

Geochemistry Geothermal Area in Ampallas, Mamuju Regency, West Sulawesi

Anna Yushantarti, Dede Iim Setiawan, Bangbang Sulaeman, and Dhonna Yulianty

Center for Geological Resources

untuk.anna@gmail.com

Keywords: Geochemistry, Geothermal, Mamuju, Sulawesi.

ABSTRACT

Ampallas geothermal area is located in Mamuju Regency, West Sulawesi. The geothermal manifestations in Ampallas are hotsprings, warmsprings, and cold alteration. The youngest product in Ampallas is associated with Manututu volcanic activity which is 0,3 ma or Pleistocene. Ampallas has chloride-bicarbonate type of waters based on $\text{Cl}-\text{SO}_4-\text{HCO}_3$ diagram and plots in partial equilibrium zone based on Na-K-Mg diagram. The temperature of reservoir is about 170°C from Na-K geothermometry.

INTRODUCTION

Sulawesi island has about 58 geothermal areas (Center for Geological Resources, 2012). Ampallas geothermal area investigated in 2013. It is located in Mamuju Regency, West Sulawesi Province. Geographically, it is located at coordinates 2°35'52" - 2°43'58" S and 118°51'19" - 119°3'13" E (Figure 1).

Figure 1: Location of Ampallas Geothermal Area

GEOLOGY IN A BRIEF

Geologically, Ampallas is consisted of volcanic rock in Miocene which has andesitic-basaltic composition (lava and breccia, and tuff), sedimentary rock in Miocene, young volcanic lava (andesitic-dacite lava) in Pleistocene, and alluvium. The youngest product in Ampallas is associated with Manututu volcanic activity which is 0,3 ma or Pleistocene (Figure 2).

The structures controlled in Ampallas geothermal area is normal faults dominated by northwest-southeast structure.

MANIFESTATION

Geothermal manifestations in Ampallas are four cluster hotsprings/ warmsprings and cold alteration (Ampallas, Batupane, Gantungan, and Karena).

Ampallas hotsprings/warmsprings

It is located in Ampallas village, manifested along side Ampallas river about 200 m. The temperature of hotsprings/warmsprings is about 35-66,6°C, air temperature is 29,9°C, pH 6,84 - 7,22, the conductivity is about 551 - 1920 $\mu\text{S}/\text{cm}$, and debit is about 0,5 l/s.

Batupane warmsprings

It is located in Batupane village. It comes up at breccia gap. The temperature of warmspring is about 40,3°C, air temperature is 28,9°C, pH 8,66, the conductivity is about 360 $\mu\text{S}/\text{cm}$, and debit is about 1 l/s.

Karena warmsprings

It is located in Karena village. The temperature of warmspring is about 48 °C, air temperature is 29°C, pH 9,88, the conductivity is about 1074 $\mu\text{S}/\text{cm}$, and debit is about 1 l/s.

Gantungan warmsprings

It is located in Gantungan village, manifested at the side of Gantungan river. The temperatur of warmspring is about 34,6°C, air temperature is 25,9°C, pH 8,77, the conductivity is about 527 $\mu\text{S}/\text{cm}$, and debit is about 0,5 l/s.

Ampallas cold alteration

It is located in Ampallas village, manifested at the Manututu foothills, about 400 m from Ampallas hotsprings. Alteration is already cold at the surface. The alteration is formed at Andesitic rock. There is sulfur deposition. The result of clay mineral based on *portable infra-red mineral analyzer* (PIMA) is kaolinite and monmorillonite. The type of the alteration is argylic type. The alteration process was happen in neutral fluids with temperature below 200°C.

Natural heat loss based on calculation from those manifestations is about 462 kW_{th} .

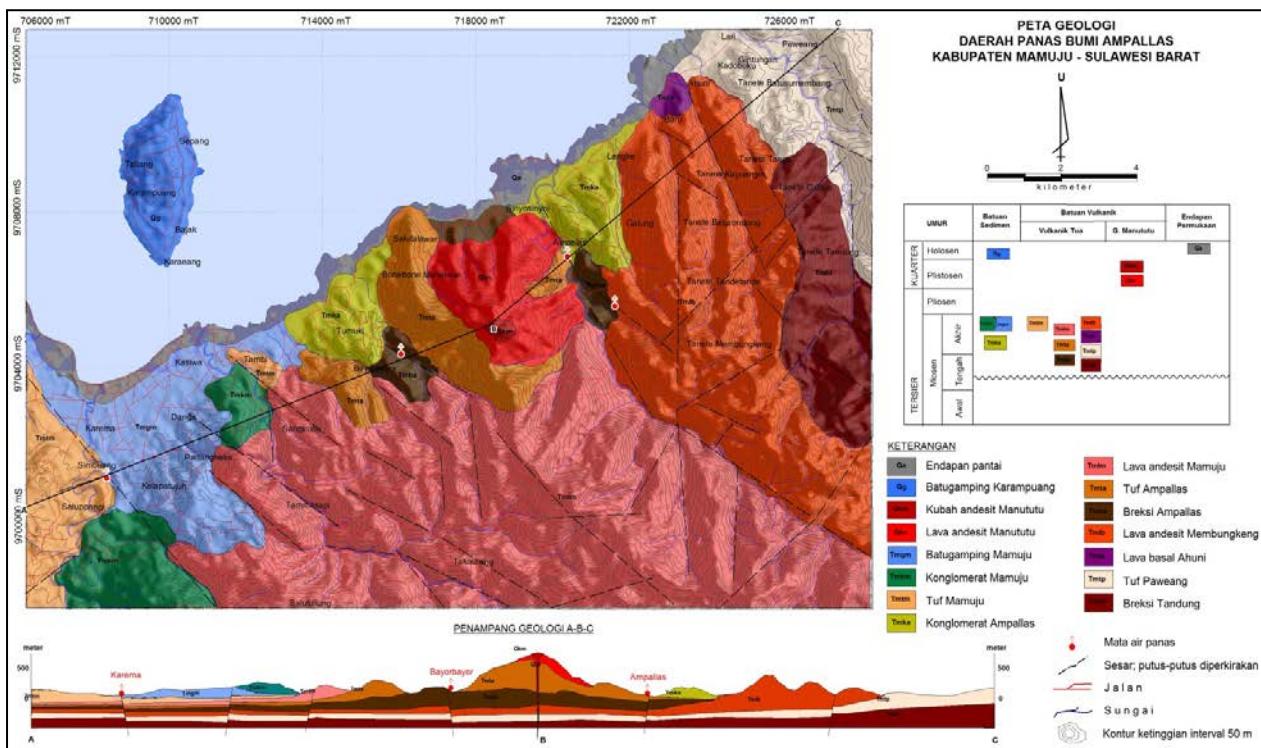


Figure 2: Geological Map of Ampallas Geothermal Area

GEOCHEMISTRY

The thermal waters was classified based on ternary diagram of Cl-SO₄-HCO₃, Cl-Li-B, and Na-K-Mg (Giggenbach, 1991).

Cl-SO₄-HCO₃ ternary diagram

Based on waters analysis, Ampallas hot springs are grouped into Chloride-bicarbonate waters, while the Batupane, Karema, Gantungan warm springs and cold waters of Ampallas are plotted into bicarbonate waters (Figure 3). It could be an indication that Ampallas hot springs come directly from reservoir and good permeability, but it is diluted with the ground waters. Batupane, Karema, and Gantungan warm springs are mixing with cold waters at the surface.

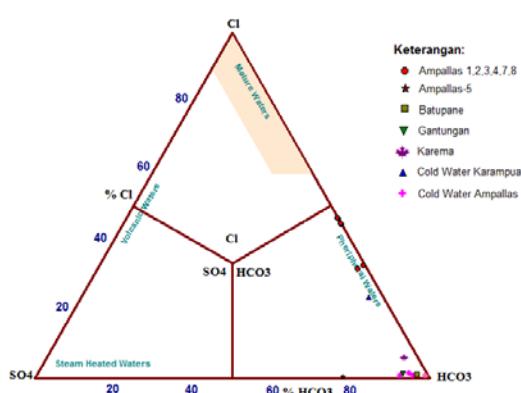


Figure 3: Classification of thermal fluids using Cl-SO₄-HCO₃ ternary diagram

Cl-Li-B ternary diagram

The alkali metal probably least affected by secondary processes is Li, so it may be used as a “tracer” for the initial deep rock dissolution process and as reference to evaluate the possible origin of the other two important “conservative” constituents of thermal waters, Cl and B (Giggenbach, 1991). Based on Cl-Li-B ternary diagram (Figure 4), all samples from Ampallas hot springs are plotted into Cl corner. This indicates that the Ampallas geothermal system is associated with volcanic-magmatic and the Ampallas hot springs formed through absorption low B/Cl magmatic vapors. Karema warm spring is plotted into Cl-B zone, an indication sedimentary rock interaction. This diagram also shows that Ampallas hot springs are grouped into one cluster, indicate they come from the same reservoir; while batupane, Karema, and Gantungan warm springs have different source from Ampallas. Considering the geological setting in Ampallas, there are three reservoir in Ampallas geothermal area : Ampallas (consists of Ampallas hot spring and Batupane warm spring), Karema (consists of Karema warm spring), and Gantungan (consists of Gantungan warm spring).

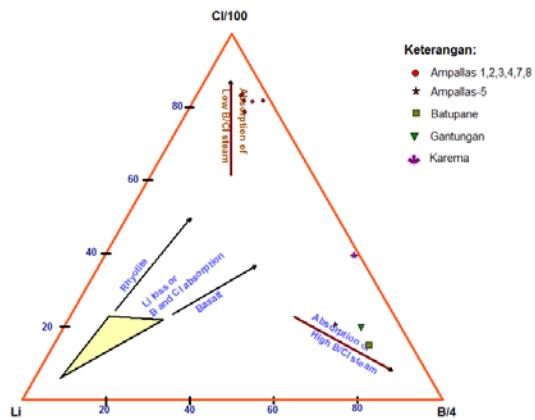


Figure 4: Cl-Li-B Ternary Diagram of Ampallas

Na-K-Mg ternary diagram

Na-K-Mg ternary diagram (Figure 5) shows that Ampallas and Karema are plotted in partial equilibrium. It could be used to estimate reservoir temperature using Na-K geothermometry through extrapolating in this diagram. Temperature reservoir using this method is about 170°C.

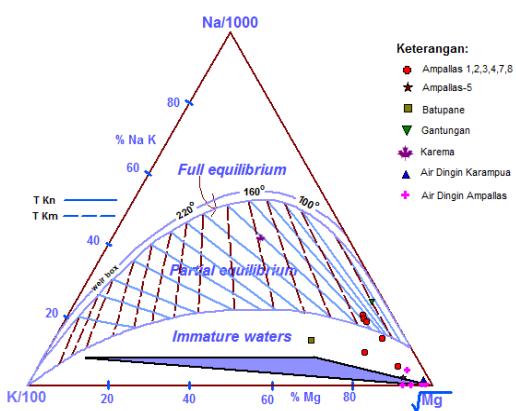


Figure 5: Na-K-Mg Ternary Diagram of Ampallas

Origin of The Fluids

The stable isotope compositions of oxygen and hydrogen for Ampallas is shown in figure 6. It shows that the value of $\delta^{18}\text{O}$ for Ampallas is more positive than local waters, this could be an indication that geothermal fluids has been enriched with ^{18}O because of rock-water reactions at depth (Nicholson, 1993). While Karema, Batupane, and Ampallas-5 is plotted at meteoric waters line.

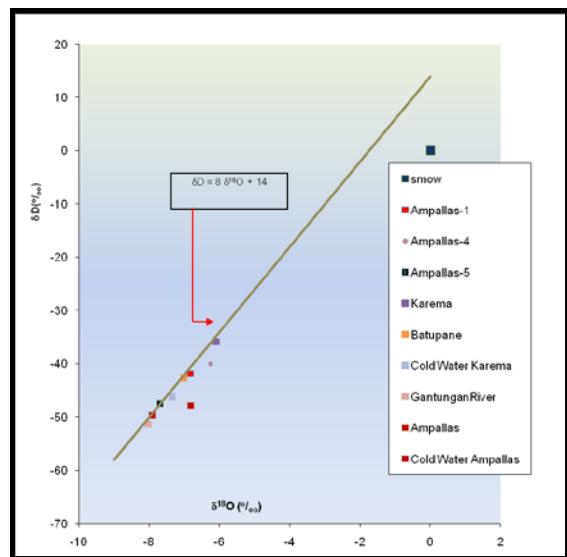


Figure 6: Isotop Diagram of Ampallas

Gas

Gas bubbling comes up from Ampallas hotspring was sampled. The result of analysis is (Table 1):

Table 1: Gas Analysis Result of Ampallas

Gas (% mol)	concentration
He	0,00035
H_2	0,000161
O_2	0,062616
Ar	0,005786
N_2	0,340114
CH_4	0,548185
CO	0
CO_2	0,042217
SO_2	0
H_2S	0
HCl	0,000571
NH_3	0
ratio	
N_2/Ar	58,7
He/Ar	0,06
CH_4/Ar	94,7
CO_2/H_2	262,8
CO_2/CH_4	0,077
CO_2/N_2	0,124

Gases in geothermal discharges usually are CO_2 , H_2S , NH_3 , N_2 , H_2 , and CH_4 , referred to as the “*non condensable gases*” (Nicholson, 1993). The higher component of the gases is CH_4 (0,54% mol), indicates that it comes from alteration of sediment rock. H_2S is not detected in Ampallas gas bubbles. Ratio of CO_2/H_2 is very high, which indicates outflow of the system. Figure 7 shows that gases in Ampallas hotspring has been mixing or condensing with meteoric water in certain depth. Volatile gases from crustal rocks also contribute to supply gas in Ampallas geothermal reservoir (Figure 8).

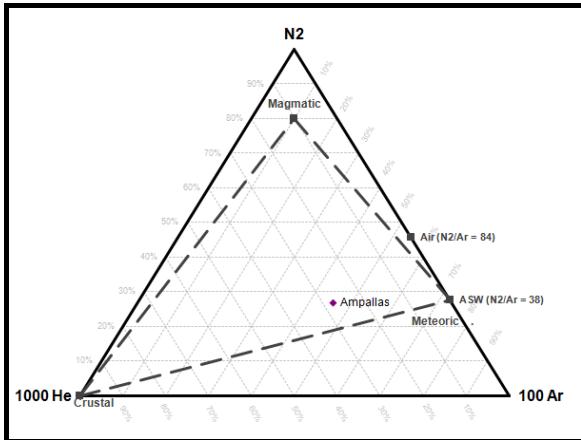


Figure 7: N_2 -He-Ar ternary diagram of Ampallas

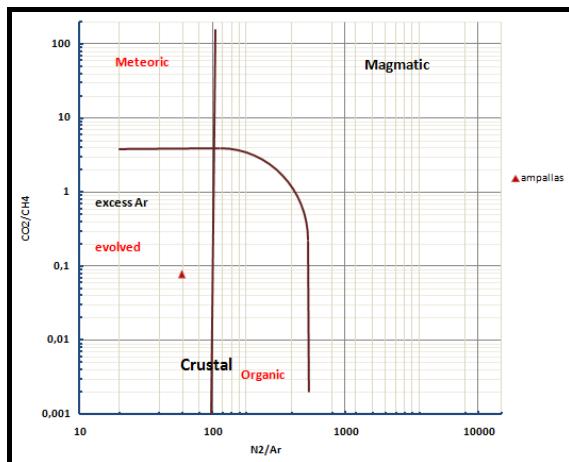


Figure 8: Origin of Fluids Diagram in Ampallas (Norman dan Moore, 1999)

Geothermometers

Chemical geothermometry was used to estimate subsurface temperatures. Using quartz conductive cooling and adiabatic cooling, Na-K-Ca, and Na-K (Giggenbach), the geothermometer for Ampallas are shown in table 3. Considering condition of Ampallas hot spring which is neutral, the temperature is about 66°C , Chloride-bicarbonate type of waters, and plotted on partial equilibrium, so the Na-K (Giggenbach) geothermometer is suitable to approach the reservoir temperature which is about 170°C (medium enthalphy).

Table 3: Geothermometers for Ampallas

Sampel	Quartz cond	Quartz adiabatic	Na-K-Ca	Na/K (Giggenbach)
Ampallas-1	122	119	156	163
Ampallas -2	119	117	160	169
Ampallas -3	111	110	159	169
Ampallas -4	93	95	208	252
Ampallas -5	118	117	231	324
Ampallas -7	130	127	159	173
Ampallas -8	115	114	188	239

Soil Hg

Anomaly of soil Hg could help indicating the permeability area or an *upflow* of the system, because the volatile of species Hg will be concentrated into secondary mineral above the steam zone (Nicholson, 1993). Anomaly soil Hg in Ampallas gives anomaly value > 60 ppb around Ampallas hot spring and Karema warmsprings. This could be an indication of good permeability at this area.

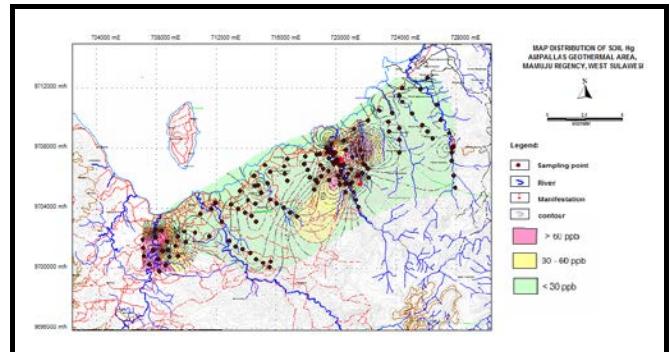


Figure 9: Map of anomaly soil Hg

Conceptual Model

Ampallas geothermal area has cold alteration and hot springs manifestations. The cold alteration could be an upflow of the system, while Ampallas-5 warmspring and Batupane warmspring are an outflow of Ampallas geothermal system.

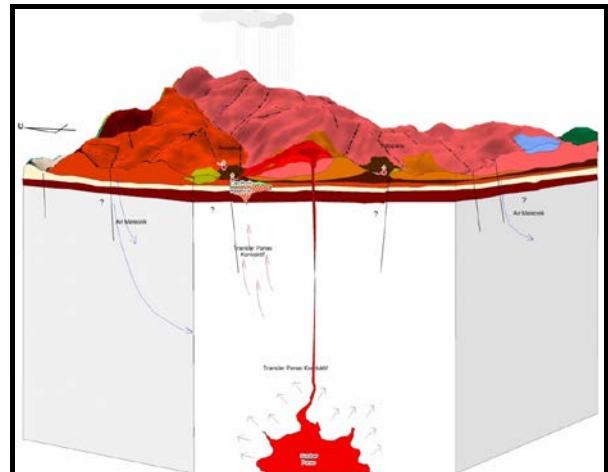


Figure 10. Tentative model of Ampallas geothermal area

CONCLUSION

Geochemistry in Ampallas geothermal area could be concluded:

1. Geothermal manifestations in Ampallas geothermal area could be divided into 3 sources: Ampallas (consists of Ampallas hot spring and Batupane warmspring), Karema (consists of Karema warmspring), and Gantungan (consists of Gantungan warmspring).

2. Ampallas hotspring is chloride-bicarbonate type and plotted in partial equilibrium
3. Reservoir temperatur is about 170°C from Na-K (Giggenbach) geothermometer.

ACKNOWLEDGMENTS

We would like to thank to Center for Geological Resources, Bandung for support this research.

REFERENCES:

Center for Geological Resources, 2012, Geothermal Area Distribution Map and Its Potential in Indonesia, Bandung

Giggenbach, W.F., 1991, Chemical techniques in geothermal exploration. In: D'Amore, F. (coordinator), Application of geochemistry in geothermal reservoir development, UNITAR/UNDP, Rome, 119-142

Nicholson, K., (1993), Geothermal Fluids Chemistry and Exploration Techniques, Springer-Verlag, Germany.