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Abstract 
In this paper, it is proposed a genetic algorithms procedure for solving optimal 
geothermal plant design where choices on the type of components to be used and 
their assembly configuration are driven by reliability objective with the economic 
costs associated to the design implementation, system construction and future 
operation. We also present the result of our implementation. 
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1 Introduction 
 When designing a system, several choices must be made concerning the type 

of components to be used and their assembly configuration. The choice is driven by 
the interaction of reliability/availability objectives with the economic costs associated 
to the design implementation, system construction and future operation “Marseguerra 
et al.(2000)” ”Fyffe (1968)” “Goldberg (1989)”. Optimization approaches to 
determine optimal solutions to design problems have included gradient methods, 
dynamic programming, integer programming, mixed integer and nonlinear 
programming, and heuristics. 

Genetic algorithms are computational tools founded on a direct analogy with the 
physical evolution of species and capable of exploring the search space in a very 
efficient manner. They have been used to solve several engineering problems and are 
particularly effective for combinatorial optimization problems with large, complex 
search spaces. Within the reliability field, however, there have been very few 
examples of their use. 

In our work, the objective function used to measure the fitness of a proposed 
solution is the reliability function. Mathematically, then, the problem becomes a 
search in the system configuration space of that design which maximizes the value of 
the objective function. 

2 Generation of time to failure 
At the design stage, analyses are to be performed in order to guide the designer 

choices in consideration of the many practical aspects which come into play and 
which typically generate a conflict between safety requirements and economic needs. 
This renders the design effort an optimization one aiming at finding the best 
compromise solution. 

The geothermal power plant is a component of the cascaded geothermal energy 
utilization system, and is used to convert the energy of the geothermal water into 
electrical energy using CO2 as working fluid. The elements of the power plant are the 
following: heat exchangers to vaporize and condense the CO2, a reciprocating engine 
connected with the electric generator, a make-up and expansion CO2 tank, and a CO2 
pump. 

A good functioning of the power plant following the required thermodynamic 
cycle has to insure the heat transfer between the CO2 and the geothermal water or the 
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cold water.  The control has to maintain constant the CO2 pressure and temperature in 
all the important states of the thermodynamic cycle. Together with other specialists, 
we decided that we have to implement loops to control the following parameters: t1 
(CO2 temperature after vaporization in the heat exchangers), t3 (CO2 temperature after 
the condensation in the heat exchanger), and h (level of the liquid CO2 in the tank). 
Figure 1 shows the power plant layout, together with the control loops shown using 
dotted lines. The reliability model of this structure is given in Figure 2.2. 

In the block scheme presented in Figure 2.1 we assume that the vaporizers and 
condensers form a series-parallel reliability connection, connectors system is a series 
reliability connection and motor, generator, CO2 pump and motor for CO2 pump are 
in 2 out of 3 (or 3 out of  4) connection. We analyzed the system considering that the 
vaporizers system contains 30 vaporizers. 
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Figure 2.1. Geothermal power plant block scheme 
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1. vaporizers 
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6. condensors 
7. CO2 tank 

Figure 2.2 The RBD for the geothermal plant 

3 The General Problem For Optimizing A System 
We consider a system made up of a series of n nodes, each one performing a given 
function. The task of the designer is that of selecting the configuration of each node. 
This may be done in several ways, e.g. by choosing different series/parallel 
configurations with components of different failure characteristics and therefore of 
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different costs “Nakagawa (1981)”. The safety vs. economics conflict rises naturally 
as follows:  

• Choice of components: choosing the most reliable ones leads to a safe and 
high-availability design but it may be largely non-economic due to excessive 
component purchase costs; on the other hand, less reliable components provide for 
lower purchase costs but loose availability and may increase the risk of costly 
accidents. 

• Choice of redundancy configuration: highly redundant configurations, with 
active or standby components, guarantee high system availability but suffer from 
large purchase costs (and perhaps even significant repair costs, if low reliability 
units are used); obviously, for assigned component failure and repair 
characteristics, low redundancies are economic from the point of view of purchase 
costs but weaken the system availability, thus increasing the risk of significant 
accidents and the system stoppage time. 

 In order to find a solution for system optimization, let consider a system with 
n components (each one performing a given function) connected as a series reliability 
connection “Vladutiu (1989)”. The components are characterized by their fault 
probability:  and by their costs:   (Figure 3.1) ni , ... q, ... q, qq 21 ni , ... c, ... c, cc 21
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Fig.3.b.  
Figure 3.1 The general  reliability model for the n components 
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Each group element will be reserved by a number of identical components 
( ) connected as a parallel reliability connection (Figure 3.b.). We 
consider the situation when the groups’ elements are reliability identical, that is: 

ni , ... m, ... m, mm 21
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For our system, , the probability of functioning without faults, is a monotonously 

ascending function. It has n variables: , which are in the following 
relation: 
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Figure 3.2 The organigram for the calculus of mi
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Based on relations (3.8), (3.9), (3.13) and (3.14) which are dependent only on the 
initial data, we obtain the reliability function, ,  for such a system as being: 0DP
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In Figure 3.2 we have an organigram for calculating the  , im ( )ni ,1= , values for an 
optimal static distributed redundancy.  

By an iterative genetic algorithm procedure we try to obtain a maximum value for 
the reliability function , when *

0D
P *

DC DMC≤ , by selecting k from n   values with the 
 value, respectively (n-k)   
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] [im jm ( )ij ≠  values with the  value. 1+jm

For decision-making purposes, the designer defines an objective function, which 
accounts for all the relevant aspects. Here we consider as objective function the 
reliability for the entire system. 

We assume that after an accident the danger management system cannot be 
repaired and must be shut down. 

For each node a pool of possible configurations is available: the problem is, then, 
that of choosing a system assembly by selecting one configuration for each node, with 
the aim of maximizing the objective function. 

4 The Genetic Algorithm Optimization Approach 
The primary target of genetic algorithms is the optimization of an assigned 

objective function (fitness) “Painton (1995)”. 
A population of 100 chromosomes (bit-strings), each representing a possible 

solution to the problem, is initially considered. This population, then, evolves as 
dictated by the four fundamental operations of parent’s selection, crossover, 
replacement and mutation, for 100 generations. 

Using the roulette-wheel selection, also called stochastic sampling with 
replacement, performs the selection phase in this work. This is a stochastic algorithm 
and involves the following technique:  The individuals are mapped to contiguous 
segments of a line, such that each individual's segment is equal in size to its fitness. A 
random number is generated and the individual whose segment spans the random 
number is selected. The process is repeated until the desired number of individuals is 
obtained (called mating population). This technique is analogous to a roulette wheel 
with each slice proportional in size to the fitness. 

The crossover operator used is single-point crossover:  one crossover position 
k[1,2,...,n-1] – where n is the  number of variables of an individual- is selected 
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uniformly at random and the variables exchanged between the individuals about this 
point, then two new offspring are produced.  
For binary valued individuals, mutation means flipping of variable values. For every 
individual the variable value to change is chosen uniform at random with a probability 
of 10-3. 

During the population evolution we eliminate those chromosomes, which encode 
infeasible solutions because they violate the cost constraint. With the assigned rules, 
which mimic natural selection, the successive generations tend to contain 
chromosomes with larger fitness values until a near optimal solution is attained.  

Recalling that our system is made up of n nodes, we identify the possible 
configurations of each node by a binary value so that the system configuration is 
identified by a sequence of n binary numbers, each one indicating a possible node 
configuration. For the coding, we choose to take a chromosome made up of a single 
gene containing all the values of the node configurations in a string of n bits.  

For example, for a node  we can have either a “1” value, when the number of 
components for that node is 

i
] [ 1+im , either a “0” value, when the number of 

components for node i  is . ] [im
The choice of this coding strategy, as compared to a coding with one gene 

dedicated to each node, is such that the crossover generates children-chromosomes 
with nodes all equals to the parents except for the one in which the splice occurs. This 
avoids excessive dispersion of the genetic patrimony thus favouring convergence. 

5 Numerical Applications 
The genetic algorithm procedure has been applied to the geothermal simple 

system. Given the relative small number of solutions to be spanned in this case, the 
best configuration was found also by inspection.  

The results thereby obtained were compared to those obtained by the genetic 
algorithm and confirmed the good performance of the methodology implemented. 

Our genetic algorithm considers a population of chromosomes, each one encoding 
a different alternative design solution. For a given design solution, the system 
performance over a specified mission time is evaluated in terms of a pre-defined 
reliability function. This latter constitutes the objective function to be maximized by 
the genetic algorithm through the evolution of the successive generations of the 
population in conditions of not overlapping a cost constraint for the system. 

Table 4.1 

Compone
nt i 

Purchase cost Ci 
[103 $] 

Failure rate iλ  [10-3 

y-1] 
1 67.5 4.8 
2 54 4,3 
3 81 4,6 
4 45 3.6 
5 85.5 3.6 
6 58.5 3.7 
7 13.5 3.8 
8 45 4 

The system here considered consists of n = 7 nodes. In TABLE 4.1 we give the 
failure rates and the costs for the system components.  The maximum cost allowed for 
the system is: 1 000 000 $. 

S07 Paper048 Page 18 



International Geothermal Conference, Reykjavík, Sept. 2003 Session #7 

We considered 75 generations for a population of 100 chromosomes and the 
evolution was made with a probability for crossovers set as  and the 
probability for the simple mutation set as 

25,0=cp
01,0=mp , so, on average, 1% of total bit of 

population would undergo mutation. 
Figure 4.1 reports the schematic for the optimal configuration found by the genetic 

algorithm procedure, which converges only after a few iterations. The reliability value 
obtained is 97,435% with a total cost of  995 000$. 

 
Figure 4.1. The optimal configuration 

The following simplifying assumptions are made: i) all components have 
exponentially distributed failure times; ii) all components a of node. A are equal; iii) 
no repair is allowed;  

The simple case considered here has allowed us to compute the objective function 
analytically and the genetic algorithm was able to converge very rapidly, in a few 
iterations. However, for more realistic models we can use a Monte Carlo method for 
its evaluation.  

It is important to be noted that the optimizing approach presented in this paper can 
be extended even for the situation of geothermal plant that includes k-out-of-n: G 
schemes (used for reserving the control unit).  

The reliability, that is the percentage of successful runs recorded in the simulation 
of the resulted system was calculated in EXCEL by using the AVERAGE function 
applied to the columns where were recorded the results of individual Monte Carlo 
runs. In our case, the resulting reliability was: 97,435%. 

6 Conclusion 
The genetic algorithm procedure has been applied to a simple system. Given the 

relative small number of solutions to be spanned in this case, the best configuration 
was found also by inspection. The results thereby obtained were compared to those 
obtained by the genetic algorithm and confirmed the good performance of the 
methodology implemented. 

In conclusion, genetic algorithms can be very useful in solving complex design 
problems. The simple case considered here has allowed us to compute the objective 
function analytically and the genetic algorithm was able to converge very rapidly, in a 
few iterations. However, for more realistic models we can use a Monte Carlo method 
for its evaluation.  

It is important to be noted that the optimizing approach presented in this paper can 
be extended even for the situation of danger control systems that includes k-out-of-n: 
G schemes (used for reserving the control unit).  
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