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Abstract 
In this work is presented a new method to estimate the initial state of geothermal submarine reservoirs 
and an evaluation of the amount of energy contained in these important natural systems. To evaluate 
the natural state of these reservoirs we use the classical Boundary Element Method (BEM) and suggest 
a simple way to couple this technique to the simulator TOUGH2 of the Lawrence Berkeley National 
Laboratory through the INPUT file. Submarine geothermal reservoirs contain essentially an infinite 
amount of energy. The deep submarine heat is related to the existence of hydrothermal vents emerging in 
many places along the oceanic spreading centers between tectonic plates. These systems have a total 
length of about 65,000 km in the Earth’s oceanic crust. The deep resources are located at certain places 
along the rifts between tectonic plates of the oceanic crust at more than 2000 m below sea level. Shallow 
resources are found near to continental platforms between 1 m and 50 m depth and are related to faults and 
fractures close to the coasts. Both types of resources exist in the Gulf of California, Mexico. To model 
these systems the initial mathematical problem is expressed in terms of boundary integral equations, 
fundamental solutions and boundary conditions of mixed type. The main field functions are pressure 
and temperature. The versatility and power of the BEM allows the efficient treatment of very complex 
or unknown reservoir geometry, without requiring discretization of the whole domain occupied by the 
system. This capability allows efficient testing of different boundary conditions to estimate several 
thermodynamic initial states at any desired interior point of the domain occupied by the reservoir under 
specific conditions. Unfortunately, the classical BEM is limited to single-phase flow in homogeneous 
media and cannot be fully applied to flow problems in heterogeneous systems. In this last case 
there is no fundamental solution. To overcome this difficulty after an initial state is estimated, 
TOUGH2 can be used to improve the initial simulation. The few available data on hydrothermal vents 
are very useful to estimate the amount of energy flowing from the ocean floor. In this way, it is possible 
to estimate initial conditions knowing only heat fluxes and temperatures at fissures and chimneys using 
this hybrid technique. 
 
Keywords: Boundary Element Method, submarine systems, mathematical simulation. 
 
El Método de Elementos de Frontera y el estado natural de 

sistemas geotérmicos submarinos 
 
Resumen 
En este trabajo se presenta una forma nueva de evaluar numéricamente el estado inicial de reservorios 
geotérmicos submarinos y un cálculo aproximado de la energía contenida en esos importantes sistemas 
naturales. Para estimar su estado natural se usa el método clásico de los Elementos de Frontera 
(Boundary Element Method o BEM) y se sugiere una manera simple de acoplar esta técnica al 
simulador TOUGH2 desarrollado en el Lawrence Berkeley National Laboratory, a través del archivo 
INPUT. Los reservorios geotérmicos submarinos contienen esencialmente una cantidad infinita de 
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energía. El calor submarino profundo está relacionado con la existencia de respiraderos hidrotermales que 
emergen en muchos sitios a lo largo de los centros de dispersión oceánica entre las placas tectónicas. Esos 
sistemas tienen una longitud total de unos 65,000 km en la corteza oceánica. Los recursos profundos están 
localizados en ciertos lugares a lo largo de las cordilleras entre placas tectónicas a más de 2000 m bajo el 
nivel del mar. Los recursos superficiales se hallan cerca de las plataformas continentales entre 1 m y 50 m 
de profundidad y están relacionados con fallas cercanas a las costas. Ambas clases de recursos existen en 
el Golfo de California, México. Para modelar numéricamente estos sistemas el problema matemático 
inicial se expresa en términos de ecuaciones integrales de contorno, soluciones fundamentales y 
condiciones de frontera de tipo mixto. Las funciones principales de campo son la presión y la 
temperatura. La versatilidad y potencia del BEM permiten el tratamiento eficiente de geometrías de 
yacimientos muy complejas, o bien parcial o totalmente desconocidas, sin que se requiera la 
discretización del volumen completo ocupado por el sistema. Esta capacidad permite probar, en forma 
eficiente y rápida, diferentes condiciones de frontera para estimar varios estados termodinámicos 
iniciales en cualquier punto interior del dominio ocupado por el reservorio bajo condiciones 
específicas. Desafortunadamente, el BEM clásico está limitado al flujo monofásico de fluidos en 
medios homogéneos y no puede aplicarse completamente a problemas de flujo bifásico en sistemas 
heterogéneos. La razón es  que  para esos casos no existe solución fundamental. Para superar esta 
dificultad, después que se ha estimado un estado inicial, el simulador TOUGH2 puede usarse para 
mejorar la simulación inicial. Los pocos datos disponibles sobre respiraderos hidrotermales son muy 
útiles para estimar la cantidad de energía que fluye del piso oceánico. De esta forma, es posible estimar 
condiciones iniciales conociendo solo flujos de calor y temperaturas en fisuras y chimeneas usando esta 
técnica híbrida. 
 
Palabras clave: Método de Elementos de Frontera, geotermia submarina, simulación matemática. 
 
 
1. Introduction 
Hydrothermal circulation at deep oceanic ridges is a fundamental complex process controlling mass 
and energy transfer from the interior of the Earth through the oceanic lithosphere, to the hydrosphere 
and to the atmosphere. Submarine hydrothermal interactions influence the composition of the oceanic 
crust and the oceans’ chemistry. 

The fluid circulating in seafloor hydrothermal systems is chemically altered due to processes occurring 
during its passage through the oceanic crust at elevated temperatures and pressures. This mechanism 
produces hydrothermal vent fields that support diverse biological communities starting from microbial 
populations that link the transfer of the chemical energy of dissolved chemical species to the 
production of organic carbon (Humphris et al., 1995). The eventual transfer of some gases from the 
ocean to the atmosphere extends the influence of hydrothermal activity far beyond the oceans 
themselves. The understanding of these mass and energy flows among the complex geological, 
chemical, geophysical and biological subsystems requires the development of integrated models that 
include the interactions between them. Because of their complexity and of the scarcity of real data, the 
modeling and simulation of submarine reservoirs is cumbersome and uncertain. 

The BEM is a numerical technique for solving elliptic and convection-diffusion partial differential 
equations (PDE). The BEM relates boundary data and boundary integral equations to the internal points 
of the solution domain in a very effective and accurate way. This is a suitable method to quickly 
estimate several possible initial states of reservoirs when only a few data are available. In this paper we 
show the potential advantages of the BEM over other numerical methods and the way it can be coupled 
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to TOUGH2. We also outline the fundamental characteristics of submarine hydrothermal systems and 
present a preliminary evaluation of their energy content. 

 

2. TOUGH2 and submarine reservoirs  
TOUGH2 is a powerful numerical code for solving PDE’s and for simulating the coupled transport of 
water, energy, air, CO2 and other components in porous/fractured media (Pruess et al., 1999). It solves 
systems of non-linear PDE’s of parabolic type. The general integral form of these equations is: 
 

ρ
∂

∇ ⋅
∂ ∫ ∫ ∫

r r

n n n

kk k
V V V

  d V +    d V =   d VqF t     (1) 

Where Vn represents any porous medium flow domain, ρk is the density of some physical property 
(mass, energy), Fk is the flux of mass/energy and qk is an injection/production term in Vn. The flux 
vector derives from the gradient of a field variable (pressure or temperature). The sub-index k means 
that Eq. (1) holds for a multi-phase treatment of different components in the mass/energy balance 
equations, including convection and heat conduction in rock, water, air, gases, etc. 

Equation (1) is numerically solved using the Integral Finite Difference Method (IFDM). This technique 
contains aspects of both major numerical methods, Finite Differences (FD) and Finite Elements (FE). 

These three methods require discretization of the whole solution domain Ω in the form: 
1=

Ω = ∑
N

n
n

V . The 

need to discretize the whole domain is the main reason for computation cost and of the total CPU time 
needed to solve a particular problem. In the potential application of TOUGH2 to submarine geothermal 
reservoirs, the first practical problems are the insufficiency of both available field data to simulate these 
systems and the total absence of production history. 

 

3. The BEM for elliptic problems 
During the numerical estimation of the initial state of a reservoir it is clear that, after a great number of 
time steps, the transient term in Eq. (1) becomes 
practically zero. Thus for this problem, Equation (1) 
becomes a PDE of elliptic type. The BEM is 
specifically indicated for linear elliptic PDE in 
homogeneous media. In this type of physical 
problems the BEM is clearly superior to FD, IFD 
and FE methods in both accuracy and efficiency. 
Mainly, because all these methods demand the 
discretization of the whole solution domain Ω. 
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The key feature of the BEM is that only the surface 
of the porous medium needs to be discretized. The 
field variable can be calculated with high precision 
at any point in the interior of the domain using only 
the known values of the function at the boundary of 

Fig. 1. Discretization of the boundary of Ω 
in the D solution domain of the PDE (2). 
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Ω. The BEM provides an effective reduction of the dimension of the PDE solution space. As a result, 
improved numerical accuracy and lesser use of computational resources are obtained. Differential 
problems that can be solved on a Notebook using the BEM, could require a cluster or a workstation, or 
even a supercomputer using any of the other methods for the same level of accuracy and for the same 
degree of geometric complexity of the reservoir boundary (Cruse and Rizzo, 1975; Ameen, 2001; 
Pozrikidis, 2002). To illustrate the method, we solve an elliptic problem representing a stationary 
temperature (or pressure) distribution, described by the Poisson’s equation with mixed boundary 
conditions (Figure 1) 
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( ) ( ) , ,
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�
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U
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    (2) 

 
Let’s assume first that f = 0 (Laplace PDE). Applying the Green’s theorem and the fundamental 
solution to the integral form of Eq. (2) we obtain: 
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The boundary ∂Ω is discretized into Γj (j =1, Nb) boundary elements which can be linear, parabolic, 
cubic splines in 2D. In the 3D case, the boundary elements can be triangles, rectangles, arcs, etc. 

BEM solution of the Poisson Equation  
Let us assume now that f ≠ 0 (Poisson PDE), applying the same methodology proposed by Katsikadelis 
(2002) we obtain: 
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   (4) 

 
The auxiliary function v is the Fundamental Solution of the singular form of Laplace Equation and 
plays a crucial role in the classical BEM. For time-dependent problems of parabolic type the BEM can 
also be applied using two subsidiary techniques: 
 

a) Solving first the PDE in time using FD, then applying the BEM to the time-discretized 
equations. 
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j

 
b) Removing the time dependence of the PDE using the Laplace Transform. 

The BEM numerical implementation: an example  
Let us assume that each Γj is a constant linear segment. The discretization of the boundary Γ (Fig. 1) in 
Equation (3) implies that: 
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      (5) 

 
Consequently Eq. (3) can be discretized as: 
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or equivalently as: 
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The influence coefficients Hij and Gij are integral forms equal to: 
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From Eq. (7) we finally obtain the linear system: 
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Because of the assumed mixed boundary conditions, uT in ΓT and un in ΓN, there are unknown 
quantities in both sides of Eq. (9). Consequently we need to separate the identified u’s from the not 
known u’s in order to obtain a consistent system of linear equations. As an example, the system for Nb 
= 4 is as shown in Equation (10). 
 
Let us suppose that the u j are the known quantities and the T j are the unknown variables. Moving all 
the unknowns to the left hand side of equation (10) we obtain the final linear system, as shown in 
Equation (11). 
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The matrix in this system is full and non symmetric, but is at least four times smaller than the 
equivalent matrix obtained from FD, FE or IFD. This result can be easily generalized for any Nb > 4. 
We are ready to apply the BEM to submarine reservoirs. 
 

4. Submarine geothermal systems 
Most of the known vents are at the mid-ocean ridge systems (MORS) in the deep sea (Damm, 1995). 
Magmatic processes provide the energy to drive hydrothermal circulation of seawater through the 
oceanic crust causing rock-seawater interaction at temperatures between 200° C and 400° C (Suárez, 
2004; Suárez and Samaniego, 2005). The resulting mechanism gives rise to venting at seafloor depth, 
ranging between 840 and 3600 meters depth and contributing considerably to the global balance of the 
total Earth’s heat (Fornari and Embley, 1995). This venting is associated with fissures located directly 
above magma injection zones. 
 
The submarine heat flow measured in some places of the Gulf of California was of the order of 0.34 
WT/m2 at an average temperature of 330° C (Mercado, 1990). Using two models it can be predicted an 
average hydrothermal heat loss by conduction for the oceanic crust of about 1.5 WT/m2. The same 
parameter predicted for the ridges is between 2 and 100 MWT/Km (per unit ridge length). The first 
value is for a slow ridge and the last value corresponds to a plume with a heat content of 1000 MWT. 
Thus, the plumes remove more heat than the steady-state surface flux for the cooling lithosphere. Alt 
(1995) estimated that submarine hydrothermal discharges remove about 30% of the heat lost from 
oceanic crust. 
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Application of the BEM to Submarine Reservoirs, Temperature Distribution and Heat Flow 
The PDE describing the natural state of a geothermal reservoir is approximately elliptic, because the 
transient changes are very slow. Eqs. (6-11) were programmed in a Fortran/90 code called BEMSub. 
We solved the line integrals of Eq. (8) by the Gauss-Legendre quadrature. We assumed a squared 
submarine reservoir of 1000 m × 1000 m in 2D. 
 
Forty boundary elements were sufficient to estimate the temperature distribution in this reservoir using 
the BEM. The boundary conditions were zero heat flow at the lateral boundaries and constant but 
different temperatures at the bottom and top of the reservoir. To calculate the temperature we chosen 
81 internal points uniformly distributed in the square. Although this number could be larger, it is 
enough to draw the surfaces and illustrate the results. We considered the numerical values shown in 
Table 1. The average thermal conductivity is 3.0 W/°C/m. 

Fig. 2. Temperatures 
fitting the flow of heat 
measured in the Gulf of 
California. 
BEM Solution for 300, 
400° C, Qn = 0.3 Wm2

 

The idea of this application is 
simple: knowing the range of 
possible temperatures, what should 
be the fixed temperatures at the top 
and bottom of the reservoir able to 
reproduce the measured conductive 
heat flow? We considered two 
simulations, one for the heat flow 
measured in the Gulf of California 

(0.3 WT/m2) and a second one for the estimated average heat flux for the oceanic crust (1.5 WT/m2). 
The results are shown in Figures 2 and 3. 

Field function Minimum Maximum 
Pressure 190 bar 300 bar 

Temperature 200 °C 700 °C 
Fuid flow rate 70 cm/s 250 cm/s 

Heat Flux 0.34 WT /m2 1.50 WT /m2

Table 1. Some parameters of submarine reservoirs 
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Coupling the results of the BEM to TOUGH  
Using the same data we prepared the INPUT deck of TOUGH for a regu
sizes 50 × 50 m each, for an EOS of pure water. The boundary conditions
only the temperature initial state given by Figure 2. For the pressure w
distribution with the initial values at the top of the hypothetical submarine r
  

Field function Top Bottom 
Pressure 190 bar 260 bar 

Temperature 300° C 400° C 
Fuid Density * 733.2 kg/m3 189.4 kg/m3

Heat Flow * -0.29934 WT /m2 0.29934 WT /m2

The top of the reservoir is located 2600 m below sea level and the botto
around 20 time steps, the temperature obtained with TOUGH is exactly 
shown in Figure 2. The heat fluxes calculated with TOUGH at the top and
of equal value but of opposite sign, indicating that a steady state was reach
equal to that obtained with the BEM (0.3 WT/m2). The main difference 
BEM takes about 0.2 seconds of CPU time for a whole single calculation 
needs around 102 more CPU time to achieve the same result. But if the star
far from these initial conditions for pressure and temperature, the total s
times larger in the same computer, because of the need for small t
applications of the BEM can be found in Archer (2000). 
 

6

Fig. 3. Temperatures fitting 
the average heat flow  

estimated for the entire 
oceanic crust. 

BEM solution for 200, 700° 
C, Qn = 1.5 W/m2
lar mesh of 400 volumes of 
 were the same, considering 
e assumed a vertical linear 
eservoir given in Table 2. 

 

 

 

Table 2. Initial and final 
conditions at the reservoir. 

 
 
m is 1000 m deeper. After 

the same as the distribution 
 bottom of the reservoir are 
ed. This value is practically 
is the calculation time. The 
using a 3 GHz PC. TOUGH 
ting thermodynamic point is 
imulation time could be 105 

ime steps. More advanced 



 

MEMORIAS DEL CONGRESO ANUAL 2006
CERRO PRIETO, BC, SEPTIEMBRE DE 2006 

 

 8

 

5. Conclusions 
- Deep submarine geothermal resources contain practically an infinite energy potential. Volcanic and 

tectonic processes control hydrothermal activity at mid-ocean ridge spreading centers, influencing all 
aspects of oceanography. The understanding of the mass and energy flows in these complex systems 
requires the development of integrated models that include the interactions among different 
subsystems. 

 
- Using available data from different sources, we reported a preliminary estimation of the amount of 

convective and conductive energy contained in submarine systems escaping through fissures in the 
oceanic floor. Hydrothermal fluids at temperatures between 350° C and 400° C exit the chimneys on 
the seafloor at  velocities of  about  70 cm/s  to  250 cm/s and mixes with deep seawater at 2° C. 
Measured thermal fluxes have an average value for a single orifice of 8 MWT. Some mega-plumes of 
750 m height correspond to heat fluxes of about 1000 MWT. 

 
- The main purpose of the simulation problem we have presented was to illustrate the easy and efficient 

use of the BEM in the estimation of the natural state of submarine reservoirs, knowing few 
parameters. The potential use of the BEM coupled to TOUGH could be enormously helpful in the 
computation of the initial state of any reservoir. This coupling could be also achieved in domain 
decompositions, using the extended BEM in sub-domains that require detailed calculations and mesh 
refinement. 
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