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Abstract

Rocks in geothermal systems are porous, compressible, and elastic. Presence of a moving fluid in the
porous rock modifies its mechanical response. Rock elasticity is evidenced by the compression that
results from the decline of the fluid pressure, which can shorten the pore volume. This reduction of the
pore volume can be the principal source of fluid released from storage. Poroelasticity explains how the
water inside the pores bears a portion of the total load supported by the porous rock. The remaining
part of the load is supported by the rock-skeleton, constituted of solid volume and pores, which is
treated as an elastic solid with a laminar flow of pore fluid coupled to the framework by equilibrium
and continuity conditions. A rock mechanics model is a group of equations capable of predicting the
porous medium deformation under different internal and external forces of mechanic and thermal
origin. This paper introduces an original tensorial formulation of both, the Biot’s classic theory (1941)
and its extension to non-isothermal processes, including the deduction of experimental thermo-
poroelastic parameters supporting that theory. By defining a total stress tensor in four dimensions and
three basic poroelastic coefficients, it is possible to deduce a system of equations coupling two tensors,
one for the bulk rock and one for the fluid. The inclusion of the fourth dimension is necessary to extend
the theory of solid linear elasticity to thermoporoelastic rocks, taking into account the effect of both,
the fluid and solid phase and the temperature changes. In linear thermo-poroelasticity, we need five
poroelastic modules to describe the relations between strains and stresses. Introducing three volumetric
thermal dilation coefficients, one for the fluid and two for the skeleton, a complete set of parameters for
geothermal poroelastic rocks is obtained. Introduction of Gibbs free enthalpy as a thermodynamic
potential allows include easily thermal tensions. This tensor four-dimensional formulation is equivalent
to the simple vector formulation in seven dimensions, and makes more comprehensible and clear the
linear thermopoelastic theory, rendering the resulting equations more convenient to be solved using the
Finite Element Method. To illustrate the practical use of this tensor formulation some applications are
outlined: a) full deduction of the classical Biot’s theory coupled to thermal stresses, b) how tension
changes produce fluid pressure changes, c) how any change in fluid pressure or in temperature or in
fluid mass can produce a change in the volume of the porous rock, d) how the increase of pore pressure
and temperature induces a dilation of the rock. High sensitivity of some petro-physical parameters to
any temperature change is shown, and some cases of deformation in overexploited aquifers are also
presented.

La termoporoelasticidad en geotermia formulada en cuatro dimensiones

Resumen

Las rocas en reservorios geotérmicos son porosas, compresibles y elasticas. La presencia de un fluido
en movimiento dentro de los poros y fracturas modifica su respuesta mecanica. La elasticidad de la
roca se evidencia por la compresion que resulta de la declinacion en la presion del fluido, la cual reduce
el volumen de los poros. Esta reduccion del volumen del poro puede ser la principal fuente de
liberacion del liquido almacenado en la roca. La poroelasticidad explica como el liquido dentro de los
poros soporta una porcién de la carga que actta sobre las rocas porosas. La parte restante de la carga
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total es soportada por el llamado esqueleto rocoso, formado por el volumen sélido y los poros. El
esqueleto es tratado como un solido elastico acoplado al flujo laminar de un fluido que obedece ciertas
condiciones de equilibrio y continuidad. Un modelo de mecéanica de rocas es un grupo de ecuaciones
capaz de predecir la deformacion de la roca porosa sometida a diferentes fuerzas internas y externas,
mecénicas y térmicas. Este documento introduce una formulacion tensorial original de la teoria clasica
de Maurice Biot (1941) y su extension a procesos no isotérmicos incluyendo la deduccion completa de
los pardmetros termo-poro-elésticos que apoyan la teoria. Definiendo un tensor total de esfuerzos en
cuatro dimensiones y tres coeficientes poroelasticos, es posible deducir un sistema de ecuaciones
acoplando dos tensores, uno para el esqueleto y otro para el fluido. La inclusion de la cuarta dimension
es necesaria para ampliar la teoria de sélidos lineales elasticos a rocas termoporoelasticas, teniendo en
cuenta el efecto conjunto de ambas fases, el fluido, el solido y los cambios de temperatura. En
termoporoelasticidad lineal, se necesitan cinco mddulos poroelasticos para describir las funciones entre
deformaciones y esfuerzos. Introduciendo tres coeficientes térmicos de dilatacién volumétrica, uno
para el fluido y dos para el esqueleto, se obtiene un conjunto completo de parametros para rocas
geotérmicas termoporoelésticas. La introduccién de la entalpia libre de Gibbs como un potencial
termodinamico, permite incluir facilmente las tensiones térmicas. En ambos casos las ecuaciones
resultantes hacen mas comprensible y clara la teoria lineal termoporoelastica. Se demuestra que esta
nueva formulacién tensorial en cuatro dimensiones es equivalente a una formulacion vectorial simple
en siete dimensiones. Las ecuaciones diferenciales parciales del modelo son méas convenientes de
resolver usando el método de elementos finitos. Para ilustrar el uso practico de esta formulacion
tensorial se presentan algunas aplicaciones: a) la deduccion completa de la teoria clasica de Biot
acoplada a tensiones térmicas, b) como los cambios de tensién producen cambios en la presion del
fluido, ¢) cdmo los cambios en la presion del fluido o en la temperatura o en el contenido de masa
fluida producen cambios en el volumen de la roca porosa, d) como cualquier aumento en la presion de
poro o en la temperatura induce una dilatacion de la roca. Se muestra la extrema sensibilidad de
algunos parametros petrofisicos a cualquier cambio de temperatura y se presentan casos de
deformacion de acuiferos sobreexplotados.

Introduction

Several factors affect the geomechanical behavior of porous crustal rocks containing fluids: porosity,
pressure, and temperature, characteristics of the fluids, fissures, and faults. Rocks in underground
systems (aquifers, geothermal and hydrocarbon reservoirs) are porous, compressible, and elastic. The
presence of a moving fluid in the porous rock modifies its mechanical response. lIts elasticity is
evidenced by the compression that results from the decline of the fluid pressure, which can shorten the
pore volume. This reduction of the pore volume can be the principal source of fluid released from
storage. A rock mechanics model is a group of equations capable of predicting the porous medium
deformation under different internal and external forces. In this paper, we present an original four-
dimensional tensorial formulation of linear thermo-poroelasticity theory. This formulation makes more
comprehensible the linear Biot’s theory, rendering the resulting equations more convenient to be solved
using the Finite Element Method. To illustrate practical aspects of our model some classic applications
are outlined and solved.

Experimental Background

In classic elastic solids only the two Lamé moduli, (1, G) or Young’s elastic coefficient and Poisson’s
ratio (E, v), are sufficient to describe the relations between strains and stresses. In poroelasticity, we
need five poroelastic moduli for the same relationships (Bundschuh and Suarez, 2009), but only three
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of these parameters are independent. The Biot’s field variables for an isotropic porous rock are the
stress o acting in the rock, the bulk volumetric strain ¢g, the pore pressure pr and the variation of fluid
mass content {. The linear relations among these variables are the experimental foundations of Biot’s
poroelastic theory (Biot & Willis, 1957; Wang, 2000):

o Py o Py & C, HY (o
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Where Kg, H, and R are poroelastic coefficients that are experimentally measured as follows (Wang,

2000):
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Figure 1 illustrates all the parts forming a poroelastic medium. Here Vg is the bulk volume, consisting
of the rock skeleton formed by the union of the volume of the
pores V¢ and the volume of the solid matrix Vs (Fig. 1). The
control volume is AVg. The drained coefficients Kg and Cg are
the bulk modulus and the bulk compressibility of the rock,
respectively; 1/H is a poroelastic expansion coefficient, which
describes how much AVg changes when p; changes while
keeping the applied stress o constant; 1/H also measures the
changes of { when o changes and pr remains constant. Finally
1/R is an unconstrained specific storage coefficient, which
represents the changes of ¢ when p; changes. Inverting the
matrix equation (1) and replacing the value of o in { we
obtain:

Figure 1. Skeleton of sandstone showing o=K. ¢ _ﬁ p, = = ﬁg " (l _ﬁj P ©)
- B“B f - B f

its pores and solid grains. Dimensions are H H R H?

(3x3x3 mm?®). (Piri, 2003).

The sign conventions are stress ¢ > 0 in tension and ¢ < 0 in compression; the volumetric strain g > 0
in expansion and gg < 0 in contraction; the fluid content > O if fluid is added to the control volume
AVg and ¢ < 0 if fluid is extracted from AVg; the pore pressure ps > 0 if it is larger than the atmospheric
pressure. Biot (1941) and Biot & Willis (1957) introduced three additional parameters, b, M and C, that
are fundamental for the tensorial formulation herein presented. 1/M is called the constrained specific
storage, which is equal to the change of {'when p; changes measured at constant strain. Both parameters
M and C are expressed in terms of the three fundamental ones defined in equation (2):
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Let Cs = 1/Ks be the compressibility of the solid matrix. The Biot-Willis coefficient b is defined as the
change of confining pressure px with respect to the fluid pressure change when the total volumetric
strain remains constant:
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The coefficient C represents the coupling of deformations between the solid grains and the fluid. The
coefficient M is the inverse of the constrained specific storage, measured at constant strain (Wang,
2000); this parameter characterizes the elastic properties of the fluid because it measures how the fluid
pressure changes when ( changes. These three parameters b, M and C are at the core of the poroelastic
partial differential equations we introduce herein (Bundschuh and Suarez, 2009).

Model of Isothermal Poroelasticity

Let us and us be the displacements of the solid and fluid particles; let u = us — us be the displacement of
the fluid phase relative to the solid matrix respectively. Let &, &, @s, @, Vs and V; be the volumetric
dilatations, porosities and volumes of each phase; —e¢y is the volumetric deformation of the fluid phase
relative to the solid phase. The mathematical expressions of these variables are:
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Biot and Willis (1957) introduced the strain variable  (u, t), defined in equation (3), to describe the
volumetric deformation of the fluid relative to the deformation of the solid with homogeneous porosity:

SUL) =gV (U,-0,)=ps,—pz, =z, (7)
The function { represents the variation of fluid content in the pore during a poroelastic deformation.
The total applied stresses in the porous rock are similar to the equations of classic elasticity. However,

we need to couple the effect of the fluid in the pores. The linear components of the global stresses,
deduced experimentally by Biot, (Biot, 1941; Biot and Willis, 1957; Wang, 2000) are:

oy = Ay €5 0; +2G¢; —C L6 (8)

Where:
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The fluid pressure is deduced from equation (3):
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We define a two-order tensor ot = (ojj) in four dimensions, which includes the bulk stress tensor og
acting in the porous rock and the fluid stress o acting in the fluid inside the pores, positive in
compression:
oy =(Ay 8s—C¢) 5, +2Gg,

. (10)
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This tensorial equation becomes identical to the Hookean solids equation, when the rock has zero
porosity and b = 0. From equations (8) and (9), we deduce that:

oy =7; —b P (11)

T, =1 &30, +2Gg (12)
Tensor g is called the Terzaghi (1943) effective stress that acts only in the solid matrix; bp is the pore-
fluid pressure. Since there are no shear tensions in the fluid, the pore fluid pressure affects only the
normal tensions o; (i = X, y, ). The functions oj; are the applied stresses acting in the porous rock
saturated with fluid. The solid matrix (z;) supports one portion of the total applied tensions in the rock
and the fluid in the pores (bps) supports the other part. This is a maximum for soils, when b ~ 1 and is
minimum for rocks with very low porosity where b ~ 0. For this reason, b is called the effective stress
coefficient. Inverting the matrices of equations (8) and (9), we arrive to the following tensorial form of
the poroelastic strains:

: 3 Co, +K
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The coefficient Ky is the undrained bulk modulus, which is related to the previous defined coefficients.
Note that both tensorial equations (10) and (13) only need four basic poroelastic constants. The
presence of fluid in the pores adds an extra tension due to the hydrostatic pressure, which is identified
with the pore pressure, because it is supposed that all the pores are interconnected. This linear theory is
appropriate for isothermal, homogeneous, and isotropic porous rocks.

Thermoporoelasticity Model

The equations of non-isothermal poroelastic processes are deduced using the Gibbs thermo-poroelastic
potential or available enthalpy per unit volume and the energy dissipation function of the skeleton
(Coussy, 1991). Analytic expressions are constructed in terms of the stresses, the porosity, the pore
pressure, and the density of entropy per unit volume of porous rock. As we did for the isothermal
poroelasticity, we can write in a single four-dimensional tensor the thermoporoelastic equations
relating stresses and strains. We have for the pore pressure:

p_po:M(é,_é’o)_cgs_M¢(7¢_7f)(T_T0) (15)

The volumetric thermal dilatation coefficient yg [1/K] measures the dilatation of the skeleton and vy,
[1/K] measures the dilatation of the pores:

1(0oV, 1(0oV 1(0 1
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The fluid bulk modulus K; and the thermal expansivity of the fluid ys [1/K] are defined as follows:
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The term py is the confining pressure. Expanding the corresponding functions of the Gibbs potential
and equating to zero the energy dissipation we obtain the 4D thermoporoelastic equations, which
include the thermal tensions in the total stress tensor (Bundschuh and Suéarez, 2009):

o, o, :(AgB —b(p-p,) )5”. +2Gg; - Ky (T-Ty) (19)

In this case, an initial reference temperature T and an initial pore pressure po are necessary because
both thermodynamic variables T and p are going to change in non-isothermal processes occurring in
porous rock. The fluid stress is deduced in a similar way:

O-f:pf:M(é’_é’O)_CSB_M¢(7(p—7/f)(T_TO) (20)
Dynamic Poroelastic Equations

The formulation we introduced herein is very convenient to be solved using the Finite Element Method.
The fundamental poroelastic differential equation is the tensorial form of Newton’s second law in
continuum porous rock dynamics:

2
div6T+ﬁ=pa—tlj; dive, =L -6, 6,=C,-4 ;& =L-U (21)

The terms o and &7 are the equivalent vectorial form of tensorial equations (20) and Cg is the matrix of
poroelastic constants. While F is the body force acting on the rock and the tensor differential operator
L is given by:

oo 0 0 o0, 9, 0 9, u,
L'=| 0 o, 0 9, 0, O,| = L-u, =&=(5¢¢ 6 6,8) (22)
0 0o 0 & 8 o u,

Where u = (uy, uy, U,) is the displacement vector of equation (6). Using the operator L in equation (22),
the dynamic poroelastic equation becomes:

(L'-Cy-L)-T + |E=pW (23)

Solution of Thermoporoelastic Equations: The Finite Element Method

Equation (24) includes Biot’s poroelastic theory. It can be formulated and numerically solved using the
Finite Element Method (FEM). Let Q be the bulk volume of the porous rock, and let 0Q be its
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boundary, u is the set of admissible displacements in Eq. (22); f, is the volumetric force and f; is the
force acting on the surface 0Q. After doing some algebra we arrive to a FEM fundamental equation for
every element V® in the discretization:

e Je e azae =e.
Ke-d* e M- =F e=1M (24)

d® is a vector containing the displacements of the nodes in each V°. Equation (25) approximates the
displacement u of the poroelastic rock. F° is the vector of total nodal forces. K® and M°® are the stiffness
and equivalent mass matrices for the finite element V°. The mathematical definitions of both matrices
are:

Ke:IBTCB-BdV;B=L-N;ME:J'pNT‘NdV;e:1,M (25)
Ve Ve
Where N is the matrix of shape functions that interpolate the displacements (Liu and Quek, 2003).
Matrix B is called the strain poroelastic matrix.

Solution of the Model for Particular Cases

This section contains two brief illustrations of the deformation of an aquifer (Leake & Hsieh, 1997) and
the form that a temperature change can affect its poroelastic deformation. In the first example, we
assume cold water at 20°C (1000 kg/m?). After, we consider a higher temperature of 250°C (50 bar,
800.4 kg/m®). The model was programmed and the computations done using COMSOL-Multiphysics
(2006). Results are shown in figures (4) to (9). Three sedimentary layers overlay impermeable bedrock
in a basin where faulting creates a bedrock step (BS) near the mountain front (Fig. 2). The sediment
stack totals 420 m at the deepest point of the basin (x = 0 m) but thins to 120 m above the step (x >
4000 m). The top two layers of the sequence are each 20 m thick. The first and third layers are aquifers;
the middle layer is relatively impermeable to flow. Water obeys Darcy’s law for head h (K, Ky are the
hydraulic conductivities and Ss is the specific storage):

0 oh 0 oh oh
K E |+ K, |+q, =5, (26)
oax\ “ox) oyl Yoy ot
Initial State of the Aquifer without deformation (m) t = 0. Maé: 0
0 -50 0
-40
-100 =0
-150
-200
Bedrock -250 Bedrock
step -300 step
-350
-400
"50075"500 1000 1500 2000 2500 3000 3500 4000 4500 5200 Min: -440

200 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5200

Figure 2. Simplified geometry of the aquifer Figure 3. Mesh of the basin showing 2967
and the impermeable bedrock in the basin. elements.
Initial state.
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As given by the problem statement, the materials here are homogeneous and isotropic within a layer.
The flow field is initially at steady state, but pumping from the lower aquifer reduces hydraulic head by
6 m per year at the basin center (under isothermal conditions). The head drop moves fluid away from
the step. The fluid supply in the upper reservoir is limitless. The period of interest is 10 years. The
corresponding FE mesh has 2967 elements excluding the bedrock step (Figure 3). The rock is Hookean,
poroelastic and homogeneous. For the computations, data of Table 1 were used. In the first example for
the Biot-Willis coefficient we assume that b = 0.3; in the second example b = 1.0.

Aquifer deformation (m), T = 20°C, t = 10 years. Max: 1.00 Maa: 0 Aquifer deformation (m), T = 250°C, t = 10 years.  Max: 1.00 Maa: 8.882e-16
0.95
09 i -10
0.85 55 b
0.8
0.75 -30 -30
0.7
-40 -40
0.65 X
°o -50 10 -50
0.55 ﬁ ;
-500 4 ;290 -500 -60
0 1000 2000 3000 4000 5200 Min: 0.510 Min: -60.0 0 1000 2000 3000 4000 5200 Min: 0.510 Min: -60.0
Figure 4. Poroelastic deformation of the basin Figure 5. Poroelastic deformation of the basin
for the BS problem with cold water (20°C). for the BS problem with hot water (250°C).
Streamlines represent the fluid to porous rock Streamlines represent the fluid to porous rock
coupling. coupling.
Aquifer Horizontal Strain: 1, 2, 5 and 10 years. (T = 20°C) Aquifer Horizontal Strain: 1, 2, 5 and 10 years. (T = 250°C)
5 -4
10
X 2.5 X10 !
6 -
4 -
2 -
=1
0
-2F
-4
1000 1500 2000 2500 3000 3500 4000 4500 5000 0000 1500 2000 2500 3000 3500 4000 4500 5000
x-coordinate [m] x-coordinate [m]
Figure 6. Horizontal strain at the basin with a Figure 7. Horizontal strain at the basin with a
BS. Case of cold water (20°C). BS. Case of geothermal water (250°C).

Discussion of Results

The two examples presented herein were solved using the Finite Element Method for a well-known
problem of linked fluid flow and solid deformation near a bedrock step in a sedimentary basin
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described in a previous publication (Leake & Hsieh, 1997). The problem concerns the impact of
pumping for a basin filled with sediments draping an impervious fault block. In the first example, we
considered the water in the aquifer to be cold, at 20°C. In the second example, the water is geothermal
fluid, at 250°C. The basin is composed of three layers having a total depth of 500 m and is 5000 m long
in both cases. The Darcy’s law (eq. 26) for water is coupled to the rock deformation via equations (11)
and (15) through the porosity ¢, which is implicit in the storage coefficient Ss:

Ss=pi9(Cs+0Cy) (27)

Where g (9.81 m/s?) is gravity acceleration, ps (1000 kg/m®) is the water density, Cg (0.22 x 10° 1/Pa)
is the bulk rock compressibility and C; (0.4 x 10 1/Pa) is the compressibility of water. All units are in
the SI. Figures (4) and (5) show simulation results of the basin for years 1, 2, 5, and 10, respectively.
The second simulation (Fig. 5) corresponds to a coupled thermoporoelastic deformation when the water
in the aquifer is under geothermal conditions (fluid density of 800.4 kg/m*, temperature of 250 °C, and
pressure of 50 bar). Figures (6) and (7) compare the horizontal strains and figures (8) and (9) compare
the vertical strains, in both cases respectively. Figures (6) and (7) also illustrate the evolution of lateral
deformations that compensate for the changing surface elevation above the bedrock step. Note that
vertical scales are different in both examples for clarity, except in figures (4) and (5).

Aquifer Vertical Strain: 1, 2, 5 and 10 years. (T = 20°C) Aquifer Vertical Strain: 1, 2, 5, 8 and 10 years. (T = 250°C)

00 1500 2000 2500 3000 3500 4000 4500 5000 oo 1500 2000 2500 3000 3500 4000 4500 5000
x-coordinate [m] x-coordinate [m]

Figure 8. Vertical strain at the basin with a BS. Figure 9. Vertical strain at the basin with a BS.
Case of cold water (20°C). Case of geothermal water (250°C).
Hydraulic conductivity, | Ky =25 m/day Poroelastic storage coefficient, | Ss= 1.0 x 10°
upper and lower aquifers upper aquifer
Hydraulic conductivity | Ky =0.01 m/day Poroelastic storage coefficient, | Ss= 1.0 x 10°
confining layer lower aquifer
Biot-Willis coefficient b=0.3 Biot-Willis coefficient b=1.0
(cold water at 20°C) (hot water at 250°C)
Young’s modulus E=8.0x10° Pa Poisson’s ratio v=0.25

Table 1. Numerical values of the parameters used in the simulations.
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Conclusions

[ All crustal rocks forming geothermal reservoirs are poroelastic and the fluid presence inside the
pores affects their geomechanical properties. The elasticity of aquifers and geothermal reservoirs is
evidenced by the compression resulting from the decline of the fluid pressure, which can shorten the pore
volume. This reduction of the pore volume can be the principal source of fluid released from storage.

[ Immediate physical experience shows that the supply or extraction of heat produces
deformations in the rocks. Any variation of temperature induces a thermo-poroelastic behavior that
influences the elastic response of porous rocks.

[ We introduced herein a general tensorial thermoporoelastic model that takes into account both
the fluid and the temperature effects in linear porous rock deformations, and presenting two practical
examples solved with finite elements.

[ The second example illustrates the influence of temperature changes on the poroelastic strains.
For cold water, the estimated value of ¢, is about -1.5x10™, while for hot water ¢, is -7.5x10™.
Therefore, the poroelastic deformations are much higher in geothermal reservoirs than in isothermal
aquifers. In the first case the bulk modulus of water K,= 0.45 GPa, corresponding to T = 250°C. For
cold aquifers K= 2.5 GPa approximately.

[ Water bulk modulus affect other poroelastic coefficients, including the expansivity of rocks,
which is relatively small, but its effects can produce severe structural damages in porous rocks
subjected to strong temperature gradients, as happens during the injection of cold fluids.
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