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Resumen

Los modelos matematicos, los métodos numéricos y la computacion conforman la infraestructura profunda de la ciencia y la ingenieria. En
este contexto el modelado matematico es una herramienta muy poderosa para estudiar sistemas complejos naturales, de ingenieria y hasta
la misma sociedad humana. Este trabajo contiene una vision general de como resolver y aplicar modelos practicos que van desde simples
férmulas algebraicas hasta ecuaciones fundamentales en Derivadas Parciales (EDP) al modelado de diversos fendmenos que se presentan
en reservorios geotérmicos poroelasticos. Las capacidades graficas programables y el alto nivel de computo del software llamado Mathemat-
ica (version 7) son extremadamente utiles para la investigacion practica sobre el flujo de masa y energia en medios porosos deformables.
Estos sistemas se presentan junto con procesos de mecanica de solidos, vibraciones, transferencia de calor y flujo de fluidos en rocas
porosas, que pueden ser modelados con EDP y resueltos con programas hechos a la medida en Mathematica. Los modelos son EDP
clasicas, elipticas, parabdlicas e hiperbdlicas, o una mezcla de ellas. Estas EDP vy las principales técnicas de solucion son descritas en este
trabajo en forma breve y heuristica. Muestro que es posible comprender los complicados fenémenos naturales acoplados en reservorios
geotérmicos y adquirir al mismo tiempo técnicas de modelado con EDP resolviéndolas utilizando Mathematica. Esta técnica abarca un gran
grupo de diversas aplicaciones importantes, incluyendo la exploracion de recursos naturales como son los acuiferos, la energia geotérmica,
los yacimientos de petréleo y gas, asi como la explotacién de estos recursos.

Abstract

Mathematics is a universal language of both science and engineering. Differential equations, mathematical modeling, numerical methods,
and computation form the deep infrastructure of sciences and engineering. In this context mathematical modeling using Mathematica
(Wolfram Inc. version 7) is a very powerful tool for studying natural systems, and for applications to geothermal engineering. This paper
contains a comprehensive overview of how to apply and solve practical models from simple algebraic formulae up to fundamental Partial
Differential Equations (PDE) applied to coupled phenomena in non-isothermal poroelastic aquifers. The graphical and computational
programmable capabilities of Mathematica are extremely useful for doing research and learning about the flow of mass and energy in
deformable porous media. These systems exhibit coupled processes of solid mechanics, heat transfer, fluid flow and solute transport in
pores that can be modeled with fundamental PDE and solved with Mathematica. These basic PDE are all classical and range from elliptic,
parabolic and hyperbolic type, to a mixture of them. It is therefore possible to provide simultaneously an understanding of complicated
coupled phenomena and their modeling with PDE by gradually approaching their solutions using Mathematica. This research technique
covers a diverse group of very important applications, including natural resources exploration and exploitation of water resources and
geothermal and petroleum reservoirs.
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Introduction

This is an applied research project in progress. In the next sections, a brief introduction to the general theory of groundwater flow in non-
isothermal deformable aquifers as PDE models is presented. At the same time we outline the main classical techniques to solve the
simplified PDE. A didactic, self-contained Mathematica notebook programing these methods is included with practical examples. These
codes will be free and available in the author's web page ( http://www.fismat.umich.mx/~marioc/ ).

Modeling non-isothermal aquifers

Mathematical and numerical modeling is the process of obtaining approximate solutions to problems of scientific and/or engineering interest.
There is an explosively growing enthusiasm in numerical modeling in general and in particular physical processes and its expansion to ever
more sophisticated multi-physics to model coupled phenomena. The groundwater flow in non-isothermal aquifers is an example of complex
coupled processes. The water and energy problems existing today can be explained using well founded mathematical theories and numeri-
cal tools that lead to modeling and solving them. The present knowledge on this matter provides a thorough understanding of the basic
physical laws of the flow of fluids in poroelastic rocks under non-isothermal conditions.

The two main partial differential equations representing non-isothermal aquifers are the fundamental groundwater flow equation (1) and the
general heat flow equation with conduction and convection (2). If there is a solute or contaminant substance included in the moving fluid, a
third PDE is needed to model the solute transport (3). If there are waves or vibrations crossing the porous medium, a fourth PDE is needed
to model these waves (4):
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(* (1) General groundwater flow PDE «x)
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(# (2) Heat conduction-convection PDE *)
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Where ¢ [ad] is porosity; O £ [kg/m3] is fluid density; [lf [Pa-s] is fluid dynamic viscosity; K [m?] is the absolute permeability tensor;
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\Y P £ [Pa/m] is the fluid pressure gradient; g [m/s?] is the vector of gravity acceleration and ds [kg/s/m®] represents a source (>0 ) or
sink (< 0) term in the PDE (1). In the PDE (2) 0 is the density of the medium; Cp [J/kg/°C] is the isobaric rock specific heat capacity; T

[°C] is the temperature; K7 [W/m/°C] is the rock thermal conductivity tensor; v [m/s] is the vectorial fluid velocity, and Oy [W/md] is the

volumetric heat generation (or extraction). In the PDE (3) the scalar function C (x, v, z, t) is the solute concentration [moles/m°]; the diffusion
matrix D contains the eigenvalues Dy, Dy, D, [m?/s] or dispersion coefficients of the solute transport; v is Darcy’s velocity; the term Cg is

the solute concentration in the source fluid, and g, [m*/m®/s] is the volume flow rate per unit volume of the source or sink in the aquifer. In

the PDE (4) p represents pressure; v is the wave velocity; p is the density of the medium, and ggs [Pa-m?/kg = m/s?] is a source term. These

PDE are parabolic, hyperbolic or of ellitic type (if @t= 0). The first three PDE are known as diffusion equations (1-hydraulic, 2-thermal, 3-
solute). The PDE (4) is the wave equation. They include several simpler models in one, two or three spatial dimensions. If the phenomenon
they represent does not depend on time, they are called stationary and their partial derivatives with respect to time become zero. In this
case, the same equations become of elliptic type and are called Laplace PDE or Poisson PDE.

Deformable Reservoirs

Rock compaction, fracturing, time dependent deformations, as well as creep and subsidence mechanisms are essentially produced by
volcanic and tectonic activities, by lithostatic pressure and by fluid extraction/injection. Water contained in a rock, reduces its strength. The
cohesive structure of rocks is weakened by the presence of a liquid. All the geomechanical parameters are influenced by this cohesion and
are directly affected by the pressure and amount of liquid present in both pores and fractures. This is generally called the pore-fracture-water
effect. In saturated rocks density and wave propagation speed are increased, while strength is reduced. In aquifers and in geothermal
reservoirs, the different values in rock parameters are determined by the amount of liquid water, porosity ¢, permeability, pressure and
temperature. Compared with steam or with air, liquid water is almost incompressible, and this property tends to reduce both rock deformation
and stiffness. The main theoretical part and background of this subject, was published in a previous issue of Geotermia Vol. 23, No. 2
(Suarez Arriaga, 2010).

Linear poroelastic theory

Fluid extraction from natural reservoirs of water, hydrocarbons or energy, causes the reduction of the internal pore-fracture pressure and of
the effective aperture of pores and fissures. The main hypothesis in linear poroelasticity is that the fluids flow through a deformable porous
rock whose solid skeleton can be deformed elastically (Biot, 1941). Assuming that rocks are only subjected to small deformations, Hooke’s
law can be applied to relate strains ¢; and stresses ;. We define a symmetric two-order tensor o1 in four dimensions (Suarez, 2010),

represented by a (4x4) matrix, which includes the bulk stress tensor o5 acting in the porous rock and the fluid stress o acting in the fluid
filling up the pores, both influencing the bulk rock deformation. Let u; be the three components of the displacement vector for the material
particles forming the porous rock:

Ox o'xy Oxz 0
Oxy Oy Oyz O

Or = O + Of = =
Oxz Oyz Oz O

0 0 O o

AU 0 0 0 €x exy €xz 0 co0oO 0
0O »y 0 O € €y € 0 0oco o
€s v v26| ¥ TV ¢ (5)
0 0 Xy O €xz €yz €z O 00C O
0O 0 0 -C 0 0 0 O 0 00 -M

Equation (5) is the general PDE of linear poroelasticity, where:
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C Ps 1 (Ou; Ouy
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€i = €45 = ;i,j=1,2,3; | %X2=Y (6)
axi X3=z

oy are the six applied stresses in [Pa]; €; are the six strains [ad], describing the global elastic
response of the rock. Coefficients Ay, G, M and C are defined as special poroelastic parameters
(see Suarez, 2010). The term eg = € represents the volumetric deformation (strain) of the rock, pr
is fluid pressure and ¢ is a strain variable describing the volumetric deformation of the fluid relative
to the deformation of the solid grains. Applying the fundamental law of continuum mechanics to the
poroelastic rock (Newton's second law), we obtain the partial differential equations for the variation
of the fluid content ¢

2
U 0O p 0 (i) (7a)
0i 0j oi

GV2u; +(Ay +G)

Using equation (5) and the relationship between the undrained ( Ay) and drained Lame coefficients:
A = Ay - C b, we obtain the corresponding group of partial differential equations for the fluid pres-
sure:

2. on.
Ol P4 R =0; {ij=x.y.2) (7b)
0i 0j Oi

GV’u; +(A+G)

The fluid pressure p; and the variation of the fluid content ¢ are related through a simple diffusion
partial differential equation when the gravity gradient is neglected (Bundschuh and Suarez, 2010):

or  k
6_52 vip, (8)
L My
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Linear thermo-poroelastic equations

For non-isothermal processes occurring in the aquifer, we need to extend the previous theory when
the temperature changes with time. We define the functions gs, hs, and Sg, as the volumetric Gibbs
potential, the volumetric enthalpy and the volumetric entropy of the skeleton respectively. gs(e;j, pr,

T) is the thermoporoelastic available enthalpy per unit volume [J/m®]. We define the energy dissipa-
tion function as ys(ej, o, Ss, T, p, ¢, gs) in the skeleton. Using the Gibbs potential, the stresses, the

porosity, the pore pressure and the density of entropy per unit volume of porous rock ¢ s is such
that:

de;
d¥s =0y J_ SdT—(pd—p—dg—S >0 9)
dt Vodt dt dt dt

Assuming that there is no energy dissipation in the porous rock (dys/dt = 0) and for small changes in the rock, the Gibbs’ potential describes

the behavior of the skeleton. We deduced (Bundschuh and Suarez, 2010; Suarez, 2010) the thermoporoelastic matrix equations, which
include the thermal tensions in the total stress tensor:

O7 = OBulk * OFluid T Othermal =

Ox Oxy Oxz O A 00 €x Exy €xz O
Oxy Oy Oyz O 0 X0 €xy €y Eyz O
_ Y Yy Y - €5 +2G Y Yy Y +
Oxz Oyz Oz O 0 0 A O €xz €y €7 0
0 0 0 orf 000 -C 0 0 0 O
b 0 0 0
0 b O 0
-(p-Po) |0 0 b 0 -
00 0 M
P—-Po
& 0 O 0
0O vs O 0
Ke(T-To) | 0 0 vs 0 (10)

Mo
0 0 O K—B(Y@—Yf)

Where A is the drained Lame modulus, Kg is the bulk modulus, b =% is the Biot-Willis (1957) coefficient, yg, v, and y; are the bulk, pore and

fluid thermal expansivities respectively. Equation (10) includes all of the thermal stresses acting in the skeleton and in the fluid contained in
the porous rock. The extra terms 0'(%, lo, po and Ty represent the initial thermodynamic state of the porous rock at initial time t, > 0. The
theory herein presented allows the approximate representation of compressible fluids migrating inside poroelastic rocks with non-isothermal
conditions under the hypothesis of small rock deformations (Biot-Hooke's linear model). All these PDE can be simplified to study specific

ideal problems in one or two dimensions, for transient or for stationary situations. In the next sections we introduce the main solution
methods of these simplified but fundamental PDE programmed in Mathematica version 7.
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Experimental parameters of Deformable Reservoirs

All geomechanical poroelastic parameters are influenced by the fluid pressure, temperature and amount of liquid present in both pores and
fractures. We need about 20 poroelastic parameters to compute accurately all the geomechanical properties of rocks. But only three of these
parameters are actually independent. Three basic parameters selected to constitute an experimental reference set were the drained bulk
compressibility Cg, the expansion coefficient 1/H and the unconstrained specific storage 1/R (Wang, 2000). However, it is impossible to
compute all the coefficients of the theory using only these three poroelastic constants, because at least five mixed coefficients are necessary
for the whole poro-elastic coupling. A sufficient set of measured parameters is for example {E, G, ¢, Ks, Ks}. With these moduli, we can

compute the full set of poroelastic coefficients (Bundschuh and Suarez, 2010).

Code for the computation of the poroelastic coefficients

This cell computes automatically all the experimental coefficients of linear poroelasticity knowing an experimental set of five basic coeffi-
cients: Young modulus, shear coefficient, compressibility of the solid phase, porosity and bulk modulus of water:

E0=9.66;G=4.2; KS=42.0; KfE=2.0; (» BULK Modulus of water GPa x)
u=1787.010"%; ¢=0.26; k=1.510"12;

EO EO
vz —-1;KB= ———; (*While[True, If [KB>KS,Abort[]]];*)
2G 3(1-2v)
2Gv 2 KB b?
L= ;KBl=L+—-G;b=1- —; KUZ=KB+ —M8M
1-2v 3 KS ¢/KEf + (b-¢) /KS
KE Kf (b -1 KB 1 -KB/KU 1
KUl=KB+ —b? [1+ — [—--1 ;H=z —;B=———;C0= — (KU-KB);
] KS \¢ b 1 -KB/KS b
co (KU - KB) KB CO B R KB 2
M= —;bl= ;R= ;Bl=z —; KS1l= ——; LU=KU - —G;
b M (KU - KB) H 1-b 3
3v+bB (1-2v) KEf KU KB !
L1=LU-bCO; VU= ; ¢l = - ;
3-bB(1-2v) KS - Kf \|KS-KU KS-KB
KEf KS b? M (LU +2G) -C0% k
2 = - -b|;CDz —m— — ¥4 —;
KS-Kf |M(1-bB) 1-b LU+2G u

Print["Experimental POROELASTIC COEFFICIENTS:"];

Print["Young modulus E [GPa]: ", EO]; Print["Shear modulus G [GPa]: ", G];
Print["porosity [%]: ", ¢%100];

Print["solid modulus KS [GPa]: ", KS];

Print["fluid modulus Kf [GPa]: ", Kf]; Print["KB/KS = ", KB/KS]; Print[" "]
Print["COMPUTED POROELASTIC COEFFICIENTS:"];

Print["Poisson modulus v, vU = ", v, ", ", vU];

Print["Lame moduli A, A1, AU = ", L, ", ", L1, ", ", LU];

Print["Bulk Modulus KB, KBl = ", KB, ", ", KBl1, ", "];

Print["Undrained Bulk Modulus,KU, KU1l = ", KU, ", ", KUl1];
Print["Coefficient of Skempton B, B1 = ", B, ", ", Bl];
Print["Coefficients of Biot b,bl1,C, M =", b, ", ", b1, ", ", CO, ", ", M];
Print["Poroelastic Coefficients H, R = ", H, " ", R];

Print["Porosity confirmation ¢1,¢2 = ", ¢1, ", ", 100%¢2];
Print["Rigidity confirmation KS1 = ", KS1];

Print["Diffusivity Coefficient CD = ", CD]; Print[" "]



Experimental POROELASTIC COEFFICIENTS:
Young modulus E [GPa]: 9.66

Shear modulus G [GPa]: 4.2

porosity [%]: 26.

solid modulus KS [GPa]: 42.

fluid modulus Kf [GPa]: 2.

KB/KS = 0.109524

COMPUTED POROELASTIC COEFFICIENTS:
Poisson modulus v, vU = 0.15, 0.316885

Lame moduli A, Al, AU

1.8, 1.8, 7.26818

Bulk Modulus KB, KBl = 4.6, 4.6,

Undrained Bulk Modulus,KU, KUl = 10.0682, 10.0682

Coefficient of Skempton B, Bl = 0.609915, 0.609915

Coefficients of Biot b,bl,C,M = 0.890476, 0.890476, 6.14073, 6.89601
Poroelastic Coefficients H, R = 5.16578 3.15068

Porosity confirmation ¢1,¢2 = 0.26, 26.

Rigidity confirmation KS1 = 42.

Diffusivity Coefficient CD = 3.76831x107°

(* This cell computes some Thermoporoelastic coefficients x)
$=0.0018;b=0.3; B=0.9; yB=5.0%10"; yM=-46.0%10">; yU=5.075%107>;

KB =27.0%10°; KU=38.0%10°; dCT = ¢+yM -b*yB; dpTD = -B*KU* (¢ *yM - bx¥B) /b;

dpTU = -B*xKBx¢*yM/b; dpTUO = KB«* (yU - ¥yB) /b;
Print[" Thermal coefficients: "]; Print[" "]; Print["dET = ", dET];
Print["dpTD = ", dpTD]; Print["dpTU = ", dpTU]; Print["dpTUO = ", dpTUO];

Thermal coefficients:

dlT = -0.000015828

1.80439 x 10°

dpTD
dpTU = 67068.

dpTUO = 67500.

Code for the computation of thermal properties of rocks
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The isobaric heat capacity and enthalpy of volcanic rocks in the range 20°C < T < 350°C can be approximated by the following polynomials.

The models are included in the Mathematica command Plot:
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In[26]:=
Plot[976. 6065 + 0.752854 T, (T, 10.0, 360.0}, Axes - True,
AxesLabel - {"Temperature (°C ) ", "Heat Capacity (J/kg/°C) "} ,
LabelStyle » Directive[Bold, FontFamily -» "Times", 10] ]
Heat Capacity (J/kg/°C)
1250
1200 -
1150 -
out[26]= H
1100 -
1050 -
§ T P T T P T Temperature(oc)
[ 100 150 200 250 300 350
In[27]:=
0.752854
Plot[[238 674.5+976.6065T+ — T2 x10"3, {T, 10.0, 360.0},
2
Axes - True, AxesLabel - {"Temperature (°C ) ", "Rock Enthalpy (kJ/kg) "},
LabelStyle » Directive[Bold, FontFamily -» "Times", 10] ]
Rock Enthalpy (kJ/kg)
600 -
500 -
out[27]= I
400 -
300 -
T ) T ) T ) T ) T ) T ) Temperature(OC)

100 150 200 250 300 350

Thermodynamical properties of Geothermal Water

Codes for the computation of the thermal properties of water

Water is not a simple substance, its general thermodynamic behavior is a very complex subject. The following graphic shows the full
classical range of geothermal water without considering the effects of salts and gases (Bundschuh and Suarez, 2010):
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However, it is possible to simplify the water complex behavior separating its full thermodinamycal domain in several subregions. This

technique including all the models developed were published by the editorial Taylor & Francis in a recent book (Bundschuh and Suarez,
2010). The following cells compute automatically the density and enthalpy of low-enthalpy liquid water. The models are included in the
Mathematica command Plot3D:

In[28]:=

out[28]=

(* This cell computes the water specific volume v(p,T) in m3/kg *)

Plot3D[(999.8427563x107° - 4.4888741x10°° p + 4.6382459x10°° T + 6.8717562x107*% p?
-2.4966892x107° p#T+3.9625548x107° T?), {p, 0.01, 100.0}, {T, 0, 150.0},

Axes -» True, Mesh - None, ColorFunction - "SouthwestColors",
AxesLabel -» {"Pressure ( bar ) ",

" Specific Volume
Ticks -» {{0, 25, 50, 75, 100}, Automatic, Automatic}]

100
Pressure ( bar) 75 ———

ipecific Volume

0.00105

Temperature (°C)

"Temperature ( °C )

"} , LabelStyle » Directive[Bold, FontFamily - "Times", 10],
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In[29]:=

out[29]=

In[31]:=

out[31]=

(* This cell computes the water density p(p,T) in kg/m® #)

Plot3D[ (999.8427563x107 - 4.4888741x10° p + 4.6382459x10°° T + 6.8717562x107*° p?

- 2.4966892x1071° p*T+3.962554ax10-9T2)'1, {p, 0.01, 100.0}, {T, 0, 150.0},
Axes - True, Mesh -» None, ColorFunction - "SouthwestColors",
AxesLabel - {"Pressure (bar) ", "Temperature ( °C )

" Density "}, LabelStyle » Directive[Bold, FontFamily » "Times", 10],
Ticks - {{0, 25, 50, 75, 100}, Automatic, Automatic}]

(* Thermal Properties of water =)

0

Pressure (bar) 25

100
1000 ¢

980

density 960
940

920

0

Temperature (°C) L
150

(* This cell computes the liquid water enthalpy h(p,T) in kJ/kg *)
Plot3D[0. 103703286 + 0.104535515p + 4.178354567 T - 3.243701x107% p?
-2.23906x10™* p*T+9.70340x10°> T2, {p, 0.0, 100.0}, {T, 0, 150.0},
Axes - True, Mesh - None, ColorFunction - "SouthwestColors", PlotLabel - None,
AxesLabel -» {"Pressure ( bar ) ", "Temperature ( °C ) ",
" Enthalpy "} , LabelStyle -» Directive[Bold, FontFamily -» "Times", 10],

Ticks -» {{0, 25, 50, 75, 100}, Automatic, Automatic}]

(* Thermal Properties of water =)

0 Pressure ( bar)
25
50

100
600

400

200

50
Temperature (°C)

Enthalp:
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The behavior of low enthalpy water is simplified at low temperatures, because its thermodinamical dependence on pressure is very small.
The following cells compute automatically the density and dynamic viscosity of low-enthalpy liquid water in the range [0, 250] °C. The models
are included in the Mathematica command Plot:

In[32]:=
(* The cells compute water density as function of temperature p(T) in kg/m3 *)
Plot[1000.0 (1.0 -8x107® (T-3.98)%), {T, 0, 20.0},
Axes - True, AxesLabel - {"Temperature ( °C ) ", "Density (kg/m3 "},
LabelStyle » Directive[Bold, FontFamily -» "Times", 10]]
Density (kg/m?
1000.0 -
999.5 -
Oull32l= g9l
998.5 -
- Temperature (°C)
5 10 15 20
In[33]:=
Plot[996.9 (1.0-3.17x10™* (T -25.0) -2.56x10°° (T -25.0)?), {T, 10, 250.0},
Axes - True, AxesLabel -» {"Temperature ( °C ) ", "Density (kg/m3 "},
LabelStyle -» Directive[Bold, FontFamily —» "Times", 10]]
Density (kg/m®
1000 -
950 -
out[33]= 900
850 -
L L L L L L L L L L L L L L L L L L L L L L L Il Temperature ( OC )
0
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In[34]:=
(* The cells compute water viscosity as function of temperature u(T) in Pa-s *)
Plot[10% (1.0 +0.015512 (T -20.0))**"?, {T, 0, 120.0},
Axes - True, AxesLabel-»{"Temperature (°C ) ", " Viscosity (10'6 Pa-s) "},
LabelStyle » Directive[Bold, FontFamily - "Times", 10]]
Viscosity (10_6 Pa-s)
1500
Out[34]= 1000
500
Temperature (°C)
0 20 40 60 80 100 120
In[35]:=
247.8
Plot[24.14x10T'133-5, (T, 50.0, 350.0},
Axes - True, AxesLabel—»{"Temperature (°C) ", " Viscosity (107° Pa-s) "},
LabelStyle -» Directive[Bold, FontFamily —» "Times", 10]]
Viscosity (10_6 Pa-s)
500
400
out[35]=

300

200

: —— " ———— 1 Temperature ( °C)
250 300 350

T
—
S
=)
—
n
=
[
(=3
=)

The thermal conductivity of water as a function of temperature in low, medium and high enthalpy systems can be estimated with this formula
(10® W/m/°C) in the range [0, 350] °C. The model is included in the Mathematica command Plot:
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In[36]:=
T +273.15 T +273.15)2 T +273.15)3 T +273.15)*
Plot[-922.47+2839.5——1800.7 [—] +525.77[ -73.44( ] , {T, 0.0, 350.0},
273.15 273.15 273.15 273.15
Axes - True, AxesLabel-»{"Temperature (°C) ", " Thermal Conductivity (103 W/m/°C) "},
LabelStyle » Directive[Bold, FontFamily - "Times", 10]]
Thermal Conductivity (103 W/m/°C)
650 -
600 -
out[36]=
550 -
500 F
S S E S E S U B R R W Temperature (°C )
r 50 100 150 200 250 300 3%()

The isobaric heat capacity of water in the range 0°C < T < 350°C is approximated by the following polynomials (J/kg/°C) in the range [0,
100] °C. The models are included in the Mathematica command Plot:

In[37]:= Plot[-1.3320081x107* T3 + 0.0328405 T* - 1.9254125 T + 4206.3640128, {T, 0.0, 100.0},
Axes - True, AxesLabel -» {"Temperature (°c ) ", " Heat Capacity (J/kg/°C) "},
LabelStyle » Directive[Bold, FontFamily - "Times", 10]]

Heat Capacity (J/kg/°C)

4205 |
4200
4195
Oout[37]= t
4190 |
4185

4180 T

— Temperature (°C )
0
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In[38]:=
Plot[4187.6 (3.3774 -1.12665x1072 (T +273.15) + 1.34687x107° (T + 273.15)?), {T, 100.0, 350.0},
Axes -» True, AxesLabel » {"Temperature (°C ) ", " Heat Capacity (J/kg/°C) "} ,
LabelStyle -» Directive[Bold, FontFamily -» "Times", 10] ]
Heat Capacity (J/kg/°C)
6500
6000 |
out[38]= [
5500 |
5000
— Temperature (°C)
150

Code to compute the salinity of water (H,O + NaCl)

For the water density dependence on salinity we consider the following correlations, where Cm is the mass fraction of NaCl in [kg/kg] . They
are appropriate for aquifers at 20°C however, they could also be applicable approximately to low enthalpy systems The models are included
in the Mathematica command Plot:

In[39]:= Plot[998.0*Exp[0.6923 Cm], {Cm, 0.0, 0.5}, Axes -» True,
AxesLabel - {"Salinity (kg/kg) ", "Brine Density (kg/m’) "} ,
LabelStyle » Directive[Bold, FontFamily -» "Times", 10] ]

Brine Density (kg/m®)
1400
1300 -
Out[39]= 1200k
1100 -
e Sallinity (kg/kg)
0.1 0.2 0.3 0.4 0.5

For the water density dependence on salinity Cm [kg/kg] and temperature [°C] a correlation is given by the following equation.It is appropriate
for cold aquifers at [20, 50] °C however, it could also be applicable to low enthalpy systems The model is included in the Mathematica
command Plot3D:
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In[40]:=
P1ot3D[998.0 (1.0 +0.805Cm - (T +220.0Cm-4.0)%?6.5x107°), {Cm, 0.0, 0.7}, {T, O, 100.0},
Axes - True, Mesh -» None, ColorFunction - "SouthwestColors", PlotLabel -» None,
AxesLabel - {"Salinity ( kg/kg ) ", "Temperature ( °C ) ",
" Density (kg/m®) "} ,
LabelStyle -» Directive[Bold, FontFamily -» "Times", 10],
Ticks -» {{0, 25, 50, 75, 100}, Automatic, Automatic}]
(* Thermal Properties of water =)
Salinity ( kg/kg )
1400
1300
1200
Out[40]=

Density (kg/n
0

1000

Temperature (°C)

100

Methods of Solution of fundamental PDE

Classical methods to solve the fundamental PDE

Modeling of groundwater flow and the transport of mass and heat in aquifers require solving partial differential equations or systems of
differential equations, with initial and boundary conditions. These equations, in their most general form, were introduced in the two previous
sections of this paper. In this section we mention the main methods currently used to solve the simplified forms of these PDE (Kythe et al,
2003).

1.- The method of separation of variables

This is one of the most efficient solution techniques for a certain class of PDE problems. It can be applied specifically to homogeneous PDE
with homogeneous boundary conditions and to initial boundary value problems. In the Mathematica code we developed
(FundamentalPDE.nb), we show applications to the Laplace, heat and wave equations.

2.- The method of Eigenfunctions expansion

The separation of variables cannot be used when the PDE and/or the boundary conditions are not homogeneous problems. The eigenfunc-
tions expansion technique can be performed for non-homogeneous PDE with initial boundary value problems when the boundary conditions
are homogeneous or can be transformed to homogeneous. In the Mathematica code we developed (EigenExpansionPDE.nb), we show
applications to the Poisson, heat and wave equations.
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3.- Espectral Methods (Fourier, Galerkin)

When the separation of variables or the eigenfunctions expansion techniques cannot be used to solve more sofisticated PDE, the espectral
methods could be appropriate. Spectral Methods (SM) are high order techniques used to solve PDE either in their strong form or in their
weak form (see subsection 4, FEM). What sets spectral methods apart from others like finite difference methods (which start from the PDE
strong form) or finite element methods (which start from the weak form of the PDE) is that the solutions are approximated by high order
orthogonal functions expansions. To build any spectral code only a few fundamental algorithms for interpolation, differentiation, Fast Fourier
Transform and quadrature are needed, even for problems in complex geometries. In the Mathematica code we developed we show applica-
tions to the Poisson and diffusion equations.

4.- The Finite Element method (FEM)

The separation of variables and the eigenfunctions expansion techniques cannot be used when the PDE is non-linear, has variable coeffi-
cients, has non-homogeneous boundary conditions or when the boundaries geometry is of complicated nature. The Finite Element Method
(FEM) is the most used numerical technique to solve approximately mathematical models expressed as PDE with arbitrary boundary
conditions and for almost any initial boundary value problem. The FEM can be understood easily as a specifically sophisticated interpolation
technique. The domain of the PDE is subdivided into a finite number of subdomains or elements of very simple geometry. The physical laws
of the problem are applied to each element. The unknown variable, supposed to be a continuous function, can be approximated by interpola-
tion functions in each element. For each one of these elements a matrix is obtained, which approaches the behaviour of the corresponding
region. The accuracy of this matrix approach depends upon the size and complexity of the finite elements. The unknowns are the discrete
values of the variable in the nodes linking the elements; all the elements are bound together to obtain a global matrix that represents the
whole domain. In the stationary case, this process leads to a set of simultaneous linear algebraic equations, or to an ordinary differential
system of equations in the transient case. In both cases, the solutions to these equations allow to approximate the unknown variable. The
same basic procedure can be applied to an immense variety of problems. In the Mathematica code we are developing (FEM_PDE.nb), we
will show applications to the Poisson, heat and wave equations.

The Method of Separation of Variables

The separation of variables can be used when the PDE and the boundary conditions are homogeneous or when the boundary conditions are
not homogeneous but they can be transformed into homogeneous. In this Mathematica code we show applications to the Poisson, heat and
wave equations.

The Difussion equation

We consider the homogeneus difussion equation with homogeneus Dirichlet conditions:

O0:U[x, t] =k 04,xU[x, t]
Ulx, 0] =¢[x] BC:U[0, t] =0
Ue[x, 0] =¥[x] U[L, t] =0

We build the solution as we did for the wave equation:
NUIx t]=X[x]T[t]
Plugging 1) into the difussion equation:

T'[t]  X''[x]

kT[t] X[x]

Where A again must be a constant. Therefore we solve the next two ODEquations:
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T'[t]=AkT[t]
X"[t]=AX[x]

Where the solutions are:

X[x] :CCOS{\/TX} +DSin{\/7x}
T[t] = A et

Using the boundary conditions on X [ x ] we get:

. ni\ 2
C=0and O:DSZLD{\/)& l}, therefore A, = ) ’
L
o rnTx
X[x}:Sln{ }for n=1,2,3...

L
Once again we get an infinite number of Eigen- solutions for each n

> _<E>2 ) nrat

U[x, t] = Z A e 't Sln{—]
L
n=1
Using now the initial conditions:
— o [nmx
o[x] :ZA“ Sln{ }
L

n=1

With the Fourier expansion of the Sin series, we multiply by Sin | mzx | both sides of this equation:
o ormx > . nJax o rmx
o [x] Sln{ } = ZAH Sln{ } Sln{ }
L —t L L

Then we integrate in the [0,L] interval

[orxsin[ ™ ax= 73 a0 sin[ %] sin[ 22 ax

= L L

fee]

J?¢[x15in[mz><}dx— E:AHJ:Sin{nﬂd<}Sin{mﬂdi}dx

n=1

Observation:

Then:
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Therefore:

Solving the difussion PDE with Mathematica

Clear["Global *"]
Print[
Style["Difussion Equation with homogeneus boundary conditions:", 24, Bold]]
Print["8:U[x,t]=kdy U[x,t]"]
a[x_] = Input["IC for U[x,0]", ¢[x]];

Print["IC: U[x,0]=", ¢[x] , " BC:U[0,t]=0"]
Print[" oo U[L,t]=0"]
Print[""]

c = Input["Introduce value of c", c];
L = Input["Introduce value of 1", 1];

Print["Am = Ejl", a[x], Sin[
1Jo

miTx

] , ndx"
L

2 L nxx
Z = —ja[x] Sin[ ]dlx;
L Jo L

nrn

Print["U[x,t] = i ze‘(T)zsm[nZt]]

n=1

Ulx_, t ] := i ze_(%)ZSin[nZt]

n=1

Difussion Equation with homogeneus boundary conditions:

0:U[x,t]=k0y,xU[x,t]

IC: U[x,0]=0[x] BC:U[0,t]=0
U[L,t]=0
2 A1
An, = 7J—1.+xsin[3.14159mx]d]x
1Jo

2. e 9:86%n" (_0.31831n+0.101321 Sin[3.14159n]) Sin[3.14159n t]

Ulx,t] = i .

n=1 n
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Plot3D[U[x, t], {x, 0, 10}, {t, 0, 10}]

The inhomogeneus Diffusion equation.

Oc ul[x, t] = kax,xu[xl t] +glx, t]
u (0, t)=u (L, £t) =0

u(x, 0) =f (x), 0<x<L

Initial conditions :

Clear["Global %"]
k=1;L=1;

q[x_, t_] :=xExp[-t]
f[x_] t=x-1

i=10;

Boundary conditions :
bc = ChoiceDialog["Condiciones de Frontera", {"Dirichlet" -» 1, "Neuman" - 2}];

)L[n_] := (nPi/L) "2
¢[x_, n_] :=If[bc=1, Sin[Sqrt[A[n]] x], Cos[Sqrt[A[n]] x]]

Do[ Q[t] = 2 Integrate[q[x, t] ¢[x, n], {x, 0, L}]; a=2Integrate[f[x] ¢[x, n], {x, O, L}];
soln[n] = Flatten[DSolve[{c'[t] + A[n] c[t] ==Q[t], c[0] ==a}, c[t], t]]; cc[n, t_] =c[t] /. soln[n]
, {n, 0, i}]

u[x_, t_] :=Sum[cc[n, t] ¢[x, n], {n, 0, i}]

u[x, t]
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Plot

Plot3D[u[x, t], {x, 0, 1}, {t, 0, 10}]

1.4 The Poisson equation

The Poisson PDE (non-homogeneous Laplace Equation)
Ox,xul[x, V] "'@y,yu[xr vl =al[x, v]
u (0, y)=u(L, y)=0, 0<y<M
u(x, 0) =£f; (x), u(x, M) =£f, (x), 0<x<L
Initial Conditions :

L=1;M=2;

q[x_, t_] :=Pi”*2Sin[Pi x]
£1[x_] :=28Sin[3 Pix]

£2[x_] := -Sin[Pi x]
i=10;
Boundary Conditions :

bc = ChoiceDialog["Condiciones de Frontera en x", {"Dirichlet" -» 1, "Neuman" - 2}];

A[n_] := (nPi/L) "2
¢[x_, n_] :=If[bc=1, Sin[Sqrt[A[n]] x], Cos[Sqrt[A[n]] x]]

Do[Q[y] =2 /L Integrate[q[x, y] ¢[x, n], {x, 0, L}]; al =2/L Integrate[fl[x] ¢[x, n], {x, O, L}];
a2 = 2/LIntegrate[f2[x] ¢[x, n], {x, 0, L}];
soln[n] = Flatten[DSolve[{c''[y] - A[n] c[y] ==Q[y], c[0] ==al, c[M] == a2}, cl[y], v1]l~ cc[n, y_] =c[y] /. soln[n]
, {n, 1, i}]

u[x_, y_] :=Sum[cec[n, y] ¢[x, n], {n, 0, i}]
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FullSimplify[u[x, y]]

$Aborted

Plot

Plot3D[u[x, y], {x, 0, 1}, {y, 0, 1}, PlotRange -» All]
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