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Resumen

Los modelos matemáticos, los métodos numéricos y la computación conforman la infraestructura profunda de la ciencia y la ingeniería. En

este contexto el modelado matemático es una herramienta muy poderosa para estudiar sistemas complejos naturales, de ingeniería y hasta

la misma sociedad humana. Este trabajo contiene una visión general de cómo resolver y aplicar modelos prácticos que van desde simples

fórmulas algebraicas hasta ecuaciones fundamentales en Derivadas Parciales (EDP) al modelado de diversos fenómenos que se presentan

en reservorios geotérmicos poroelásticos. Las capacidades gráficas programables y el alto nivel de cómputo del software llamado Mathemat-

ica (versión 7) son extremadamente útiles para la investigación práctica sobre el flujo de masa y energía en medios porosos deformables.

Estos sistemas se presentan junto con procesos de mecánica de sólidos, vibraciones, transferencia de calor y flujo de fluidos en rocas

porosas, que pueden ser modelados con EDP y resueltos con programas hechos a la medida en Mathematica.  Los modelos son EDP

clásicas, elípticas, parabólicas e hiperbólicas, o una mezcla de ellas. Estas EDP y las principales técnicas de solución son descritas en este

trabajo en forma breve y heurística. Muestro que es posible comprender los complicados fenómenos naturales acoplados en reservorios

geotérmicos y adquirir al mismo tiempo técnicas de modelado con EDP resolviéndolas utilizando Mathematica. Esta técnica abarca un gran

grupo de diversas aplicaciones importantes, incluyendo la exploración de recursos naturales como son los acuíferos, la energía geotérmica,

los yacimientos de petróleo y gas, así como la explotación de estos recursos. 

Abstract

Mathematics is a universal language of both science and engineering. Differential equations, mathematical modeling, numerical methods,

and  computation  form the  deep  infrastructure  of  sciences  and  engineering.  In  this  context  mathematical  modeling  using  Mathematica

(Wolfram Inc. version 7) is a very powerful tool for studying natural systems, and for applications to geothermal engineering. This paper

contains a comprehensive overview of how to apply and solve practical models from simple algebraic formulae up to fundamental Partial

Differential  Equations  (PDE)  applied  to  coupled  phenomena  in  non-isothermal  poroelastic  aquifers.  The  graphical  and  computational

programmable capabilities  of  Mathematica  are extremely useful  for  doing research and learning about  the flow of  mass and energy in

deformable porous media. These systems exhibit coupled processes of solid mechanics, heat transfer, fluid flow and solute transport in

pores that can be modeled with fundamental PDE and solved with Mathematica. These basic PDE are all classical and range from elliptic,

parabolic  and hyperbolic type, to a mixture of them. It  is  therefore possible to provide simultaneously  an understanding of  complicated

coupled phenomena and their modeling with PDE by gradually approaching their solutions using Mathematica.  This research technique

covers  a  diverse  group of  very important  applications,  including  natural  resources  exploration  and exploitation  of  water  resources  and

geothermal and petroleum reservoirs. 



Introduction

This is an applied research project in progress. In the next sections, a brief introduction to the general theory of groundwater flow in non-

isothermal  deformable  aquifers  as  PDE models  is  presented.  At  the same time we outline  the main  classical  techniques  to  solve  the

simplified  PDE. A didactic,  self-contained Mathematica  notebook programing these methods is  included with practical  examples.  These

codes will be free and available in the author's web page ( http://www.fismat.umich.mx/~marioc/ ).

Modeling non-isothermal aquifers

Mathematical and numerical modeling is the process of obtaining approximate solutions to problems of scientific and/or engineering interest.

There is an explosively growing enthusiasm in numerical modeling in general and in particular physical processes and its expansion to ever

more sophisticated multi-physics to model coupled phenomena. The groundwater flow in non-isothermal aquifers is an example of complex

coupled processes. The water and energy problems existing today can be explained using well founded mathematical theories and numeri-

cal tools that lead to modeling and solving them. The present knowledge on this matter provides a thorough understanding of the basic

physical laws of the flow of fluids in poroelastic rocks under non-isothermal conditions. 

The two main partial differential equations representing non-isothermal aquifers are the fundamental groundwater flow equation (1) and the

general heat flow equation with conduction and convection (2). If there is a solute or contaminant substance included in the moving fluid, a

third PDE is needed to model the solute transport (3). If there are waves or vibrations crossing the porous medium, a fourth PDE is needed

to model these waves (4): 

t  f    f

f
K pf  f g  qf

 1 General groundwater flow PDE 

 cp t T   KT T    cp T v  qH
 2 Heat conductionconvection PDE 

 t C    D C    C v  CS qV
 3 Diffusion dispersionadvection PDE 

1

 v2
t,tp   

1


  p  qS  4 General Wave PDE 

Where j  [ad] is porosity; f  [kg/m3] is fluid density;  f  [Pa·s] is fluid dynamic viscosity;  K [m2] is the absolute permeability tensor;
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pf  [Pa/m] is the fluid pressure gradient; g [m/s2] is the vector of gravity acceleration and qf  [kg/s/m3] represents a source ( > 0 ) or

sink ( < 0 ) term in the PDE (1). In the PDE (2) r is the density of the medium; cp [J/kg/°C] is the  isobaric rock specific heat capacity; T

[°C] is the temperature; KT  [W/m/°C] is the rock thermal conductivity tensor; v [m/s] is the vectorial fluid velocity, and qH  [W/m3] is the

volumetric heat generation (or extraction). In the PDE (3) the scalar function C (x, y, z, t) is the solute concentration [moles/m3]; the diffusion

matrix D contains the eigenvalues DX , DY , DZ   [m2/s] or dispersion coefficients of the solute transport; v is Darcy’s velocity; the term CS  is

the solute concentration in the source fluid, and qV  [m3/m3/s] is the volume flow rate per unit volume of the source or sink in the aquifer. In

the PDE (4) p represents pressure; v is the wave velocity; r is the density of the medium, and qS [Pa·m2/kg = m/s2] is a source term. These

PDE are parabolic, hyperbolic or of ellitic type (if t= 0). The first three PDE are known as diffusion equations (1-hydraulic, 2-thermal, 3-

solute). The PDE (4) is the wave equation. They include several simpler models in one, two or three spatial dimensions. If the phenomenon

they represent does not depend on time, they are called stationary  and their partial derivatives with respect to time become zero. In this

case, the same equations become of elliptic type and are called Laplace PDE or Poisson PDE. 

Deformable Reservoirs

 Rock compaction,  fracturing, time dependent deformations, as well  as creep and subsidence mechanisms are essentially produced by

volcanic and tectonic activities, by lithostatic pressure and by fluid extraction/injection. Water contained in a rock, reduces its strength. The

cohesive structure of rocks is weakened by the presence of a liquid. All the geomechanical parameters are influenced by this cohesion and

are directly affected by the pressure and amount of liquid present in both pores and fractures. This is generally called the pore-fracture-water

effect.  In saturated rocks density and wave propagation speed are increased,  while strength is  reduced. In aquifers and in geothermal

reservoirs,  the different  values in rock parameters are determined by the amount of liquid water, porosity f,  permeability, pressure and

temperature. Compared with steam or with air, liquid water is almost incompressible, and this property tends to reduce both rock deformation

and stiffness.  The main theoretical part and background of this subject,  was published in a previous issue of Geotermia Vol. 23, No. 2

(Suárez Arriaga, 2010).

Linear poroelastic theory

Fluid extraction from natural reservoirs of water, hydrocarbons or energy, causes the reduction of the internal pore-fracture pressure and of

the effective aperture of pores and fissures. The main hypothesis in linear poroelasticity is that the fluids flow through a deformable porous

rock whose solid skeleton can be deformed elastically (Biot, 1941). Assuming that rocks are only subjected to small deformations, Hooke’s

law can be applied to relate strains eij  and stresses sij.  We define a symmetric two-order tensor sT  in four dimensions (Suárez, 2010),

represented by a (4ä4) matrix, which includes the bulk stress tensor sB  acting in the porous rock and the fluid stress sF  acting in the fluid

filling up the pores, both influencing the bulk rock deformation. Let ui  be the three components of the displacement vector for the material

particles forming the porous rock:

T  B  F 

X xy xz 0

xy Y yz 0

xz yz Z 0

0 0 0 f



B

U 0 0 0
0 U 0 0
0 0 U 0
0 0 0 C

 2 G

X xy xz 0

xy Y yz 0

xz yz Z 0

0 0 0 0

 

C 0 0 0
0 C 0 0
0 0 C 0
0 0 0 M

5

Equation (5) is the general PDE of linear poroelasticity, where:
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 
C

M
B 

pf

M
; ij 

1

2

ui

xj

uj

xi
;

i  ii 
ui

xi
; i, j  1, 2, 3;

x1  x
x2  y
x3  z

6

sij  are  the six  applied  stresses  in  [Pa];  eij  are  the six  strains  [ad],  describing  the global  elastic

response of the rock. Coefficients lU, G, M and C are defined as special poroelastic parameters

(see Suárez, 2010). The term eB = ekk represents the volumetric deformation (strain) of the rock, pf

is fluid pressure and z is a strain variable describing the volumetric deformation of the fluid relative
to the deformation of the solid grains. Applying the fundamental law of continuum mechanics to the
poroelastic rock (Newton's second law), we obtain the partial differential equations for the variation
of the fluid content z: 

      
2

2 0;  , , , i
i U i

u
G u G C F i j x y z

i j i

  
       

  
         (7a) 

Using equation (5) and the relationship between the undrained ( lU) and drained Lame coefficients:

l = lU  - C b, we obtain the corresponding group of partial differential equations for the fluid pres-

sure: 

 
   

2
2 0;  , , , fi

i i

pu
G u G b F i j x y z

i j i



      

  
            (7b) 

The fluid pressure pf  and the variation of the fluid content z are related through a simple diffusion

partial differential equation when the gravity gradient is neglected (Bundschuh and Suarez, 2010): 

  2
f

f

k
p

t





 


           (8)
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Linear thermo-poroelastic equations

For non-isothermal processes occurring in the aquifer, we need to extend the previous theory when
the temperature changes with time. We define the functions gS, hS, and SS, as the volumetric Gibbs

potential, the volumetric enthalpy and the volumetric entropy of the skeleton respectively. gS(eij, pf ,

T) is the thermoporoelastic available enthalpy per unit volume [J/m3]. We define the energy dissipa-
tion function as yS(eij, sij, SS, T, p, j, gS) in the skeleton. Using the Gibbs potential, the stresses, the

porosity, the pore pressure and the density of entropy per unit volume of porous rock yS  is such

that: 

 
0ijS S

ij S

dd dgd T dp
 = S

d t d t d t d t d t


 

    (9)

Assuming that there is no energy dissipation in the porous rock (dyS/dt = 0) and for small changes in the rock, the Gibbs’ potential describes

the behavior of the skeleton. We deduced (Bundschuh and Suarez, 2010; Suárez, 2010) the thermoporoelastic  matrix equations, which

include the thermal tensions in the total stress tensor: 

T  Bulk  Fluid  thermal 



x xy xz 0

xy y yz 0

xz yz z 0

0 0 0 f

 B

 0 0 0
0  0 0
0 0  0
0 0 0 C

 2 G

x xy xz 0

xy y yz 0

xz yz z 0

0 0 0 0



p  p0

b 0 0 0
0 b 0 0
0 0 b 0

0 0 0 M
z-z0

pp0



KB T  T0

B 0 0 0
0 B 0 0
0 0 B 0

0 0 0
M 
KB

  f
10

Where l is the drained Lame modulus, KB is the bulk modulus, b =
M

C
 is the Biot-Willis (1957) coefficient, gB, gf and gf  are the bulk, pore and

fluid thermal expansivities respectively. Equation (10) includes all of the thermal stresses acting in the skeleton and in the fluid contained in

the porous rock. The extra terms sT
0 , z0, p0  and T0  represent the initial thermodynamic state of the porous rock at initial time t0  > 0. The

theory herein presented allows the approximate representation of compressible fluids migrating inside poroelastic rocks with non-isothermal

conditions under the hypothesis of small rock deformations (Biot-Hooke's linear model). All these PDE can be simplified to study specific

ideal  problems in  one or two dimensions,  for transient  or  for stationary situations.  In the next  sections we introduce the main  solution

methods of these simplified but fundamental PDE programmed in Mathematica version 7.
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Experimental parameters of Deformable Reservoirs

All geomechanical poroelastic parameters are influenced by the fluid pressure, temperature and amount of liquid present in both pores and

fractures. We need about 20 poroelastic parameters to compute accurately all the geomechanical properties of rocks. But only three of these

parameters are actually independent. Three basic parameters selected to constitute an experimental reference set were the drained bulk

compressibility CB, the expansion coefficient 1/H and the unconstrained specific  storage 1/R (Wang, 2000). However, it  is impossible to

compute all the coefficients of the theory using only these three poroelastic constants, because at least five mixed coefficients are necessary

for the whole poro-elastic coupling. A sufficient set of measured parameters is for example {E, G, f, KS, Kf }. With these moduli, we can

compute the full set of poroelastic coefficients (Bundschuh and Suárez, 2010).

Code for the computation of the poroelastic coefficients

This cell computes automatically all the experimental coefficients of linear poroelasticity knowing an experimental set of five basic coeffi-

cients: Young modulus, shear coefficient, compressibility of the solid phase, porosity and bulk modulus of water:

E0  9.66; G  4.2; KS  42.0; Kf  2.0;  BULK Modulus of water GPa 
  1787.0 106;   0.26; k  1.5 1012;

 
E0

2 G
 1; KB 

E0

3 1  2 
; WhileTrue,IfKBKS,Abort;

L 
2 G 

1  2 
; KB1  L 

2

3
G; b  1 

KB

KS
; KU  KB 

b2

Kf  b  KS
;

KU1  KB 
Kf


b2 1 

Kf

KS

b


 1

1

; H 
KB

b
; B 

1  KBKU
1  KBKS

; C0 
1

b
KU  KB;

M 
C0

b
; b1 

KU  KB
M

; R 
KB C0 B

KU  KB
; B1 

R

H
; KS1 

KB

1  b
; LU  KU 

2

3
G;

L1  LU  b C0; U 
3   b B 1  2 
3  b B 1  2 

; 1 
Kf

KS  Kf

KU

KS  KU


KB

KS  KB

1

;

2 
Kf

KS  Kf

KS

M 1  b B


b2

1  b
 b ; CD 

M LU  2 G  C02
LU  2 G

k


;

Print"Experimental POROELASTIC COEFFICIENTS:";
Print"Young modulus E GPa: ", E0; Print"Shear modulus G GPa: ", G;
Print"porosity : ", 100;
Print"solid modulus KS GPa: ", KS;
Print"fluid modulus Kf GPa: ", Kf; Print"KBKS  ", KBKS; Print" "
Print"COMPUTED POROELASTIC COEFFICIENTS:";
Print"Poisson modulus , U  ", , ", ", U;
Print"Lame moduli , 1, U  ", L, ", ", L1, ", ", LU;
Print"Bulk Modulus KB, KB1  ", KB, ", ", KB1, ", ";
Print"Undrained Bulk Modulus,KU, KU1  ", KU, ", ", KU1;
Print"Coefficient of Skempton B, B1  ", B, ", ", B1;
Print"Coefficients of Biot b,b1,C,M  ", b, ", ", b1, ", ", C0, ", ", M;
Print"Poroelastic Coefficients H, R  ", H, " ", R;
Print"Porosity confirmation 1,2  ", 1, ", ", 1002;
Print"Rigidity confirmation KS1  ", KS1;
Print"Diffusivity Coefficient CD  ", CD; Print" "
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Experimental POROELASTIC COEFFICIENTS:

Young modulus E GPa: 9.66

Shear modulus G GPa: 4.2

porosity : 26.

solid modulus KS GPa: 42.

fluid modulus Kf GPa: 2.

KBKS  0.109524

COMPUTED POROELASTIC COEFFICIENTS:

Poisson modulus , U  0.15, 0.316885

Lame moduli , 1, U  1.8, 1.8, 7.26818

Bulk Modulus KB, KB1  4.6, 4.6,

Undrained Bulk Modulus,KU, KU1  10.0682, 10.0682

Coefficient of Skempton B, B1  0.609915, 0.609915

Coefficients of Biot b,b1,C,M  0.890476, 0.890476, 6.14073, 6.89601

Poroelastic Coefficients H, R  5.16578 3.15068

Porosity confirmation 1,2  0.26, 26.

Rigidity confirmation KS1  42.

Diffusivity Coefficient CD  3.76831  109

 This cell computes some Thermoporoelastic coefficients 
  0.0018; b  0.3; B  0.9; B  5.0105; M  46.0105; U  5.075105;

KB  27.0109; KU  38.0109; dT  M  bB; dpTD  BKUM  bBb;
dpTU  BKBMb; dpTU0  KBU  Bb;
Print" Thermal coefficients: "; Print" "; Print"dT  ", dT;
Print"dpTD  ", dpTD; Print"dpTU  ", dpTU; Print"dpTU0  ", dpTU0;

Thermal coefficients:

dT  0.000015828

dpTD  1.80439  106

dpTU  67 068.

dpTU0  67 500.

Code for the computation of thermal properties of rocks 

The isobaric heat capacity and enthalpy of volcanic rocks in the range 20°C < T < 350°C can be approximated by the following polynomials.

The models are included in the Mathematica command Plot:
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In[26]:=

Plot976.6065  0.752854 T, T, 10.0, 360.0, Axes  True,

AxesLabel  "Temperature °C  ", "Heat Capacity Jkg°C ",
LabelStyle  DirectiveBold, FontFamily  "Times", 10

Out[26]=

100 150 200 250 300 350
Temperature °C 

1050

1100

1150

1200

1250

Heat Capacity Jkg°C

In[27]:=

Plot 238674.5  976.6065 T 
0.752854

2
T2 103, T, 10.0, 360.0,

Axes  True, AxesLabel  "Temperature °C  ", "Rock Enthalpy kJkg ",
LabelStyle  DirectiveBold, FontFamily  "Times", 10

Out[27]=

100 150 200 250 300 350
Temperature °C 

300

400

500

600

Rock Enthalpy kJkg

Thermodynamical properties of Geothermal Water

Codes for the computation of the thermal properties of water

Water  is  not  a simple  substance,  its  general  thermodynamic behavior  is  a very complex  subject.  The following graphic  shows the full

classical range of geothermal water without considering the effects of salts and gases (Bundschuh and Suárez, 2010):
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However,  it  is  possible  to  simplify  the water  complex  behavior  separating  its  full  thermodinamycal  domain  in  several  subregions.  This

technique including all the models developed were published by the editorial Taylor & Francis in a recent book (Bundschuh and Suárez,

2010). The following cells  compute automatically the density and enthalpy of  low-enthalpy liquid water. The models are included in the

Mathematica command Plot3D:

In[28]:=  This cell computes the water specific volume p,T in m3kg 
Plot3D999.8427563106  4.4888741108 p  4.6382459108 T  6.87175621010 p2

 2.49668921010 pT  3.9625548109 T2, p, 0.01, 100.0, T, 0, 150.0,
Axes  True, Mesh  None, ColorFunction  "SouthwestColors",

AxesLabel  "Pressure  bar  ", "Temperature  °C  ",

" Specific Volume ", LabelStyle  DirectiveBold, FontFamily  "Times", 10,
Ticks  0, 25, 50, 75, 100, Automatic, Automatic

Out[28]=
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In[29]:=

 This cell computes the water density p,T in kgm3 
Plot3D999.8427563106  4.4888741108 p  4.6382459108 T  6.87175621010 p2

 2.49668921010 pT  3.9625548109 T21, p, 0.01, 100.0, T, 0, 150.0,
Axes  True, Mesh  None, ColorFunction  "SouthwestColors",

AxesLabel  "Pressure bar ", "Temperature  °C  ",

" Density ", LabelStyle  DirectiveBold, FontFamily  "Times", 10,
Ticks  0, 25, 50, 75, 100, Automatic, Automatic

 Thermal Properties of water 

Out[29]=

In[31]:=

 This cell computes the liquid water enthalpy hp,T in kJkg 
Plot3D0.103703286  0.104535515 p  4.178354567 T  3.243701104 p2

 2.23906104 pT  9.70340105 T2, p, 0.0, 100.0, T, 0, 150.0,
Axes  True, Mesh  None, ColorFunction  "SouthwestColors", PlotLabel  None,

AxesLabel  "Pressure  bar  ", "Temperature  °C  ",

" Enthalpy ", LabelStyle  DirectiveBold, FontFamily  "Times", 10,
Ticks  0, 25, 50, 75, 100, Automatic, Automatic

 Thermal Properties of water 

Out[31]=
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The behavior of low enthalpy water is simplified at low temperatures, because its thermodinamical dependence on pressure is very small.

The following cells compute automatically the density and dynamic viscosity of low-enthalpy liquid water in the range [0, 250] °C. The models

are included in the Mathematica command Plot:

In[32]:=

 The cells compute water density as function of temperature T in kgm3 
Plot1000.0 1.0  8106  T  3.982, T, 0, 20.0,
Axes  True, AxesLabel  "Temperature  °C  ", "Density kgm3 ",
LabelStyle  DirectiveBold, FontFamily  "Times", 10

Out[32]=

5 10 15 20
Temperature  °C 

998.5

999.0

999.5

1000.0

Density kgm3

In[33]:=

Plot996.9 1.0  3.17104  T  25.0  2.56106  T  25.02, T, 10, 250.0,
Axes  True, AxesLabel  "Temperature  °C  ", "Density kgm3 ",
LabelStyle  DirectiveBold, FontFamily  "Times", 10

Out[33]=

100 150 200 250
Temperature  °C 

850

900

950

1000

Density kgm3
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In[34]:=

 The cells compute water viscosity as function of temperature T in Pas 
Plot103 1.0  0.015512  T  20.01.572, T, 0, 120.0,
Axes  True, AxesLabel  "Temperature  °C  ", " Viscosity 106 Pas ",
LabelStyle  DirectiveBold, FontFamily  "Times", 10

Out[34]=

0 20 40 60 80 100 120
Temperature  °C 

500

1000

1500

Viscosity 10-6 Pa◊s

In[35]:=

Plot24.1410
247.8

T133.5 , T, 50.0, 350.0,
Axes  True, AxesLabel  "Temperature  °C  ", " Viscosity 106 Pas ",
LabelStyle  DirectiveBold, FontFamily  "Times", 10

Out[35]=

100 150 200 250 300 350
Temperature  °C 

200

300

400

500

Viscosity 10-6 Pa◊s

The thermal conductivity of water as a function of temperature in low, medium and high enthalpy systems can be estimated with this formula

(103 W/m/°C)  in the range [0, 350] °C. The model is included in the Mathematica command Plot:
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In[36]:=

Plot922.47  2839.5
T  273.15

273.15
 1800.7

T  273.15

273.15

2

 525.77
T  273.15

273.15

3

 73.44
T  273.15

273.15

4

, T, 0.0, 350.0,

Axes  True, AxesLabel  "Temperature  °C  ", " Thermal Conductivity 103 Wm°C ",
LabelStyle  DirectiveBold, FontFamily  "Times", 10

Out[36]=

50 100 150 200 250 300 350
Temperature  °C 

500

550

600

650

Thermal Conductivity 103 Wm°C

The isobaric heat capacity of water in the range 0°C < T < 350°C is approximated by the following polynomials  (J kg/°C) in the range [0,

100] °C. The models are included in the Mathematica command Plot:

In[37]:= Plot1.3320081104 T3  0.0328405 T2  1.9254125 T  4206.3640128, T, 0.0, 100.0,
Axes  True, AxesLabel  "Temperature °C  ", " Heat Capacity Jkg°C ",
LabelStyle  DirectiveBold, FontFamily  "Times", 10

Out[37]=

20 40 60 80 100
Temperature °C 

4180

4185

4190

4195

4200

4205

Heat Capacity Jkg°C
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In[38]:=

Plot4187.6 3.3774  1.12665102 T  273.15  1.34687105 T  273.152, T, 100.0, 350.0,
Axes  True, AxesLabel  "Temperature °C  ", " Heat Capacity Jkg°C ",
LabelStyle  DirectiveBold, FontFamily  "Times", 10

Out[38]=

150 200 250 300 350
Temperature °C 

5000

5500

6000

6500

Heat Capacity Jkg°C

Code to compute the salinity of water (H2O + NaCl)

For the water density dependence on salinity we consider the following correlations, where Cm is the mass fraction of NaCl in [kg/kg] . They

are appropriate for aquifers at 20°C however, they could also be applicable approximately to low enthalpy systems The models are included

in the Mathematica command Plot:

In[39]:= Plot998.0Exp0.6923 Cm, Cm, 0.0, 0.5, Axes  True,

AxesLabel  "Salinity kgkg ", "Brine Density kgm3 ",
LabelStyle  DirectiveBold, FontFamily  "Times", 10

Out[39]=

0.1 0.2 0.3 0.4 0.5
Salinity kgkg

1100

1200

1300

1400

Brine Density kgm3

For the water density dependence on salinity Cm [kg/kg] and temperature [°C] a correlation is given by the following equation.It is appropriate

for cold aquifers at [20, 50] °C however, it  could also be applicable to low enthalpy systems The model is included in the Mathematica

command Plot3D:
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In[40]:=

Plot3D998.0 1.0  0.805 Cm  T  220.0 Cm  4.02 6.5106, Cm, 0.0, 0.7, T, 0, 100.0,
Axes  True, Mesh  None, ColorFunction  "SouthwestColors", PlotLabel  None,

AxesLabel  "Salinity  kgkg  ", "Temperature  °C  ",

" Density kgm3 ",
LabelStyle  DirectiveBold, FontFamily  "Times", 10,
Ticks  0, 25, 50, 75, 100, Automatic, Automatic

 Thermal Properties of water 

Out[40]=

Methods of Solution of fundamental PDE

Classical methods to solve the fundamental PDE

Modeling of groundwater flow and the transport of mass and heat in aquifers require solving partial  differential  equations or systems of

differential equations, with initial and boundary conditions. These equations, in their most general form, were introduced in the two previous

sections of this paper. In this section we mention the main methods currently used to solve the simplified forms of these PDE (Kythe et al,

2003).

1.- The method of separation of variables

This is one of the most efficient solution techniques for a certain class of PDE problems. It can be applied specifically to homogeneous PDE

with  homogeneous  boundary  conditions  and  to  initial  boundary  value  problems.  In  the  Mathematica  code  we  developed

(FundamentalPDE.nb), we show applications to the Laplace, heat and wave equations.

2.- The method of Eigenfunctions expansion

The separation of variables cannot be used when the PDE and/or the boundary conditions are not homogeneous problems. The eigenfunc-

tions expansion technique can be performed for non-homogeneous PDE with initial boundary value problems when the boundary conditions

are homogeneous or can be transformed to homogeneous. In the Mathematica  code we developed (EigenExpansionPDE.nb),  we show

applications to the Poisson, heat and wave equations.

SuarezArriaga_AGM_ 2010.nb  15



3.- Espectral Methods (Fourier, Galerkin)

When the separation of variables or the eigenfunctions expansion techniques cannot be used to solve more sofisticated PDE, the espectral

methods could be appropriate. Spectral Methods (SM) are high order techniques used to solve PDE either in their strong form or in their

weak form (see subsection 4, FEM). What sets spectral methods apart from others like finite difference methods (which start from the PDE

strong form) or finite element methods (which start from the weak form of the PDE) is that the solutions are approximated by high order

orthogonal functions expansions. To build any spectral code only a few fundamental algorithms for interpolation, differentiation, Fast Fourier

Transform and quadrature are needed, even for problems in complex geometries. In the Mathematica code we developed we show applica-

tions to the Poisson and diffusion equations.

4.- The Finite Element method (FEM)

The separation of variables and the eigenfunctions expansion techniques cannot be used when the PDE is non-linear, has variable coeffi-

cients, has non-homogeneous boundary conditions or when the boundaries geometry is of complicated nature. The Finite Element Method

(FEM)  is  the  most  used  numerical  technique  to  solve  approximately  mathematical  models  expressed  as  PDE with  arbitrary boundary

conditions and for almost any initial boundary value problem. The FEM can be understood easily as a specifically sophisticated interpolation

technique. The domain of the PDE is subdivided into a finite number of subdomains or elements of very simple geometry. The physical laws

of the problem are applied to each element. The unknown variable, supposed to be a continuous function, can be approximated by interpola-

tion functions in each element. For each one of these elements a matrix is obtained, which approaches the behaviour of the corresponding

region. The accuracy of this matrix approach depends upon the size and complexity of the finite elements. The unknowns are the discrete

values of the variable in the nodes linking the elements; all the elements are bound together to obtain a global matrix that represents the

whole domain. In the stationary case, this process leads to a set of simultaneous linear algebraic equations, or to an ordinary differential

system of equations in the transient case. In both cases, the solutions to these equations allow to approximate the unknown variable. The

same basic procedure can be applied to an immense variety of problems. In the Mathematica code we are developing (FEM_PDE.nb), we

will show applications to the Poisson, heat and wave equations.

The Method of Separation of Variables

The separation of variables can be used when the PDE and the boundary conditions are homogeneous or when the boundary conditions are

not homogeneous but they can be transformed into homogeneous. In this Mathematica code we show applications to the Poisson, heat and

wave equations.

 The Difussion equation

We consider the homogeneus difussion equation with homogeneus Dirichlet conditions:

tUx, t  k x,xUx, t
Ux, 0  x BC : U0, t  0
Utx, 0  x UL, t  0

We build the solution as we did for the wave equation:

1) U [ x, t ] = X [ x ] T [ t ]

Plugging 1) into the difussion equation:

T't
k Tt 

X''x
Xx  

Where l again must be a constant. Therefore we solve the next two ODEquations:
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T ' [ t ] = l k T [ t ]
X '' [ t ] = l X [ x ]

Where the solutions are:

Xx  C Cos  x  D Sin  x
Tt  A kt

Using the boundary conditions on X [ x ] we get:

C  0 and 0  D Sin  l, therefore n  n
L
2,

Xx  Sin n  x
L

 for n  1, 2, 3 ...

Once again we get an infinite number of Eigen- solutions for each n

Ux, t  
n1



An 
 n

L
2 Sin nt

L


Using now the initial conditions:

x  
n1



An Sin n  x
L



With the Fourier expansion of the Sin series, we multiply by Sin m  x

L
both sides of this equation:

x Sin m  x
L

  
n1



An Sinn  x
L

 Sinm  x
L



Then we integrate in the [0,L] interval


0

L

x Sin m  x
L

 x  
0

L


n1



An Sinn  x
L

 Sin m  x
L

 x


0

L

x Sin m  x
L

 x  
n1



An 
0

L

Sinn  x
L

 Sin m  x
L

 x

Observation: 


0

L

Sin n  x
L

 Sin m  x
L

 x  0 if n  m

Then:


0

L

x Sin n  x
L

 x  Am 
0

L

Sin n  x
L

2 x
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Therefore:

Am 
2

L

0

L

ax Sinm  x
L

 x

Finally, the solution of the difussion PDE is:

Ux, t  
n1



Am 
n

L
2 Sinnt

L


Solving the difussion PDE with Mathematica
Clear"Global`"
Print
Style"Difussion Equation with homogeneus boundary conditions:", 24, Bold

Print"tUx,tkx,xUx,t"
ax_  Input"IC for Ux,0", x;
Print"IC: Ux,0", x , " BC:U0,t0"
Print" ", " UL,t0"
Print""
c  Input"Introduce value of c", c;
L  Input"Introduce value of l", l;
Print"Am 

2

l

0

l

", ax, Sin m  x
L

, "x"

z 
2

L

0

L

ax Sin n  x
L

 x;

Print"Ux,t  
n1



", z 
n 

L
2 Sinn  t

L


Ux_, t_ : 
n1

20

z 
n 

L
2 Sin n  t

L


Difussion Equation with homogeneus boundary conditions:
tUx,tkx,xUx,t
IC: Ux,0x BC:U0,t0

UL,t0

Am 
2

l

0

l

1.  xSin3.14159 m xx

Ux,t  
n1

 2. 9.8696 n
2 0.31831 n  0.101321 Sin3.14159 n Sin3.14159 n t

n2
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Plot3DUx, t, x, 0, 10, t, 0, 10

The inhomogeneus Diffusion equation.

t ux, t  k x,xux, t  qx, t
u 0, t  u L, t  0
u x, 0  f x, 0  x  L

Initial conditions :

Clear"Global`"
k  1; L  1;

qx_, t_ : x Expt
fx_ : x  1
i  10;

Boundary conditions :

bc  ChoiceDialog"Condiciones de Frontera", "Dirichlet"  1, "Neuman"  2;

n_ : n PiL^2
x_, n_ : Ifbc  1, SinSqrtn x, CosSqrtn x

Do Qt  2 Integrateqx, t x, n, x, 0, L; a  2 Integratefx x, n, x, 0, L;
solnn  FlattenDSolvec't  n ct  Qt, c0  a, ct, t; ccn, t_  ct . solnn
, n, 0, i

ux_, t_ : Sumccn, t x, n, n, 0, i

ux, t
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Plot

Plot3Dux, t, x, 0, 1, t, 0, 10

1.4 The Poisson equation

The Poisson PDE (non-homogeneous Laplace Equation)

x,xux, y  y,yux, y  qx, y
u 0, y  u L, y  0, 0  y  M
u x, 0  f1 x, u x, M  f2 x, 0  x  L

Initial Conditions :

L  1; M  2;

qx_, t_ : Pi^2 SinPi x
f1x_ : 2 Sin3 Pi x
f2x_ : SinPi x
i  10;

Boundary Conditions :

bc  ChoiceDialog"Condiciones de Frontera en x", "Dirichlet"  1, "Neuman"  2;

n_ : n PiL^2
x_, n_ : Ifbc  1, SinSqrtn x, CosSqrtn x

Do Qy  2L Integrateqx, y x, n, x, 0, L; a1  2L Integratef1x x, n, x, 0, L;
a2  2L Integratef2x x, n, x, 0, L;
solnn  FlattenDSolvec''y  n cy  Qy, c0  a1, cM  a2, cy, y; ccn, y_  cy . solnn
, n, 1, i

ux_, y_ : Sumccn, y x, n, n, 0, i
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FullSimplifyux, y

$Aborted

Plot

Plot3Dux, y, x, 0, 1, y, 0, 1, PlotRange  All
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