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Resumen 

Se presentan los resultados de un proyecto de investigación realizado bajo el Fondo Sectorial SENER 

Hidrocarburos, en consorcio con el Instituto Mexicano del Petróleo (IMP) y el Instituto Nacional de 

Astrofísica, Óptica y Electrónica (INAOE). El proyecto fue “Métodos y Técnicas de Inteligencia 

Computacional y Minería de Datos para la Toma de Decisiones en Exploración de Campos Maduros”. 

La aportación del Instituto de Investigaciones Eléctricas consistió en el desarrollo de un sistema para 

decidir la forma óptima de intervenir ciertos pozos petroleros a fin de incrementar la producción en los 

pozos productores. El sistema se basa en modelos gráficos probabilistas desarrollados en el área de la 

inteligencia artificial. Los modelos gráficos probabilistas, específicamente las redes bayesianas y los 

diagramas de influencia, son métodos desarrollados para trabajar con incertidumbre o con aplicaciones 

donde los modelos analíticos no funcionan, son caros o difíciles de construir. La propuesta de selección 

de pozos consiste en dos pasos. Primero, la construcción de mapas de interconexión entre pozos en 

forma de redes bayesianas, y segundo la conversión de esos mapas en diagramas de influencia para la 

toma de decisiones. Las redes bayesianas codifican las relaciones probabilistas entre las variables de 

alguna aplicación. Están basadas, como su nombre lo dice, en el teorema de Bayes que relaciona las 

hipótesis con las evidencias de algún proceso. En este caso, se asume que hay una relación entre la 

intervención de pozos inyectores y la producción de pozos productores. Esa relación se encuentra al 

revisar los archivos de datos históricos de inyección y producción. Se utiliza alguno de los múltiples 

algoritmos de aprendizaje automático de redes bayesianas para encontrar estos mapas. Por su parte, los 

diagramas de influencia son una extensión a las redes bayesianas donde además de nodos de variables 

se tienen nodos de decisión y nodos de utilidad. Los nodos de decisión codifican la cantidad de 

inyección que puede aceptar un pozo y los nodos de utilidad calculan el beneficio de tomar cierta 

decisión. Con este mecanismo, se logra la definición de la decisión óptima de inyección. Este artículo 

propone aplicar este trabajo en campos geotérmicos, donde se podría optimizar la inyección para 

mejorar la producción de vapor y la generación de energía eléctrica. 

 

Palabras clave: Pozos inyectores, pozos productores, redes bayesianas, diagramas de influencia, 

modelos probabilistas. 

 

Decision making to intervene wells by using artificial intelligence techniques 
 

Abstract 

This paper presents the results of a research project supported by the Fondo Sectorial SENER-

Hidrocarburos, in partnership with the Mexican Petroleum Institute (IMP) and the National Institute of 

Astrophysics, Optics and Electronics (INAOE). The project was “Methods and Techniques of 

Computational Intelligence and Data Mining for Decision Making in Mature Fields Exploration”. The 

contribution of the Instituto de Investigaciones Eléctricas was the development of a system to decide 

the best intervention of oil wells so that the production increases. The method used is based on 

probabilistic graphical models, developed in the area of artificial intelligence. Probabilistic graphical 

models, specifically Bayesian networks and influence diagrams, are methods developed for working 

with uncertainty or applications where analytical models do not work, are expensive or difficult to 

build. The proposal for selecting wells to be intervened consists of two steps. First, the construction of 
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interconnection maps between wells as Bayesian networks and second, the conversion of these maps on 

influence diagrams for decision making. Bayesian networks encode probabilistic relationships between 

variables in any application. They are based, as its name implies, on the Bayes theorem that relates the 

hypothesis with evidence of some process. In this case, it is assumed that there is a relationship 

between the intervention of injection wells and the behavior of production wells. That relationship is 

found analyzing the historical data files of injection and production. One of the many machine learning 

algorithms available for Bayesian networks is used to find these maps. On the other hand, influence 

diagrams are an extension of Bayesian networks where besides the chance nodes, decision nodes and 

utility nodes are included. Decision nodes encode the injection volume that a well can accept and utility 

nodes calculate the benefit of taking certain decision. With this mechanism, the definition of the 

optimal decision injection is achieved. This paper proposes to implement this methodology in 

geothermal fields where injection in wells can be optimized to maximize the steam production and the 

power generation. 

 

Keywords: Injection wells, production wells, Bayesian networks, influence diagrams, probabilistic 

models. 

 

1. Introducción 

 

La industria del petróleo se enfrenta actualmente a una nueva era donde la tecnología se ha convertido 

en una parte esencial de la misma, debido al desarrollo de herramientas informáticas que en las últimas 

décadas han tenido avances muy exitosos. 

 

La producción de petróleo se puede dividir en tres etapas diferentes. La primera de ellas se conoce 

como recuperación primaria. En esta etapa, el flujo de petróleo y gas fluye a la superficie de forma 

natural por la propia presión del depósito. Una vez que la producción de la etapa de recuperación 

primaria alcanza su pico, normalmente se inyecta agua, aire, CO2 o nitrógeno en el yacimiento a fin de 

mantener un nivel de presión adecuado y permitir que el aceite siga fluyendo en superficie. Cuando 

esto ocurre el depósito se conoce como un campo ‘maduro’, mientras que el aumento de la presión 

artificial se conoce como recuperación secundaria. Inevitablemente, después de un tiempo, incluso con 

el aumento artificial de la presión la producción disminuirá. En algunos campos se inyecta calor o 

productos químicos para cambiar las propiedades del petróleo y volverlo menos denso, para que fluya 

más fácilmente. Esta estrategia se conoce como recuperación terciaria (COT, 2007). 

 

Durante la recuperación primaria se puede extraer aproximadamente el 10% de las reservas totales del 

campo. Se puede obtener otro 30% de la recuperación secundaria y hasta otro 30% mientras de la 

recuperación terciaria. Esta última, sin embargo, normalmente no se lleva a cabo ya que implica una 

inversión considerable y una alta incertidumbre (COT, 2007). 

 

El descubrimiento de nuevas fuentes de hidrocarburos durante las últimas décadas no ha sido suficiente 

para remplazar las reservas actuales (Alvarado y Manrique, 2010). Según Alvarado y Manrique (2010) 

la mayor parte de la producción actual de petróleo, o al menos el 50%, proviene de yacimientos 

maduros; debido a la disminución de nuevos descubrimientos importantes sobre el terreno, el lugar más 

probable para encontrar más petróleo son los lugares en los que ya se ha encontrado antes. Por lo tanto, 

debe aplicarse nuevas técnicas para extraer la mayor cantidad posible de aceite. Estas técnicas se 

conocen como Recuperación Mejorada de Petróleo (EOR: Enhanced Oil Recovery). 
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En 2010 la Secretaría de Energía y Conacyt lanzaron la convocatoria de un proyecto para investigar el 

uso de técnicas de inteligencia artificial para apoyar una recuperación óptima de petróleo en campos 

maduros. La idea básica era aprovechar las grandes cantidades de datos que Pemex Exploración y 

Producción ha obtenido en sus años de operación. 

 

Los autores de este artículo, en colaboración con colegas del INAOE, desarrollaron el modelo de 

selección de pozos (FSCS-H, 2013). Este modelo permite la toma de decisión de acciones de 

intervención de pozos que optimicen la producción de petróleo. Para ello, separaron el problema en dos 

fases. Primero, la generación de mapas de interconexión entre pozos, y segundo el diseño de un sistema 

de toma de decisiones basado en ese mapa de interconexión. Para la primera fase utilizaron redes 

bayesianas y para el segundo utilizaron los diagramas de influencia. Se desarrollaron ambas fases del 

proyecto y se probaron con los mismos datos históricos de Pemex. Sin embargo, la validación en 

campo implica la realización de otro proyecto, lo cual no ha ocurrido hasta la fecha. El proyecto se 

realizó y entregó a Pemex quienes expresaron su interés en llevar esta propuesta a un siguiente paso de 

trabajo en campo. 

 

El propósito de este artículo es describir el desarrollo del proyecto para Pemex de manera que se 

puedan discutir las similitudes y diferencias que existen entre los campos petroleros y los campos 

geotérmicos. Con base en esas diferencias se pueden discutir las adecuaciones necesarias para pozos 

geotérmicos y se puede proponer un proyecto de investigación para el diseño de un modelo de 

selección de pozos geotérmicos. 

 

Este artículo se organiza de la forma siguiente. La siguiente sección describe brevemente las bases de 

los métodos gráficos probabilísticos utilizados en este proyecto: las redes bayesianas y los diagramas 

de influencia. La sección 3 describe la construcción de mapas de interconexión de pozos utilizando 

algoritmos de aprendizaje automático de redes Bayesianas. La sección 4 utiliza los mapas definidos y 

los convierte en diagramas de influencia para la selección óptima de acciones o decisiones en la 

intervención de pozos. La sección 5 discute los resultados obtenidos en el proyecto para Pemex y 

apunta las directrices para la aplicación de estas técnicas en pozos geotérmicos. Finalmente, la sección 

6 concluye el artículo. 

 

2. Modelos gráficos probabilistas 

 

En esta sección se introducen las bases de las redes bayesianas y los diagramas de influencia utilizados 

en el proyecto. 

 

Las redes bayesianas son grafos acíclicos dirigidos G=(N,V) donde N es un conjunto de nodos y V un 

conjunto de arcos o vértices (Judea, 1988). El grafo G representa la relación probabilista entre las 

variables de una aplicación. Los nodos representan las variables y los arcos representan la relación 

probabilista entre ellos. Esa relación sigue a la fórmula del teorema de Bayes como se puede ver en la 

Figura  1. 

 

El nodo destino del arco (evidencia) es probabilísticamente dependiente del nodo origen (hipótesis). Su 

relación se describe en la matriz de probabilidad condicional del nodo hijo dado los valores del nodo 

padre. Entonces, para calcular la probabilidad de la hipótesis, por ejemplo fiebre dado infección 

P(H|E), se utiliza la probabilidad de fiebre conociendo que existe infección P(E|H). 
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Figura  1. Ejemplo de red Bayesiana elemental. Se puede apreciar la correspondencia entre el grafo y el 

Teorema de Bayes. 

 

Por lo tanto, para codificar el conocimiento que se tiene de algún proceso se requiere que se forme el 

modelo con los siguientes ingredientes: 

 

a) La estructura de la red donde se codifiquen las dependencias y las independencias entre 

variables (conocimiento cualitativo), y 

b) Los parámetros, formados por las matrices de probabilidad condicional de los nodos hijos, 

dados sus padres y los vectores de probabilidad a priori de los nodos raíz (conocimiento 

cuantitativo). 

 

La Figura  2 muestra un ejemplo de red Bayesiana formada por 5 variables. En ella se muestra una 

relación probabilista de la variable t dado m. Las redes bayesianas muestran también relaciones de 

independencia. Por ejemplo, la ausencia de arcos implica una independencia entre la variable g y la 

variable p (Russel and Norvig, 2002). 

 

 

Figura  2. Ejemplo de red Bayesiana de cinco variables 

 

Una restricción importante en las redes bayesianas es que fueron creadas para utilizarse con variables 

discretas, es decir, aquellas que pueden tener un número finito de valores diferentes. Aunque hay 

algunos esfuerzos para utilizar redes bayesianas con señales continuas, en este proyecto se utilizó la 

𝑃 𝐻 𝐸 =
𝑃 𝐸 𝐻 𝑃 𝐻 

𝑃 𝐸 
 

Hipótesis 

Evidencia 

P(E|H) 

P(H) 
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discretización de los valores continuos de producción o inyección. Por discretización se entiende la 

traducción de los valores continuos en un número finito de intervalos de valores. 

 

Hay tres formas de definir la estructura de una red bayesiana: 

 

a) Definición de las dependencias e independencias por parte de un experto humano en el tema. 

b) Con base en datos históricos de las variables participantes, utilizando alguno de los múltiples 

algoritmos de aprendizaje automático (Neapolitan, 2004). Estos algoritmos pertenecen a las 

técnicas de aprendizaje de máquina (machine learning) o de minería de datos (data mining). 

c) Una combinación de los anteriores. Muchos algoritmos permiten la colaboración de expertos en 

la formación de los modelos. 

 

Cabe señalar los intensos esfuerzos de la comunidad internacional de inteligencia artificial para 

desarrollar algoritmos de aprendizaje más robustos y más eficientes, tomando en cuenta la gran 

cantidad de datos disponibles en la mayoría de las aplicaciones. 

 

La utilización de los modelos en forma de redes bayesianas consiste en la adquisición de los valores de 

algunas variables. Estas se introducen al modelo y se realiza entonces el cálculo de las probabilidades a 

posteriori de las variables consideradas como hipótesis. Este proceso se conoce como inferencia 

probabilista (FSCS-H, 2013). Consiste en propagar la información conocida y con los parámetros 

definidos en el modelo se calcula el vector de probabilidad de ocurrencia de las variables no definidas. 

Por ejemplo, en una red bayesiana de diagnóstico médico se introducen los síntomas detectados en el 

paciente (temperatura corporal, dolores, análisis) y se calcula la probabilidad de tener alguna de las 

enfermedades modeladas en la red. 

 

La otra técnica de la presente propuesta son los diagramas de influencia (Judea, 1988; Howard and 

Matheson, 1984). Los diagramas de influencia son una extensión de las redes bayesianas y se utilizan 

para el soporte de expertos en la toma de decisiones que involucren incertidumbre. Se forma de una red 

bayesiana adicionada con los siguientes dos tipos de nodos: 

 

1. Nodo de decisión. Los valores que puede tomar este nodo son las decisiones que el experto 

puede tomar. Los arcos que ingresan a este nodo representan la información que el experto debe 

conocer al tomar la decisión. Se representan con un rectángulo en los modelos. 

2. Nodo de utilidad. Calcula el valor de utilidad que se logra al tomar una decisión. Los arcos que 

ingresan a este nodo representan la información necesaria para calcular una utilidad. Debe ser 

un valor numérico. Se representan con un rombo en los modelos. 

 

La inferencia en estos diagramas consiste también en asignar valores a los nodos probabilistas 

conocidos, asignar el valor al nodo de decisión y calcular la utilidad de esa decisión. Con esto se puede 

lograr la selección de la decisión óptima, dada la información actual en un proceso o aplicación (Judea, 

1988; Russel and Norvig, 2002). La Figura  6 muestra más adelante un ejemplo de diagrama de 

influencia. 

 

3. Construcción de mapas de conectividad 

 

En esta sección se presenta el método propuesto para construir mapas de interconexión entre pozos, 

utilizando el mecanismo de las redes bayesianas. 
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La idea central de esta propuesta se basa en la suposición de que los datos históricos de inyección y 

producción de pozos pueden identificar la interconexión que puede haber entre ellos. Es decir, 

analizando la historia de cuándo se han intervenido los pozos inyectores y revisando los cambios en la 

producción de otros pozos, se puede inferir que hay cierta probabilidad de que exista interconexión 

entre ellos. Contando con suficiente información y con los algoritmos mencionados de aprendizaje de 

modelos, se puede lograr un modelo equivalente a la interconexión de pozos. 

 

A manera de ejemplo, supóngase un trozo de base de datos como la mostrada en la Figura 3. 

 

 

Figura 3. Segmento de la base de datos del archivo con producción del pozo Q_2B y la intervención en pozos de 
inyección. 

 

La Figura 3 muestra la selección de la base de datos de un pozo productor (Q_2B) con todos los pozos 

inyectores. Las celdas marcadas con NaN (Not a Number) indican que no existe un número válido en la 

captura de ese parámetro. Cabe señalar también que cada renglón de la tabla representa el reporte de 

producción mensual. 

 

Al aplicar el algoritmo de aprendizaje PC (Spirtes et al., 2000) se aprende la relación entre un pozo 

productor y n pozos inyectores. Repitiendo este procedimiento para los m pozos productores, se genera 

un arreglo mxn como el mostrado en la Figura 4. Nótese que de los cerca de 20 pozos involucrados en 

el aprendizaje, sólo se encontró posible interconexión entre los pozos Inyectores Iny_800 e Iny_600 

con el pozo productor Q_2C y entre los inyectores Iny_600 e Iny_4 con el productor Q_2B. Los demás 

se consideran aislados con este método. 

 

La estructura de la red bayesiana representa la detección realizada con este método del mapa de 

interconexión entre los pozos del campo considerado. Nótese que se restringe el método para la 

interconexión únicamente entre pozos productores e inyectores, pero no entre los del mismo tipo. 

 

 

Q_2B Iny_4 Iny_521 Iny_523 Iny_109 Iny_600 Iny_654 Iny_121 Iny_466 Iny_107 Iny_120 Iny_517 Iny_800

96413.12 NaN NaN NaN 445.01 NaN NaN NaN NaN NaN NaN NaN NaN

99168.769 NaN NaN NaN 577.87 NaN NaN NaN NaN NaN NaN NaN NaN

95984.142 NaN NaN NaN 479.11 NaN NaN NaN NaN NaN NaN NaN NaN

99365.646 NaN NaN NaN 618.15 NaN NaN NaN NaN NaN NaN NaN NaN

99359.985 NaN NaN NaN 447.56 NaN NaN NaN NaN NaN NaN NaN NaN

92678.747 NaN NaN NaN 402.62 NaN NaN NaN NaN NaN NaN NaN NaN

93517.833 NaN NaN NaN 436.86 NaN NaN NaN NaN NaN NaN NaN NaN

90515.616 NaN NaN NaN 422.01 NaN NaN NaN NaN NaN NaN NaN NaN

62841.503 NaN NaN NaN 418.55 NaN NaN NaN NaN NaN NaN NaN NaN

NaN NaN NaN NaN 108.84 NaN NaN NaN NaN NaN NaN NaN NaN

NaN 423.98 806.6 1046.61 NaN 854.14 NaN NaN 95.44 131.47 NaN NaN 211.42

NaN 580.83 580.83 NaN NaN 896.31 NaN NaN 124.05 133.24 NaN NaN 508.23

NaN 659.98 659.98 NaN NaN 938.75 NaN NaN 129.56 9.61 NaN NaN 525.73

NaN 635.96 635.96 NaN NaN 1007.79 NaN NaN 113.78 0 NaN NaN 502.53

NaN 650.4 650.98 NaN NaN 1055.27 NaN NaN 106.82 0 NaN NaN 513.53

NaN 767.9 1267.26 NaN NaN 1072.88 8.58 1.67 75.15 0 NaN NaN 561.35

NaN 1082.96 1082.96 NaN NaN 577.65 263.04 51.04 78.51 0 NaN NaN 357.8

NaN 485.53 1209.96 NaN NaN 681.1 327.36 63.53 97.72 0 68.7 21.24 386.08

NaN 0 1145.18 NaN NaN 629.33 138.98 26.96 43.26 0 266.33 254.13 832.19

NaN 0 1249.95 NaN NaN 590.39 413.8 80.24 123.49 97.53 158.57 32.54 339.3

NaN 0 1128.16 NaN NaN 355.17 421.42 81.78 125.79 NaN 306.77 63.26 588.63

NaN 0 1095.12 NaN NaN 262.21 284.71 55.24 84.98 NaN 239.18 66.69 441.61

NaN 603.16 1246.47 NaN NaN 346.67 59.98 11.65 691.8 NaN 42.57 43.91 986.15

NaN 1136.9 1136.9 NaN NaN 321.64 NaN NaN 577.12 NaN NaN NaN 924.2

NaN 1237.5 1237.5 NaN NaN 252.99 NaN NaN 487.3 NaN NaN NaN 671.02

NaN 1187.64 1187.64 NaN NaN 326.02 NaN NaN 685.4 NaN NaN NaN 898.264

NaN 1231.81 1231.81 NaN NaN 249.06 NaN NaN 454.99 NaN NaN NaN 588.53

NaN 1224.92 1224.92 NaN NaN 334.14 NaN NaN 685.21 NaN NaN NaN 917.688
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Figura 4. Ejemplo de red bayesiana representando el mapa de interconexión entre pozos inyectores y 
productores. 

 

Una vez logrado el mapa de interconexión, se transforma la red Bayesiana en diagrama de influencia 

para el soporte a la toma de decisiones. La siguiente sección explica este procedimiento. 

 

4. Diagramas de influencia para la decisión óptima de intervención de pozos 

 

Como se mencionó anteriormente, los diagramas de influencia son un mecanismo de soporte a la toma 

de decisiones en presencia de incertidumbre. Permiten calcular la utilidad de cada decisión posible en 

presencia de incertidumbre y con ello se puede obtener la decisión óptima. 

 

La metodología para convertir una red bayesiana en un diagrama de influencia consiste en los 

siguientes pasos. 

 

Paso 1: Convertir los nodos probabilistas de pozos inyectores en nodos de decisión. Esto es porque las 

decisiones que se tomarán utilizando esta metodología serán la cantidad de inyección a ciertos pozos. 

Partiendo del mapa de la Figura 4, se genera un diagrama como el mostrado en la Figura  5. 

 

 

Figura  5. Conversión de los nodos de pozos inyectores en nodos de decisión. Los valores de estos nodos 
permanecen. 
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Paso 2: Aumentar nodos de utilidad. Se requiere un nodo de utilidad por cada nodo de pozo productor. 

Insertar un arco entre el nodo de pozo productor y el nodo de utilidad, así como otro arco entre el nodo 

de decisión y el nodo de utilidad a fin de completar lo mencionado anteriormente. Los arcos entrando a 

los nodos de utilidad representan la información necesaria para calcular la utilidad. En este caso, cuánto 

se inyectó al pozo inyector y cuanto se produjo en el pozo productor. 

 

Paso 3: Configurar los nodos de utilidad. Definir una ecuación que contenga la decisión tomada y la 

producción lograda. La Figura  6 muestra el ejemplo seguido en este artículo. 

 

 

Figura  6. Diagrama de influencia resultante. 

 

Para la configuración de los nodos de utilidad en el proyecto para Pemex se propusieron las siguientes 

dos métricas de la ganancia: 

 

a) Ganancia relativa. Para cada pozo inyector i, calcular la ganancia de cada pozo productor q con 

la siguiente ecuación: 

𝐺𝑞𝑖 =
𝑄 ×  𝑝𝑟𝑒𝑐𝑖𝑜 𝑝𝑒𝑡𝑟ó𝑙𝑒𝑜 

𝐼 ×  𝑝𝑟𝑒𝑐𝑖𝑜 𝑔𝑎𝑠 𝑖𝑛𝑦𝑒𝑐𝑡𝑎𝑑𝑜 
 

b) Ganancia absoluta. Para cada pozo inyector i, calcular la ganancia de cada pozo productor q con 

la siguiente ecuación: 

𝐺𝑞𝑖 = 𝑄 ×  𝑝𝑟𝑒𝑐𝑖𝑜 𝑝𝑒𝑡𝑟ó𝑙𝑒𝑜 − 𝐼 ×  𝑝𝑟𝑒𝑐𝑖𝑜 𝑔𝑎𝑠 𝑖𝑛𝑦𝑒𝑐𝑡𝑎𝑑𝑜  

 

Estas ecuaciones representan la relación entre la ganancia en dólares de la producción, con el costo en 

dólares de la inyección de algún gas (gas natural/nitrógeno). El precio del petróleo es en dólares por 

barril, mientras que el precio del gas inyectado es en dólares por metro cúbico. 

 

Para calcular la ganancia total lograda por un pozo inyector j, se calcula: 

 

𝑈𝑗 = 𝑚𝑎𝑥𝐼𝑖 [𝑃𝑖 (∑𝐺𝑞𝑖

𝑞

𝑃(𝑄𝑞))] 

 

Donde q es el intervalo del nodo de producción, i es el intervalo del nodo de inyección, P(Qq) es la 

probabilidad asociada al estado q del productor Q. 
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Finalmente, la utilidad total será: 

𝑈𝑡𝑜𝑡𝑎𝑙 = ∑𝑈𝑗

𝑗

 

 

Donde j son los nodos de utilidad correspondientes a cada nodo de decisión de inyección. 

 

La Figura  7 muestra un ejemplo de los diagramas de influencia logrados en el proyecto de Pemex. 

 

 

Figura  7 Ejemplo de diagrama de influencia construido para un campo petrolero. 

 

Nótese que en el ejemplo de Pemex se encontraron únicamente 4 pozos inyectores con influencia en los 

demás pozos productores. De hecho, se identificaron conjuntos aislados de pozos 

inyectores/productores como se puede apreciar en la Figura  7. 

 

5. Discusión 

 

La propuesta presentada en este artículo fue desarrollada utilizando datos históricos de intervenciones y 

producciones de pozos en un campo productor de petróleo. Los experimentos realizados se refieren a 

corridas del sistema donde se identifica la decisión óptima que el personal de Pemex debería ejecutar 

para maximizar la producción. 

 

Sin embargo, no se llevó a cabo la realización de estos experimentos en campo por restricciones 

propias de la empresa. Serían necesarios datos más recientes de los pozos de un campo, del historial de 

las intervenciones, del estado de los pozos (cerrados por ejemplo) para poder sugerir las acciones 

óptimas. Después de eso, validar los resultados con tiempos de respuesta de meses. 

 

Se espera poder tener la oportunidad de probar estas técnicas, ya sea en un campo petrolero o un campo 

geotérmico. 
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Por lo pronto, se reconocen las siguientes actividades para la adopción de esta tecnología al ambiente 

geotérmico: 

 

 Analizar el caso de pozos geotérmicos para identificar las similitudes con el caso petrolero. En 

caso de requerir adecuaciones, hacer una propuesta para el caso geotérmico. 

 Adquirir datos históricos de algún campo geotérmico para ser capaces de repetir toda la 

metodología para el caso. 

 Identificar si existe alguna forma de validar los mapas de interconexión en el caso geotérmico. 

 Cambiar las ecuaciones de las métricas de utilidad al caso geotérmico. Probablemente se 

utilicen kilowatts generados o el precio de venta del kW generado. 

 Revisar la correspondencia entre inyección y diferencia de producción al momento. 

 Medir el retraso típico en cada campo. 

 

Los dos últimos puntos se refieren a la suposición de relacionar los datos sobre intervención del pozo 

con la información de producción en el mismo momento. Suena razonable considerar que hay un 

tiempo de retraso entre la intervención en un pozo y los efectos en otros. Se requiere medir ese retraso 

en el caso geotérmico. De la misma manera, la evaluación de la utilidad considera actualmente la 

producción al momento de la inyección. Se requiere entonces un ajuste necesario en la ganancia de 

producción, fruto de la inyección después del retraso medido. 

 

6. Conclusiones 

 

Este artículo presenta los resultados de un proyecto realizado para campos petroleros sobre el uso de 

técnicas de inteligencia artificial para el tratamiento de pozos maduros. Las técnicas utilizadas son 

modelos gráficos probabilistas, específicamente redes bayesianas y diagramas de influencia. 

 

El modelo de selección de pozos partió de grandes cantidades de datos históricos de producción e 

intervención de pozos en campos maduros. Es una propuesta novedosa, relativamente fácil de 

implantar y que se considera que puede aportar dividendos importantes en la producción de petróleo. 

 

Se considera posible aplicar las mismas técnicas en pozos de campos geotérmicos, por lo que se 

analizarán las opciones para validarlas. 
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