

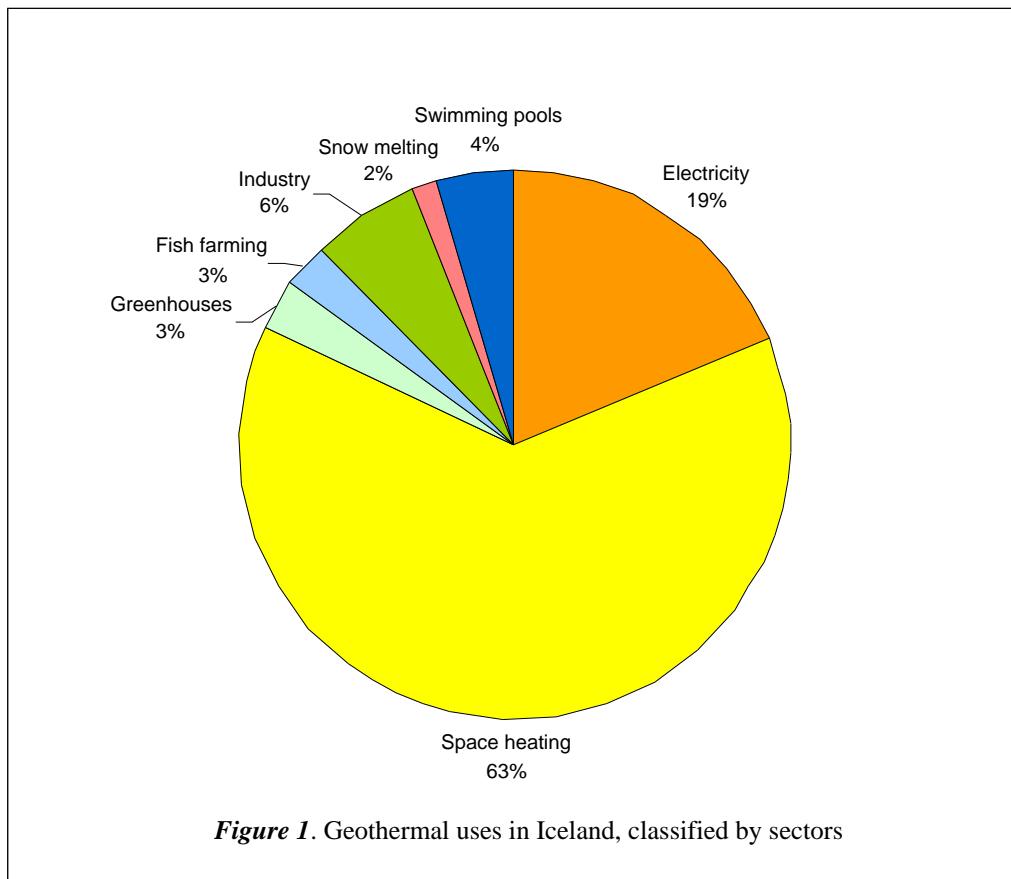
INTERNATIONAL SUMMER SCHOOL on Direct Application of Geothermal Energy

Under the auspice of the
Division of Earth Sciences

The Use of Geothermal Energy - Examples from Iceland -

Einar Gunnlaugsson

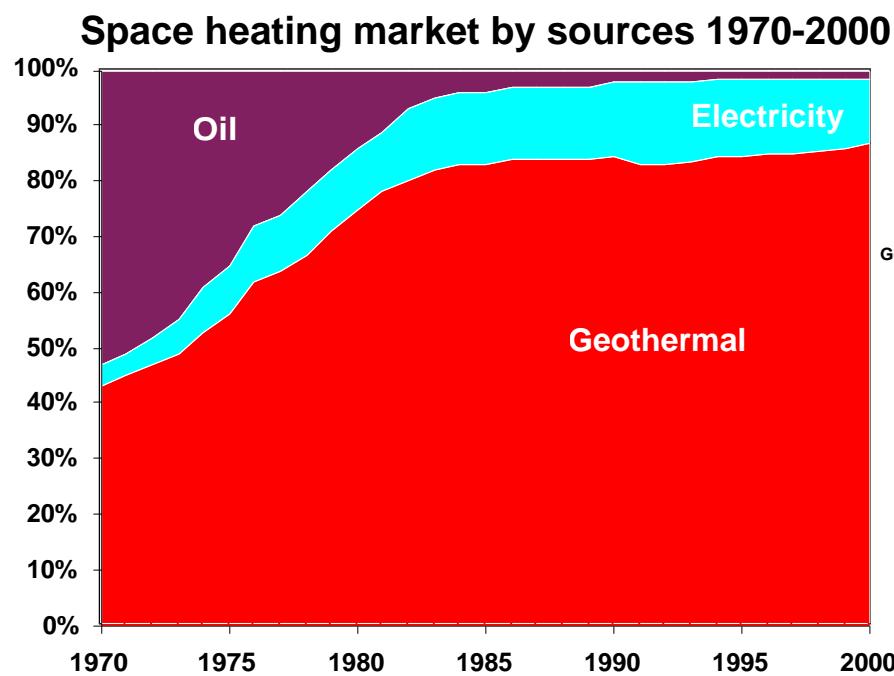
Orkuveita Reykjavíkur, Su_urlandsbraut 34, IS-108 Reykjavík, Iceland


Introduction

The geothermal resources in Iceland are closely associated with the country's volcanism, with the 26 high-temperature geothermal fields located within the active volcanic zone running from Southwest to Northeast, while the low temperature areas are mostly in the areas flanking the active zone. About 250 separate low

temperature areas with over 600 hot springs have been located.

Utilization of geothermal energy


For centuries, geothermal energy was only used for bathing and washing. In the late nineteenth century first attempts were done to use geothermal energy in gardening and in early twentieth century first

greenhouses were heated with geothermal water. At the same time the first houses were heated with geothermal water and steam. Figure 1 shows the geothermal utilisation in Iceland classified by sectors for the year 2000. Direct use of geothermal energy for this year for space heating was 20,400 TJ or 5,650 GWh and the electrical generation was 1,323 GWh. As can be seen on the picture the main use of geothermal energy in Iceland is for space heating, about 63 % with 19 % electrical production in the second place.

District heating using geothermal energy began in 1930 when the first house, a schoolhouse, in Reykjavík received hot water from wells close to the old thermal springs in Reykjavík. Soon after the main hospital, a swimming pool and about 70 private houses were connected. In 1943 geothermal water from a very large thermal field located about 17 km from the

city was piped to Reykjavík. At the end of 1944 total 2850 houses had been connected to the district heating utility in Reykjavík. Following the oil crises in the 1970th the use of geothermal energy for space heating increased considerably. This development can be seen on figure 2. In 1970 geothermal accounted for 43 % of the energy used in Iceland for heating houses but to day it is 87 %. Now there are 26 municipally owned district heating system in Iceland, the largest one in Reykjavík serving 58 % of the total population of Iceland. The newest geothermal district heating system is for the village Stykkishólmur with 1,300 inhabitants. Geothermal heating is now applied in all areas in Iceland where geothermal resources have been located. Relative increase of the geothermal heating is now taking place by discoveries of "hidden geothermal resources" (Stykkishólmur).

Figure 2. Energy sources for space heating 1970 - 2000

Today heating of swimming pools is the third most important direct use of geothermal water in Iceland. There are about 160 **swimming pools** in operation the majority or 130 using geothermal

water. Most of the public swimming pools are open-air pools in constant use throughout the year. Based on the surface area, 89 % are heated with geothermal, 7 % with electricity, and 4 % with oil. Swimming

is very popular in Iceland and in Reykjavík area there are about 30 % of the swimming pools in Iceland. The number of visitors have increased in last years reaching 4.2 millions visits last year which is equivalent to 15 visits per inhabitant. New swimming pool of average size is using similar amount of thermal water as 80 – 100 private houses.

The use of geothermal energy for **snow melting** has been widespread for last 15 to 20 years. Spent water from heating of houses, about 35 °C, is commonly used for de-icing of sidewalks and parking spaces. Most systems have the possibility to mix the spent water with hot water (80°C) in periods when the load is high. Under an extensive rehabilitation of streets in downtown Reykjavík few years ago, a snow melting system was installed under pavements and streets covering about 40,000 m². Many streets in a new construction area in the eastern part of Reykjavík are having snow-melting systems installed.

The total area now covered by snow melting systems in Iceland is estimated to be at least 350,000 m², of which about 250,000 m² are in Reykjavík. The annual energy consumption is dependent on the weather conditions, but in average it is estimated to be about 325 kWh/m². Of that about two third come from spent water from the houses and one third from 80 °C hot water. The total geothermal energy used for snow melting is estimated to be 410 TJ per year.

Geothermal heating of **greenhouses** started in Iceland in the 1924, but prior to that naturally warm soil had been used to grow potatoes and other vegetables. The total area under glass is about 183,000 m². Of this area about 55 % are used for growing vegetables and 45 % for growing flowers for the domestic market. Artificial lighting has increased considerably in the last years, doubled the crop yield and allowed year-around production, but with increasing expenses in electricity. Enrichment of CO₂ gas in greenhouses during the winter has increased last years.

At present there are about 50 **fish farms** in operation in the country. The total production has been slowly increasing last years and is now about 4,000 tonne per year. Geothermal water commonly 20-50 °C is used to heat fresh water in heat

exchanger from 5 to about 12°C and it is mainly used in the hatchery state of the fish production.

The use of geothermal energy for **industrial uses** began on a large scale in 1967 with the establishment of Kísilidjan, a diatomic plant at Myvatn near the Namafjall high temperature geothermal field. It is still the largest industrial user of geothermal energy in the country. The raw material is diatomaceous earth from the bottom of the lake Myvatn. The annual production is about 27,000 tonnes per year of diatomite filter aids for export. The annual steam consumption is about 270 thousand tonnes at 10 bar absolute pressure for drying. This corresponds to an energy use of 521 TJ per year.

A seaweed processing plant at Reykhólar uses geothermal water for drying. The annual production of seaweed and kelp is 2000 to 4000 tonnes and the processing plant is using 28 l/s of 107 °C water.

On the Reykjanes peninsula, a salt plant was in operation for more than 20 years, but it was closed down in 1994. Part of the plant was restarted in 1999 on a small scale.

In Southern Iceland, a plant for the commercial production of liquid carbon dioxide has been in operation since 1986. The plant uses 6 l/s of geothermal water at 160°C with high gas content. The annual production is about 2000 tonnes of CO₂, which is used in greenhouses, soft drink production and other food industries.

Geothermal energy has also been used for other industrial purposes such as drying of hardwood at Husavík in the North which started 1996, drying of fish at several locations, retreating of car tires in Hveragerði in the south and production of cements blocks at Myvatn in the North.

Production of electricity

Last years there has been a large expansion in the energy intensive industry in Iceland that has increased the electricity demand considerably. At the end of 2001 the total installed capacity of electrical power plants in Iceland were 1,470 MW, 1,150 MW in hydropower plants, 200 MW in geothermal and about 120 MW using oil.

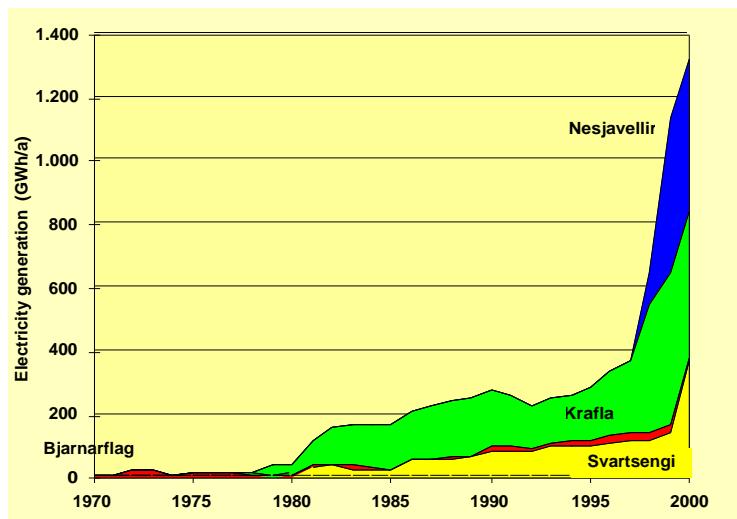
The total electricity generation in the year 2000 was 7,679 GWh or 27,317 kWh per inhabitant. This is higher than in most other countries and is expected to increase in the next years. Table 1 shows the origin of electricity in Iceland in the year 2000. Hydro is accounting for about 82.8 % and geothermal energy for 17.2 %. Fossil fuel is only used as back-up energy.

Production of electricity using geothermal energy has increased considerably during the last years. Figure 3 shows the geothermal generation of electricity in Iceland in the period 1970-2000. The total installed capacity of geothermal power plants is now about 200 MW.

The first geothermal power plant with 3 MWe started operation in 1969 in Námafjall in the North. It has been in operation since, except for three years in 1985-1987 when the plant was closed mainly due to volcanic activity in the area.

The Krafla power plant has been in operation since 1977. For the first 20 years generating 30 MWe but was increased to 60 MWe in 1997. Further increase of 40 MWe are under preparation.

The Svartsengi co-generating power plant has been producing both hot water and electricity since it started operation in 1977. In 1999 a new 30 MWe turbine was installed increasing the capacity to 46 MWe. Of that 8.4 MWe come from binary units using low-pressure waste steam.


At Nesjavellir high temperature field, Reykjavík Energy is operating a co-generating plant. The plant started operation in 1990 with production of hot water for the Reykjavík area. At the end of 1998 the power plant started electricity generation of 60 MWe in two 30 MWe turbines. In the year 2001, the third 30 MWe turbine was installed bringing the total installed capacity to 90 MWe.

At Husavík, located in the Northern part of Iceland, the generation of electricity began in the year 2000 by installing a binary plant of Kalina type. Geothermal water of 125 °C is used to generate 2 MW_e of electricity and hereby cooling the geothermal fluid down to 80 °C. The electricity

Table 1. Production of electricity in Iceland in 2000.

	GWh	%
Hydro	6,352	82.8
Geothermal	1,32	17.2
Oil	4	0.1
Total	7,679	100

generated is enough to provide 75 % of the electrical demand of the town. The 80

Figure 3. Development of electrical production from geothermal 1970 – 2000

°C water from the power plant is then used for district heating of the town.

CO₂ emission from geothermal industry

The environmental issues are playing important rule in all modern society. The emission of greenhouse gasses has to be reduced. Geothermal energy is important as it is renewable and environmentally friendly energy source. In Iceland 83 % of the greenhouse gasses are CO₂. The largest share, or 70 %, originate from the use of fossil fuels. This shows the importance of energy in the reduction of CO₂. In the year 2000 the total emission of CO₂ in Iceland was 3.3 million tonnes. Of which 36 % came from industry, 31 % from transport (excluding international flights), 26 % from the fishing fleet, 5 % from high temperature geothermal plants, 1 % from homes and 1% from other sources. The use of geothermal energy has reduced the CO₂ emission considerably since 86 % of the total population in Iceland is now using

geo-thermal energy for space heating which replaced fossil fuels mainly in the years 1960-1980.

Table 2 shows the CO₂ emission from the high temperature geothermal fields in utilisation in Iceland. It should also be kept in mind that emission from geothermal fields is not production of greenhouse gasses this emission is taking place naturally in all high temperature geothermal fields although the utilisation is increasing the rate on a short time scale.

Future prospects

At present, the majority of town and villages in the geothermal regions in Iceland are using geothermal energy for space heating. It is not expected to grow much further in the coming years. The use of geothermal energy for generating electricity has increased greatly in the last years and is likely to increase further in coming years.

Exploratory drilling in the high temperature geothermal area on the southern side of the Hengill Mountain is now taking place. Two wells are drilled this year and three wells will be drilled in the year 2002. If the result turns out to be positive the first power plant can be in operation there in 2005.

New exploratory well in the Trölladyngja thermal field is promising and future development is expected there in the

next years.

Environmental impact studies are now conducted for three geothermal power plants, i.e. for the extension up to 100 MW

Table 2. CO₂ emission from utilized high temperature geothermal fields 2000

	g/kWh
Krafla	173
Námafjall	210
Svartsengi	181
Nesjavellir (electricity)	28
Nesjavellir (co-generation)	10

of the Krafla power plant and two new power plants, one at Reykjanes and the other in Námafjall.

Industrial uses of geothermal energy are also under consideration, mainly as cascading applications to the electrical production.

Experiments to replace fossil fuel with renewable energy sources for transport and the fishing fleet are now taking place. For this purpose hydrogen produced with electricity seem to be most promising.

References

Árni Ragnarsson, 2001: Orkunotkun á Íslandi. Orku_ing 2001.
 Arni Ragnarsson, 2000: Geothermal development in Iceland 1995 – 1999. Proceedings World Geothermal Congress 2000.

