vg. Por esa misma definicion tenemos que @s + ¢ =
1. La densidad total de la roca porosa es entonces: p = ¢p; + (1- @) ps. La masa permanece constante al
conservarse durante el movimiento, y la derivada advectiva D/Dt de cada una de las integrales en la ecuacién (2)

es Cero:
DM, _r(d(en), ¢ _

Esta es la forma integral del principio de conservacion de la masa para una roca porosa continua. Suponiendo
que V; representa cualquier volumen arbitrario de la fase i, el integrando de la ecuacion (3) debe ser cero:

o(ep)
ot

+V- (2pV) = %Itpi)*‘(%pi)ﬁ'vi =

oen),
ot

+V (@ p) Vi + (e o)V =0 (A4)

La formula (4) es la ecuacion de continuidad o Principio de Conservacion de la Masa en derivadas parciales. La
divergencia de la velocidad del fluido es la derivada advectiva del volumen especifico del fluido vs = 1/px:

gy, -2 Plor) _ VeWy R(MfJ_iDVB _2% ()

" ep, Dt WM, Dt "V, Dt Dt
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Aplicando el mismo razonamiento a la fase sélida (i = s) de masa constante:

D - _ -1 D(ep) D ., \1 ,DV.) 1DV
o % 2:)=~(0:.p)V Ve = V-V, o Dt sopVe) =Vs| Ve V. Dt

La divergencia de la velocidad del sélido es la derivada advectiva de la deformacion volumétrica del sélido:
YoZoAX+XZg AY+X Yo AZ AV = 1 (DVSJ De,

= V-V, = — = (A6)
Xo Yo Zo V, V.| Dt Dt

=&t tE, =

La variable & = & + g, + ¢ es la deformacion volumétrica (dilatacion o compactacion) de la fase solida. La
misma definicion se aplica a la deformacién volumétrica global eg = AV / Vg de la roca porosa.

A.3. Ecuaciones Elésticas para Rocas Hookeanas

Las ecuaciones de los sélidos elasticos simples sin porosidad relacionan
esfuerzos y deformaciones como una funcién lineal tensorial. En este
caso el volumen es el sélido Vg = Vs y eg = &5, porque no hay poros.
Cuando las relaciones tensoriales entre esfuerzo y deformacién son
lineales, la roca solida se dice que es Hookeana, porque obedece a la Ley
Elastica de Hooke. En un sistema inercial de referencia OXYZ en tres
dimensiones, estas relaciones son:

tensiones: 6, =Ag,1+2Geg; <« deformaciones: g5 =— I+?GS (A7)

E
—-2v
Donde E es el médulo elastico de Young, el pardmetro v es el mddulo de Poisson, Kg es el bulk modulus o
modulo volumétrico. Su inverso es la compresibilidad de la roca Cg = 1/Kg . Por Gltimo, G es el coeficiente de
rigidez o mddulo de Lamé, o coeficiente de corte (shear coefficient). EI otro mddulo de Lamé, A, expresa la
respuesta de la roca a la tension o compresion. Sea us = (uy, Uy, U,) el vector del desplazamiento de las particulas
sélidas. Usando notacidn tensorial, las componentes de la matriz simétrica anterior para rocas isotropicas son:

& =& +&,+¢,, Oy =0+to,+0,=30, =

& = 3Kg &, (A8)

1+v v 1(6u Ou, .
0.=16.6,.+2Gg,. & & =—0,, — == — 4+ ij=x,y,z A9
ij s “ij ij ij E ij E ij 2(6)( axj J y ( )

J I

Los once simbolos empleados en el modelo son de uso comun: o;; representa las seis tensiones aplicadas [Pa]; «ij
son las seis deformaciones [ad], que describen la respuesta elastica global del sélido. Los coeficientes A, G, Ey v
quedaron definidos; &;; es el tensor unitario o de Kroenecker (i = 1, i = 0 si i # j); owm es la tension promedio. El
término & = ¢g = e €S la deformacion volumétrica de la roca sélida y o = oy + o,y +0,, €5 la traza del tensor
de esfuerzos os. Estos tensores os y €5 son simétricos a consecuencia de la Segunda Ley de Newton aplicada a la
dinamica de s6lidos (Bundschuh y Suarez Arriaga, 2010).

A.4. La Ley de Darcy generalizada para el movimiento del fluido relativo al sélido

Debido a que la roca puede deformarse por efectos de los cambios de presiones tanto en los granos sélidos como
en el fluido contenido en los poros, es necesario formular las ecuaciones de flujo del fluido, que es lineal y
laminar, con referencia al flujo o deformacidn de la roca solida. La Ley de Darcy en este caso se escribe:

o(v, ~7.) =~ (Yp-p, 9) (AL0)

Hi
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Donde vy, Vs son las velocidades promedio de las particulas del fluido y del solido respectivamente con respecto a
un referencial inercial OXYZ arbitrario; K es el tensor de permeabilidad absoluta de la roca; p y ps son la presion
y la densidad del fluido, respectivamente; u es la viscosidad dindmica del fluido.

A.5. Momento lineal de los esfuerzos en la roca elastica
La Segunda Ley de Newton en rocas elasticas establece que la suma de esfuerzos es igual a la aceleracion:

- o%u

V-(O‘s—pa):pSW=0 (All)
La ecuacion (13) viene de la forma integral de la Segunda Ley de Newton para solidos. Es cero porque se supone
que las particulas sélidas se mueven muy despacio, a velocidad casi constante (Bundschuh y Suarez Arriaga,
2010).

A.6. Modelo final resultante con flujo darciano acoplado a la roca elastica
Las ecuaciones y principios antes mencionados permiten plantear en forma l6gica y clara el modelo propuesto al
inicio de este articulo.

a) a((gff)+v(gopf \7f) = %%gppf)ﬂ -V, = 0 (masa del fluido, Ec. 4)

b) %+6-(¢sps\l) = %4%&)6-\1 = 0 (masa de laroca, Ec. 4)

c) (Vi -v)=- ;—f-(ﬁp - p; g) (Ley de Darcy relativa a la roca, Ec. 12) (A12)
d) oy=A1+2G g (Ley de Hooke para la roca sélida, Ec. 9)

e) V. (os -p 6) = P Z—ig =0 (Zda Ley de Newton, dinamica de la roca, Ec. 13)

Este es un modelo general tridimensional, donde las principales funciones han sido definidas. Otros simbolos
empleados se describen a continuacion:

- ov. OV

0 _ = _ = _ ~
o,=1-9; V-VS=—X+—Y+L; V‘((PsPsVs):V(Ps(PsVs)+VPs((DsVs)"'V'Vs((”sPs)

ox o0y o0z
D 0 -
La derivada advectiva o total del fluido: (D'if) = ;f) + V(,of)-vf

permeabilidad: K =k; e, ®e¢, ; divergencia de esfuerzos: V (o0,-pd) =0, ®¢ -0, 6 g -Vp (A13)

donde: k; =k (p)=10 (136149 -18126) () 987 %1015 [mZJ es la ecuacion de Pearson , 1976.

Las hipdtesis que simplifican este modelo son:

H1) Los esfuerzos cortantes en el fluido son nulos, por tanto solo actua la presion de poro.

H2) La densidad de la roca sélida es constante. H3) La viscosidad del fluido es constante.

H4) La permeabilidad de la roca es constante. H5) La densidad del fluido solo depende de la presion.

H6) El fluido es monofésico (liquido). H7) La poroelasticidad de la roca se ve en el cambio de porosidad.
H8) La velocidad de deformacion de la roca es muy pequefia y casi despreciable en algunas ecuaciones.

10
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A.7. Consecuencias de las hipotesis en el modelo final
Las consecuencias de las hipdtesis anteriores en el modelo son: De la ecuacion (6) y de la (14.b):

%+¢5V\7 +V -§¢S=%+¢SV-\75=O = V\?sz_—lD(pS __1 Do _Ds 05 +Ve, -V, (Al4)

ot s Dt o, Dt 1-¢ Dt Dt ot

De la Ley de Darcy (14.c) y de la conservacion de la masa fluida (14.a):

Pi @i = py oV — py ﬂﬁ-(ﬁp—pf g) = 6'(/Of (va)zﬁ'(pf (pvs)_ﬁ'(pf #ﬁ'(ﬁp_Pf g)]
f f

( ) (A15)
- [(K o\ 1s K o= oy 1=, .\ 10(pe
= V: _'(Vp_pfg) ‘*‘_VPf’_’(Vp_Pfg)__v‘(Pf ¢Vs):_—
Hs Pt Hy Pt py Ot
De la definicion de compresibilidad del fluido y de la regla de la cadena para derivadas compuestas:
1 0ps . - opy = . Opy _Ops 0
Cr=— 21 Vp,(p)=2rvp; 2r=LrP (A16)
p; Op op ot op ot
Combinando algebraicamente las ecuaciones (16) y (17):
- (K = N 100~ K= \ Do Dp o .
V| —-(Vp- +——LVp-—-(Vp- =—" 4+ pC, —+¢pV-V Al17
[,uf(ppfg)jpfapp,uf(ppfg) Dt(prtq) s (A7)
Finalmente de las ecuaciones (15) y (18) obtenemos el modelo final:
= [ K (= . - K /= v D D =
V-(—-(Vp—pfQ)J+Cfvp'—'(vp—pfg)=D—f+§0CfD—f+§0V'VS=
My Hi (A18)
_De, ¢ Dy, Dp_1Dp cDp_ g,  cDp
Dt 1-¢ Dt Dt 1-¢ Dt t Dt

Una vez calculado el tensor de la deformacién de la roca, la divergencia de la velocidad del s6lido puede
calcularse empleando la ultima parte de la ecuacidn (15), o la compresibilidad del poro:

C _1op, -1 8(l—g0)_ 1 d¢

0= = = (A19)
¢, 0p 1l-¢p oOp 1l-@dp
De aqui y de la ecuacion (15) deducimos que:
De, _ V-, = 1 Dp _ 1 d¢Dp _ (pCp% (A20)
Dt 1-9o Dt 1-¢@op Dt Dt

Si ambos lados de esta ecuacion dependen Unicamente de la presion, entonces puede resolverse
independientemente de las anteriores. Por tanto el modelo de la ecuacion (19) puede igualarse a un coeficiente
formado por ambas compresibilidades, la del fluido y la del poro:

11
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v[i-(ep—pf q)}cﬁp-i-(@p—pfg): o(C, +C,)2P (A2
f Hs Dt

A.8. Escritura del Modelo en Coordenadas Cilindricas y Radiales
Los operadores diferenciales en coordenadas cilindricas para funciones arbitrarias son:

u(r.0,z); v=(v,,v,Vv,); o(r,0,z)

Gradiente de la funcion u: Vu:(a—u, la_u, a_uj; . :a_u’ V9u=la—u, Vzu:a—u
or roe oz or roe oz
Divergencia del vector v: div(V) = V-V = li(rv,) L/
ror rog oz
Divergencia del tensor 6:0(r,0,2)=0,,¢€,®e,=(0,) = V-o=%+%, c,=0,=0

Debido a que sélo existe la componente radial, los demas términos son nulos. Asi, la ecuacion diferencial del
modelo se simplifica con la pura coordenada radial r:

C 2
1ofk op), ey fop) _ (p(cp+cf)a—p (A22)
ror{ ug or) u '\or ot

Suponiendo que la permeabilidad, la viscosidad y las compresibilidades son constantes:

k [o%p 10p opY ap
#—f(E'F?E'FCf (E = (Cp+Cf)¢(p)_ (A23)

A esta Ultima ecuacién faltan por agregar las condiciones de frontera y la condicion inicial. Con estas, la
solucién de la ecuacidn (A23) permite el cdmputo de la presion del fluido p (r, t). Por otra parte, la ecuacion
(AL19) puede integrarse exactamente para calcular la porosidad, suponiendo constante la compresibilidad del
poro una vez calculada la presién:

s
1 a¢ @ d¢) p [ ¢ J‘p 1_¢
= = =C,|dp=Ln|—| =Ln|—=|=C_ (p-p
P 1-¢ op (;[(p(l—qo) p‘-)[ 1-¢), % o ( 0)
1-9,
(A24)
Cp(p_po)
por lo tanto: —Z— = %0 g%(PR) — | ()= % - Po
1-— 1-— _ Co(P-Po) -Cp(p—po)
@ Po 1-@, +@,€ (1-¢)e +0,
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