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Abstract 

Rocks in geothermal systems are porous, compressible, and elastic. Presence of a moving fluid in the 

porous rock modifies its mechanical response. Rock elasticity is evidenced by the compression that 

results from the decline of the fluid pressure, which can shorten the pore volume. This reduction of the 

pore volume can be the principal source of fluid released from storage. Poroelasticity explains how the 

water inside the pores bears a portion of the total load supported by the porous rock. The remaining 

part of the load is supported by the rock-skeleton, constituted of solid volume and pores, which is 

treated as an elastic solid with a laminar flow of pore fluid coupled to the framework by equilibrium 

and continuity conditions. A rock mechanics model is a group of equations capable of predicting the 

porous medium deformation under different internal and external forces of mechanic and thermal 

origin. This paper introduces an original tensorial formulation of both, the Biot’s classic theory (1941) 

and its extension to non-isothermal processes, including the deduction of experimental thermo-

poroelastic parameters supporting that theory. By defining a total stress tensor in four dimensions and 

three basic poroelastic coefficients, it is possible to deduce a system of equations coupling two tensors, 

one for the bulk rock and one for the fluid. The inclusion of the fourth dimension is necessary to extend 

the theory of solid linear elasticity to thermoporoelastic rocks, taking into account the effect of both, 

the fluid and solid phase and the temperature changes. In linear thermo-poroelasticity, we need five 

poroelastic modules to describe the relations between strains and stresses. Introducing three volumetric 

thermal dilation coefficients, one for the fluid and two for the skeleton, a complete set of parameters for 

geothermal poroelastic rocks is obtained. Introduction of Gibbs free enthalpy as a thermodynamic 

potential allows include easily thermal tensions. This tensor four-dimensional formulation is equivalent 

to the simple vector formulation in seven dimensions, and makes more comprehensible and clear the 

linear thermopoelastic theory, rendering the resulting equations more convenient to be solved using the 

Finite Element Method. To illustrate the practical use of this tensor formulation some applications are 

outlined: a) full deduction of the classical Biot’s theory coupled to thermal stresses, b) how tension 

changes produce fluid pressure changes, c) how any change in fluid pressure or in temperature or in 

fluid mass can produce a change in the volume of the porous rock, d) how the increase of pore pressure 

and temperature induces a dilation of the rock. High sensitivity of some petro-physical parameters to 

any temperature change is shown, and some cases of deformation in overexploited aquifers are also 

presented. 

 

La termoporoelasticidad en geotermia formulada en cuatro dimensiones 
 

Resumen 
Las rocas en reservorios geotérmicos son porosas, compresibles y elásticas. La presencia de un fluido 

en movimiento dentro de los poros y fracturas modifica su respuesta mecánica. La elasticidad de la 

roca se evidencia por la compresión que resulta de la declinación en la presión del fluido, la cual reduce 

el volumen de los poros. Esta reducción del volumen del poro puede ser la principal fuente de 

liberación del líquido almacenado en la roca. La poroelasticidad explica cómo el líquido dentro de los 

poros soporta una porción de la carga que actúa sobre las rocas porosas. La parte restante de la carga 
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total es soportada por el llamado esqueleto rocoso, formado por el volumen sólido y los poros. El 

esqueleto es tratado como un sólido elástico acoplado al flujo laminar de un fluido que obedece ciertas 

condiciones de equilibrio y continuidad. Un modelo de mecánica de rocas es un grupo de ecuaciones 

capaz de predecir la deformación de la roca porosa sometida a diferentes fuerzas internas y externas, 

mecánicas y térmicas. Este documento introduce una formulación tensorial original de la teoría clásica 

de Maurice Biot (1941) y su extensión a procesos no isotérmicos incluyendo la deducción completa de 

los parámetros termo-poro-elásticos que apoyan la teoría. Definiendo un tensor total de esfuerzos en 

cuatro dimensiones y tres coeficientes poroelásticos, es posible deducir un sistema de ecuaciones 

acoplando dos tensores, uno para el esqueleto y otro para el fluido. La inclusión de la cuarta dimensión 

es necesaria para ampliar la teoría de sólidos lineales elásticos a rocas termoporoelásticas, teniendo en 

cuenta el efecto conjunto de ambas fases, el fluido, el sólido y los cambios de temperatura. En 

termoporoelasticidad lineal, se necesitan cinco módulos poroelásticos para describir las funciones entre 

deformaciones y esfuerzos. Introduciendo tres coeficientes térmicos de dilatación volumétrica, uno 

para el fluido y dos para el esqueleto, se obtiene un conjunto completo de parámetros para rocas 

geotérmicas termoporoelásticas. La introducción de la entalpía libre de Gibbs como un potencial 

termodinámico, permite incluir fácilmente las tensiones térmicas. En ambos casos las ecuaciones 

resultantes hacen más comprensible y clara la teoría lineal termoporoelástica. Se demuestra que esta 

nueva formulación tensorial en cuatro dimensiones es equivalente a una formulación vectorial simple 

en siete dimensiones. Las ecuaciones diferenciales parciales del modelo son más convenientes de 

resolver usando el método de elementos finitos. Para ilustrar el uso práctico de esta formulación 

tensorial se presentan algunas aplicaciones: a) la deducción completa de la teoría clásica de Biot 

acoplada a tensiones térmicas, b) cómo los cambios de tensión producen cambios en la presión del 

fluido, c) cómo los cambios en la presión del fluido o en la temperatura o en el contenido de masa 

fluida producen cambios en el volumen de la roca porosa, d) cómo cualquier aumento en la presión de 

poro o en la temperatura induce una dilatación de la roca. Se muestra la extrema sensibilidad de 

algunos parámetros petrofísicos a cualquier cambio de temperatura y se presentan casos de 

deformación de acuíferos sobreexplotados. 

 

Introduction 

 

Several factors affect the geomechanical behavior of porous crustal rocks containing fluids: porosity, 

pressure, and temperature, characteristics of the fluids, fissures, and faults. Rocks in underground 

systems (aquifers, geothermal and hydrocarbon reservoirs) are porous, compressible, and elastic. The 

presence of a moving fluid in the porous rock modifies its mechanical response. Its elasticity is 

evidenced by the compression that results from the decline of the fluid pressure, which can shorten the 

pore volume. This reduction of the pore volume can be the principal source of fluid released from 

storage. A rock mechanics model is a group of equations capable of predicting the porous medium 

deformation under different internal and external forces. In this paper, we present an original four-

dimensional tensorial formulation of linear thermo-poroelasticity theory. This formulation makes more 

comprehensible the linear Biot’s theory, rendering the resulting equations more convenient to be solved 

using the Finite Element Method. To illustrate practical aspects of our model some classic applications 

are outlined and solved. 

 

Experimental Background  

 

In classic elastic solids only the two Lamé moduli, (, G) or Young’s elastic coefficient and Poisson’s 

ratio (E, ), are sufficient to describe the relations between strains and stresses. In poroelasticity, we 

need five poroelastic moduli for the same relationships (Bundschuh and Suárez, 2009), but only three 
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of these parameters are independent. The Biot’s field variables for an isotropic porous rock are the 

stress  acting in the rock, the bulk volumetric strain εB, the pore pressure pf and the variation of fluid 

mass content ζ. The linear relations among these variables are the experimental foundations of Biot’s 

poroelastic theory (Biot & Willis, 1957; Wang, 2000): 
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Where KB, H, and R are poroelastic coefficients that are experimentally measured as follows (Wang, 

2000): 
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Figure 1 illustrates all the parts forming a poroelastic medium. Here VB is the bulk volume, consisting 

of the rock skeleton formed by the union of the volume of the 

pores V and the volume of the solid matrix VS (Fig. 1). The 

control volume is VB. The drained coefficients KB and CB are 

the bulk modulus and the bulk compressibility of the rock, 

respectively; 1/H is a poroelastic expansion coefficient, which 

describes how much VB changes when pf changes while 

keeping the applied stress  constant; 1/H also measures the 

changes of ζ when  changes and pf remains constant. Finally 

1/R is an unconstrained specific storage coefficient, which 

represents the changes of ζ when pf changes. Inverting the 

matrix equation (1) and replacing the value of  in ζ we 

obtain: 

2

1B B B
B B f B f

K K K
K p p

H H R H
   

 
      

 
   (3) 

 

The sign conventions are stress  > 0 in tension and  < 0 in compression; the volumetric strain εB > 0 

in expansion and εB < 0 in contraction; the fluid content ζ  > 0 if fluid is added to the control volume 

VB and ζ < 0 if fluid is extracted from VB; the pore pressure pf > 0 if it is larger than the atmospheric 

pressure. Biot (1941) and Biot & Willis (1957) introduced three additional parameters, b, M and C, that 

are fundamental for the tensorial formulation herein presented. 1/M is called the constrained specific 

storage, which is equal to the change of ζ when pf changes measured at constant strain. Both parameters 

M and C are expressed in terms of the three fundamental ones defined in equation (2): 
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Let CS = 1/KS be the compressibility of the solid matrix. The Biot-Willis coefficient b is defined as the 

change of confining pressure pk with respect to the fluid pressure change when the total volumetric 

strain remains constant: 

 Figure 1. Skeleton of sandstone showing 
its pores and solid grains. Dimensions are 

(3×3×3 mm3).  (Piri, 2003). 
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The coefficient C represents the coupling of deformations between the solid grains and the fluid. The 

coefficient M is the inverse of the constrained specific storage, measured at constant strain (Wang, 

2000); this parameter characterizes the elastic properties of the fluid because it measures how the fluid 

pressure changes when ζ changes. These three parameters b, M and C are at the core of the poroelastic 

partial differential equations we introduce herein (Bundschuh and Suárez, 2009). 

 

Model of Isothermal Poroelasticity 

 

Let us and uf be the displacements of the solid and fluid particles; let u = uf – us be the displacement of 

the fluid phase relative to the solid matrix respectively. Let εs, εf, s, , Vs and Vf be the volumetric 

dilatations, porosities and volumes of each phase; – εV is the volumetric deformation of the fluid phase 

relative to the solid phase. The mathematical expressions of these variables are: 
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Biot and Willis (1957) introduced the strain variable ζ (u, t), defined in equation (3), to describe the 

volumetric deformation of the fluid relative to the deformation of the solid with homogeneous porosity: 

 s f s f V(u,t ) u u              (7) 

The function ζ represents the variation of fluid content in the pore during a poroelastic deformation. 

The total applied stresses in the porous rock are similar to the equations of classic elasticity. However, 

we need to couple the effect of the fluid in the pores. The linear components of the global stresses, 

deduced experimentally by Biot, (Biot, 1941; Biot and Willis, 1957; Wang, 2000) are: 
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The fluid pressure is deduced from equation (3): 
2
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We define a two-order tensor T = (ij) in four dimensions, which includes the bulk stress tensor B 

acting in the porous rock and the fluid stress F acting in the fluid inside the pores, positive in 

compression: 
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This tensorial equation becomes identical to the Hookean solids equation, when the rock has zero 

porosity and b = 0. From equations (8) and (9), we deduce that: 

 

ij ij f ijb p                (11) 

         2ij B ij ijG                    (12) 

Tensor ij is called the Terzaghi (1943) effective stress that acts only in the solid matrix; bpf is the pore-

fluid pressure. Since there are no shear tensions in the fluid, the pore fluid pressure affects only the 

normal tensions i (i = x, y, z). The functions ij are the applied stresses acting in the porous rock 

saturated with fluid. The solid matrix (ij) supports one portion of the total applied tensions in the rock 

and the fluid in the pores (bpf ) supports the other part. This is a maximum for soils, when b  1 and is 

minimum for rocks with very low porosity where b  0. For this reason, b is called the effective stress 

coefficient. Inverting the matrices of equations (8) and (9), we arrive to the following tensorial form of 

the poroelastic strains: 
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The coefficient KU is the undrained bulk modulus, which is related to the previous defined coefficients. 

Note that both tensorial equations (10) and (13) only need four basic poroelastic constants. The 

presence of fluid in the pores adds an extra tension due to the hydrostatic pressure, which is identified 

with the pore pressure, because it is supposed that all the pores are interconnected. This linear theory is 

appropriate for isothermal, homogeneous, and isotropic porous rocks. 

 

Thermoporoelasticity Model 

The equations of non-isothermal poroelastic processes are deduced using the Gibbs thermo-poroelastic 

potential or available enthalpy per unit volume and the energy dissipation function of the skeleton 

(Coussy, 1991). Analytic expressions are constructed in terms of the stresses, the porosity, the pore 

pressure, and the density of entropy per unit volume of porous rock. As we did for the isothermal 

poroelasticity, we can write in a single four-dimensional tensor the thermoporoelastic equations 

relating stresses and strains. We have for the pore pressure: 
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The volumetric thermal dilatation coefficient B [1/K] measures the dilatation of the skeleton and  

[1/K] measures the dilatation of the pores:  
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The fluid bulk modulus Kf  and the thermal expansivity of the fluid f  [1/K] are defined as follows: 
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The term pk is the confining pressure. Expanding the corresponding functions of the Gibbs potential 

and equating to zero the energy dissipation we obtain the 4D thermoporoelastic equations, which 

include the thermal tensions in the total stress tensor (Bundschuh and Suárez, 2009): 
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In this case, an initial reference temperature T0 and an initial pore pressure p0 are necessary because 

both thermodynamic variables T and p are going to change in non-isothermal processes occurring in 

porous rock. The fluid stress is deduced in a similar way: 
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Dynamic Poroelastic Equations  
 

The formulation we introduced herein is very convenient to be solved using the Finite Element Method. 

The fundamental poroelastic differential equation is the tensorial form of Newton’s second law in 

continuum porous rock dynamics: 
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The terms T and εT are the equivalent vectorial form of tensorial equations (20) and CB is the matrix of 

poroelastic constants. While F is the body force acting on the rock and the tensor differential operator 

L is given by: 
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Where u = (ux, uy, uz) is the displacement vector of equation (6). Using the operator L  in equation (22), 

the dynamic poroelastic equation becomes: 
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Solution of Thermoporoelastic Equations: The Finite Element Method 

 

Equation (24) includes Biot’s poroelastic theory. It can be formulated and numerically solved using the 

Finite Element Method (FEM). Let Ω be the bulk volume of the porous rock, and let Ω be its 
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boundary, u is the set of admissible displacements in Eq. (22); fb is the volumetric force and fs is the 

force acting on the surface Ω. After doing some algebra we arrive to a FEM fundamental equation for 

every element V
e
 in the discretization: 
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e ed
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
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d
e
 is a vector containing the displacements of the nodes in each V

e
. Equation (25) approximates the 

displacement u of the poroelastic rock. F
e
 is the vector of total nodal forces. K

e
 and M

e
 are the stiffness 

and equivalent mass matrices for the finite element V
e
. The mathematical definitions of both matrices 

are: 
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Where N is the matrix of shape functions that interpolate the displacements (Liu and Quek, 2003). 

Matrix B  is called the strain poroelastic matrix. 

 

Solution of the Model for Particular Cases  
 

This section contains two brief illustrations of the deformation of an aquifer (Leake & Hsieh, 1997) and 

the form that a temperature change can affect its poroelastic deformation. In the first example, we 

assume cold water at 20°C (1000 kg/m
3
). After, we consider a higher temperature of 250°C (50 bar, 

800.4 kg/m
3
). The model was programmed and the computations done using COMSOL-Multiphysics 

(2006). Results are shown in figures (4) to (9). Three sedimentary layers overlay impermeable bedrock 

in a basin where faulting creates a bedrock step (BS) near the mountain front (Fig. 2). The sediment 

stack totals 420 m at the deepest point of the basin (x = 0 m) but thins to 120 m above the step (x > 

4000 m). The top two layers of the sequence are each 20 m thick. The first and third layers are aquifers; 

the middle layer is relatively impermeable to flow. Water obeys Darcy’s law for head h (KX, KY are the 

hydraulic conductivities and SS is the specific storage): 
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h h h
K K q S

x x y y t
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(26) 

 

 

 
 

 

Figure 3. The mesh of the basin with 2967 
elements. 

Bedrock 

step 

Figure 2. Simplified geometry of the aquifer 
and the impermeable bedrock in the basin. 

Initial state. 

Bedrock 

step 

Figure 3. Mesh of the basin showing 2967 
elements. 
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As given by the problem statement, the materials here are homogeneous and isotropic within a layer. 

The flow field is initially at steady state, but pumping from the lower aquifer reduces hydraulic head by 

6 m per year at the basin center (under isothermal conditions). The head drop moves fluid away from 

the step. The fluid supply in the upper reservoir is limitless. The period of interest is 10 years. The 

corresponding FE mesh has 2967 elements excluding the bedrock step (Figure 3). The rock is Hookean, 

poroelastic and homogeneous. For the computations, data of Table 1 were used. In the first example for 

the Biot-Willis coefficient we assume that b = 0.3; in the second example b = 1.0. 

 

 

 

Discussion of Results 

 

The two examples presented herein were solved using the Finite Element Method for a well-known 

problem of linked fluid flow and solid deformation near a bedrock step in a sedimentary basin 

Figure 6. Horizontal strain at the basin with a 
BS. Case of cold water (20°C). 

Figure 7. Horizontal strain at the basin with a 
BS. Case of geothermal water (250°C). 

Figure 4. Poroelastic deformation of the basin 
for the BS problem with cold water (20°C). 

Streamlines represent the fluid to porous rock 
coupling. 

Figure 5. Poroelastic deformation of the basin 
for the BS problem with hot water (250°C). 

Streamlines represent the fluid to porous rock 
coupling. 
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described in a previous publication (Leake & Hsieh, 1997). The problem concerns the impact of 

pumping for a basin filled with sediments draping an impervious fault block. In the first example, we 

considered the water in the aquifer to be cold, at 20°C. In the second example, the water is geothermal 

fluid, at 250°C. The basin is composed of three layers having a total depth of 500 m and is 5000 m long 

in both cases. The Darcy’s law (eq. 26) for water is coupled to the rock deformation via equations (11) 

and (15) through the porosity φ, which is implicit in the storage coefficient SS: 

 

 S f B fS g C C         (27) 

 

Where g (9.81 m/s
2
) is gravity acceleration, f (1000 kg/m

3
) is the water density, CB (0.22 x 10

-9
 1/Pa) 

is the bulk rock compressibility and Cf (0.4 x 10
-9

 1/Pa) is the compressibility of water. All units are in 

the SI. Figures (4) and (5) show simulation results of the basin for years 1, 2, 5, and 10, respectively. 

The second simulation (Fig. 5) corresponds to a coupled thermoporoelastic deformation when the water 

in the aquifer is under geothermal conditions (fluid density of 800.4 kg/m
3
, temperature of 250 °C, and 

pressure of 50 bar). Figures (6) and (7) compare the horizontal strains and figures (8) and (9) compare 

the vertical strains, in both cases respectively. Figures (6) and (7) also illustrate the evolution of lateral 

deformations that compensate for the changing surface elevation above the bedrock step. Note that 

vertical scales are different in both examples for clarity, except in figures (4) and (5). 

 
 

Hydraulic conductivity, 

upper and lower aquifers  

KX  = 25 m/day Poroelastic storage coefficient, 

upper aquifer 

SS = 1.0 x 10
-6

 

Hydraulic conductivity 

confining layer  

KY  = 0.01 m/day Poroelastic storage coefficient, 

lower aquifer 

SS = 1.0 x 10
-5

 

Biot-Willis coefficient 

(cold water at 20°C) 

b = 0.3 Biot-Willis coefficient  

(hot water at 250°C) 

b = 1.0 

Young’s modulus E = 8.0 x 10
8   

Pa Poisson’s ratio  = 0.25 

Table 1. Numerical values of the parameters used in the simulations. 

 

 

Figure 8. Vertical strain at the basin with a BS. 
Case of cold water (20°C). 

Figure 9. Vertical strain at the basin with a BS. 
Case of geothermal water (250°C). 
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Conclusions 

  

■ All crustal rocks forming geothermal reservoirs are poroelastic and the fluid presence inside the 

pores affects their geomechanical properties. The elasticity of aquifers and geothermal reservoirs is 

evidenced by the compression resulting from the decline of the fluid pressure, which can shorten the pore 

volume. This reduction of the pore volume can be the principal source of fluid released from storage. 

 

■ Immediate physical experience shows that the supply or extraction of heat produces 

deformations in the rocks. Any variation of temperature induces a thermo-poroelastic behavior that 

influences the elastic response of porous rocks. 

 

■ We introduced herein a general tensorial thermoporoelastic model that takes into account both 

the fluid and the temperature effects in linear porous rock deformations, and presenting two practical 

examples solved with finite elements. 

 

■ The second example illustrates the influence of temperature changes on the poroelastic strains. 

For cold water, the estimated value of εz is about -1.5x10
-4

, while for hot water εz is -7.5x10
-4

. 

Therefore, the poroelastic deformations are much higher in geothermal reservoirs than in isothermal 

aquifers. In the first case the bulk modulus of water Kw= 0.45 GPa, corresponding to T = 250°C. For 

cold aquifers Kw= 2.5 GPa approximately. 

 

■ Water bulk modulus affect other poroelastic coefficients, including the expansivity of rocks, 

which is relatively small, but its effects can produce severe structural damages in porous rocks 

subjected to strong temperature gradients, as happens during the injection of cold fluids.  
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