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I. INTRODUCTION

The distribution of induced-earthquake magnitudes in
deep geothermal reservoirs is a classical tool for monitor-
ing reservoirs. It typically shows some important fluctua-
tions through time and space. Despite being a very crude
information (i.e. a scalar quantity) of very complex me-
chanical stress evolution, understanding these variations
could still give us insights into the mechanics of the reser-
voir. Here we analyse the output of a simple quasi-static
physical model of a single fault with the support of exper-
imental results and propose a new way to describe bursts
that could be compared to seismic events [1].

Crack propagation in heterogeneous media is a rich
problem which involves the interplay of various physical
processes. The problem has been intensively investigated
theoretically, numerically, and experimentally, but a uni-
fying model capturing all the experimental features has
not been entirely achieved (see [2] for a recent review) de-
spite its broad range of implications in engineering and
Earth sciences problems [e.g. 3, 4]. The slow propagation
of a crack front where long range elastic interactions are
dominant, is of crucial importance to fill the gap between
experiments and models. Several theoretical and numeri-
cal works have been devoted to quasi-static models. Such
models give rise to an intermittent local activity charac-
terized by a depinning transition and can be viewed as
a critical phenomenon [2]. However these models fail to
reproduce all experimental conditions, notably the front
morphology does not display any cross-over length with
two different roughness exponents above and below the
cross-over as observed experimentally [e.g. 5].

During most regular fracture experiments, the frac-
ture surface can only be observed post mortem. In an
attempt to study the dynamical properties of the frac-
ture, Schmittbuhl and Malgy [6] developed an experi-
ment where they forced the fracture to develop in a weak
plane of a transparent medium (PMMA). In such an ex-
perimental configuration, the propagation of the fracture
front can the be explored using high resolution optical de-
vices from which different properties characterizing the
fracture dynamics can be inferred. Distribution of the
local fracture velocities [7] or morphology of the frac-
ture front [5] can notably be measured and are found to
be robust parameters when tested against several exper-
imental conditions.

Since Mandelbrot’s discovery [8] that fracture surfaces
in metal display fractal properties, there have been many
attempts to understand the scaling relations of fracture.

In particular, the self-affine nature of fracture surfaces
have come under much scrutiny. A self-affine surface h(z)
has the following scaling relation [9]

h(x) o< ASh(Az). (1)

A is an arbitrary scaling factor, and ( is the roughness
exponent. The scaling relations for fractures have now
been established as scale and direction dependant (Pon-
son et al. [10, 11], Bonamy et al. [12]). In 2010 Santucci
et al. [5] found that the in-plane fractures also had a scale
dependant roughness exponent. At small scales they ob-
tained ¢~ = 0.60, while at large scales they showed that
¢t = 0.35. Attempts to model the behaviour of the in-
plane fracture process had a long time resulted in only the
large scale roughness exponent (Schmittbuhl et al. [13],
Rosso and Krauth [14]), or the small scale roughness ex-
ponent in the context of a stress-weighted percolation
(Schmittbuhl et al. [15]).

More recently, Gjerden et al. [16] presented for the first
time roughness exponents compatible with both the large
scale and small scale values found in the experiments.
Their model was a development of the elastic fiber bundle
model presented by Batrouni et al. [17]. In this model,
the fracture front is the result of an artificially directional
preference for the damage development owing to a linear
gradient in the fiber strength.

We compare here experimental observations of a slow
interfacial crack propagation along an heterogeneous in-
terface to numerical simulations using a cantilever fiber
bundle model. The model consists of a planar set of
brittle fibers between an elastic half-space and a rigid
plate with a non linear shape which loads the system in
a cantilever configuration. The non linear square root
shape combined to long range interactions is shown to
provide an more realistic displacement and stress field in
the process zone around the crack tip and significantly
improved the prediction of the model. Experiments and
models are shown to share a similar self-affine roughening
of the crack front both at small and large scales, a similar
Family-Viscek transient scaling and a similar distribution
of the local crack front velocity.

II. EXPERIMENTAL SETUP

The experimental setup used in the interfacial crack
experiments we will compare our numerical simulations
with, consists of two transparent welded PMMA (poly
methyl methacrylate) plates [e.g. 6, 7, 18, 19]. Disorder
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FIG. 1: Sketch of the experimental setup. Two PMMA plates
of thickness h1 and hg are welded and a mode I fracture prop-
agates at the interface between the two plates. Fracture prop-
agation is caused by the opening, M, between the two plates.
The distance between the loading point and the crack front is
noted L,. The crack front propagates along the y direction.
The gray rectangle marks the area around the crack front we
will reproduce in our simulations.

is first introduced on the surfaces of the plates by sand-
blasting glass beads of variable diameters (180-300um).
Welding of the two plates is then achieved by imposing
a normal load on the assembled plates while heating the
system at 190°C. This thermal annealing produces a co-
hesive interface weaker than the bulk, along which the
sample will break under normal loading.

The upper plate is finally attached to a stiff aluminum
frame while a load is applied over the top side of the
bottom plate in a direction normal to the plate inter-
face. The vertical displacement imposed on the bottom
plate induces stable mode I propagation of a planar frac-
ture along the prescribed weak interface. A sketch of
the experiment is given in Figure 1. The fracture front
creates an optical contrast between the broken and un-
broken part. This fracture front is then tracked by an
optical camera in order to extract its position through
time.

The front propagates along the y axis where the origin
is defined at the loading point and is positive in the di-
rection of crack propagation. The x axis is perpendicular
to y and defines the coordinate of a point along the front.
Sample dimensions are variable but are typically 20 cm
long, 3 cm wide and 5 mm thick for the bottom plate and
lem thick for the upper plate. The large scale bending
of the plate at the sample size is well reproduced by the
elastic beam theory [19]. At a smaller scale i.e. at the
scale of the process zone, the elastic beam theory might
however not be any more valid in describing the shape of
the plate and typical crack solutions eventually provide
more a realistic description.

III. MODEL

The soft-clamped fiber bundle model was first intro-
duced by Batrouni et al. [17] in 2002. We use this model

FIG. 2: Picture of the crack front area obtained during an
experiment. The crack is propagating from top to bottom,
the gray part refers to already broken part and the dark area
to the unbroken part. The optical contrast between this two
parts defines the fracture front. The dimension of the picture
in the z-direction is 4 mm.

in order to reproduce the phenomena occurring at the
process zone scale around the fracture front. We are in-
deed interested in parameters controlling the behaviour
of the fracture front at a short range from its edge. We
thus consider our model as a square of dimension Ly x Ly
around the fracture front. This area of the system is il-
lustrated in Figure 1 by the dark square covering a part
of the fracture front. This area is divided into N x N
sub-squares, each of them containing a single fiber. A
discretization size is then dl = L;/N. The two facing
Plexiglas plates are represented as infinite facing half-
spaces, and act as clamps attached to the N? fibers. The
half-spaces are supposed to have an elastic behavior with
a Youngs modulus E and a Poisson ratio of v. An equiv-
alent simpler configuration can be obtained by assuming
that one of the half-spaces is infinitely stiff. Thus E will
only describe the elastic response of the other half-space.
The system is supposed to be periodic in all directions.
For a full description of the numerical implementation we
refer to Batrouni et al. [17].

The fibers are linearly elastic up to a strength thresh-
old where they break irreversibly and can no longer sup-
port any load. The thresholds are uniformly distributed
between fltni and flhax. The force, f;, experienced by
each individual fiber is given by the Hooke’s law:

fi = —k(ui — Dy), (2)

where 7 is the index of the fiber, k is the spring constant,
equal for all the fibers, D; is the locally imposed displace-
ment between the clamps and u is the local deformation
of the clamps due to the force landscape created by the
surounding fibers. This spatially dependant deformation
is calculated by Love’s law [20]:

N2
ui =y G;f; (3)
i

where j runs over all the fibers in the array (except the
self-induced contribution). The Green’s function G is
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FIG. 3: Sketch of the loading of the fiber-bundle model. Indi-
vidual fibers are represented by dark vertical lines and can be
broken or unbroken. The shape of the bottom plate follows
the displacement D o /L; — y, as given by equation (5) [22]

given by:
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The integrals in Eq.(4) runs over the di? square associ-
ated with the fiber j. The z’ and 3’ coordinates have their
origin in the middle of the discretization areas where the
fibers are attached. The vector r represents the distance
from the origin of the system to (z,y’) for each fiber.

The large scale displacement of the bottom plate
recorded in experiments is well reproduced by an elas-
tic beam model [21]. At the process zone scale however,
the crack tip opening is strongly influences by the crack
geometry. At the scale of our investigation, i.e. close
to the fracture front, we adopt an elastic crack solution.
Indeed, the crack tip opening 6(y) = D(y) — u(y) is then
proportional to the square root of the distance y. — y to
the fracture front [22]:

2
§(ye —y) = S(lﬁﬂ) (g) VYe —y (5)

where y. is the position of the crack tip and K is the
stress intensity factor. We test this solution by imposing
a flat shape D(y) = Dy of the rigid plate and assuming
that half of the fibers are broken.

In order to mimic the displacement behaviour of equa-
tion (5) over a larger scale behind the crack tip, we chose
to impose the following shape:

=Dy V Lf - Y (6)

to the rigid plate where Dy is an arbitrary scaling pref-
actor. This loading scheme is illustrated in Figure 3.
The system is updated iteratively and quasistaticaly by
removing the fibers one by one. At each step we compute
a new prefactor Dy in equation 6 that will correspond to
a force field where only one of the fibers is experiencing

D(y)

a force equal to its strength threshold. This fiber is actu-
ally the closest one to failure and thus requires the least
increase of Dy to break. This fiber is then removed and
the procedure is continued until there is no intact fiber
left.

A. Length scales in the model

When the distances are measured in units of the dis-
cretization size dl, the relative influence of the elastic
interactions with respect to the global loading have been
found to be described by a single parameter named the
reduced Young’s modulus [23]

Edl

where F is the Young’s modulus, N the number of fibers
per system length L. Indeed, the contribution of the
Green function in the force computation of each fiber
can be turned on or off, depending on the value e. In
the stiff regime, i.e. large e, the fracture process is dom-
inated by a diffusive damage controlled by the strength
heterogeneities in the system. When e decreases, the sys-
tem goes trough a cross-over regime where the influence
of the elastic forces rises. When e is sufficiently low, the
competition between the elastic redistribution and the
strength heterogeneities are balanced and the system en-
ters a so-called soft regime. This regime is dominated
by localized damage. As we can see from equation (7),
decreasing F, while increasing N in a way that keeps e
constant is not affecting the influence of the Green func-
tion. We will thus associate the soft systems with large
length scales. Similarly, we will associate the stiff systems
with short length scales.

IV. RESULTS

A. Front morphology: self-affine caling and
cross-over length scale

Previous experimental studies reported that an interfa-
cial crack front in the present configuration is self-affine
with a roughness exponent ( ~ 0.6 [e.g. 6, 18]. More
recent data extracted from numerous experiments and
at various scales show that actually two distinct regimes
emerge depending on the scale of investigation: at small
scales the scaling regime is characterized by a roughness
exponent (~ ~ 0.60 while at large scale the exponent
is lower and is found around ¢* =~ 0.35 [5]. We aim at
comparing the scaling properties of the simulated crack
front to experimental observations. For this, we identify
the fracture front as the interface between the cluster of
broken fibers spacially connected (i.e. in the sense of a
link between first neighbors) to one side of the system
and the cluster of surviving fibers connected to the other
side. When this interface is identified, it is approximated



FIG. 4: Example of a fracture front trace during a simulation
for a stiff system. The dark points refer to broken fibers
while yellow points are intact fibers. The system size is N=32.
The red line represents the fracture front following a SOS
algorithm (see text).

FIG. 5: Same as figure 4 for a soft system.

as a function of the z-coordinate for each time step t:
h(z,t) by using a solid-on-solid (SOS) algorithm. The
front line is indeed deduced by taking the first y-value
hit when searching along the y-axis from above or below.
An example of this front is given by the red line in Fig-
ure 4 for stiff systems, and in Figure 5 for soft systems.

We investigated the scaling properties of the crack
front morphology in our simulations. In order to find
the roughness exponent (cf Eq. 1) of the fracture fronts
produced by our model, we analyzed them using the av-
erage wavelet coefficient method [24]. This gives us a
roughness exponent of (_ = 0.53 4+ 0.02 for stiff systems.
We also realized simulations in the soft regime, i.e., repre-
senting large length scales. Similarly, we extracted front
positions and computed the wavelets coefficients from the
front morphology. We obtained the roughness exponent
by fitting the four largest coefficients for L = 128. This
gives: (4 = 0.35+ 0.01. As opposed to the short scale
regime, the estimated value of { is nearly insensitive to
the system size. We also observe that the experimental
roughness exponent observed at large length scale [5] is
similar to the one we obtained from our simulations.

B. Distribution of local velocity and velocity burst
distribution

A direct way for studying the dynamics of the fracture
propagation is to measure the distribution of the local
velocity along the crack front. To obtain this we use the
waiting time matrix technique developed by Malgy et
al. [7] on experimental data. Comparisons with experi-
mental data show a good agreement. We notably recover
in the simulation a similar heterogeneous pattern of the
local crack speed.

Experimentally the distribution of the local velocities
v have been found to follow the relation:

Pv/{v)) o< (v/(0)) 7",

where n = 2.55 + 0.15 and is found to be a robust fea-
ture over many experiments [7, 25, 26]. In a previous
fiber bundle model Gjerden et al. [27], following the same
procedure for computing the waiting time matrix, found
that, at large scale i.e. for soft systems, the velocity dis-
tribution is well fitted by an equation of the form of Eq.
(8) with an exponent n = 2.53 close to the experimental
value. We see that the two regimes produce a power-law
decay of the velocity distribution above the average crack
velocity. The best power law fits for the two regimes, stiff
and soft regimes, give n_ = 2.89 and 74 = 2.54 respec-
tively. Such values are very close to the experimental
exponent 1 = 2.55, especially for the soft system.

for(v/(v)) > 1, (8)

Damage burst distribution, b,

In order to compare our model to the one presented
by Amitrano [28], we want to find the distribution of
temporal damage bursts. We can then extract a burst
distribution exponent by-value from our system using the
event-size distribution. We recall that we define the size
of an event §, as the number of fibers that are broken
for each increase of the load . We run the elastic fiber-
bundle model for both the stiff (e = 32) regime with
diffuse ductile failure, and the soft (e = 7.63 - 107)
regime with localized brittle failure. This is done for
both regimes at L = [32,64, 128, 256]. The slope of 1.475
for the linear trend for §/LY < 1 is consistent with the
theoretical 1.5 burst exponent for the equal load shar-
ing fiber bundle model (see Pradhan et al. [29], Hem-
mer and Hansen [30] and Pradhan et al. [31]). This
gives us a size independent stiff by-value of 1.475 for
L =[32,64, 128, 256].

V. CONCLUSIONS

Our model is an elastic fiber bundle model describing
multiple ruptures along a single major fault of the reser-
voir. It consists of a set of fibers with various strengths,
arranged in a planar L x L two dimensional array, linking



together two elastic half-spaces. It mimics a fault zone
with various asperities. During load, the fibers break
quasi-statically according to a stress threshold distribu-
tion. On the contrary to classical fiber bundle model,
here when a fiber breaks, it redistributes the load on
the surviving fibers through long range elastic interac-
tions. Interestingly, the elasticity of the half-spaces which
changes the range of the stress distribution, characterizes
two distinct regimes. In a stiff regime we find an effec-
tive ductile deformation regime at large scale since the
damage distribution is very difuse. Conversely in softer
systems, the distance between two consecutive breaking
fibers gets smaller and failure of the interface is local-
ized, exhibiting an effective brittle regime. We analyse
two types of burst distributions: a classical one built from
the statistics of the broken bonds during each failure step
and a new one defines from a waiting time matrix of the
fracture front propagation. The first one reproduces sev-
eral known results for this type of model. The new one
evidences the existence of effective creeping advances of
the front with statistics that follow a Gutenberg-Richter
distribution in particular in the ductile regime (stiff sys-

tems). We proposed a new definition of bursts in a fault
model, based on the local fracture front velocity. We
find that b,-values for the distribution of the velocity
clusters are very consistent with Gutenberg-distribution
of induced seismicity. We link the b,-value fluctuations
in the reservoirs to the influence of the velocity thresh-
old level that could be related to recording limitation.
by-values obtained from the broken bond statistics are
hardly comparable to seismic events because of the lack
of space contiguousness of broken fibers during bursts.
In the light of our results, we discuss the implications of
b-value changes in geothermal reservoir in terms of fault
asperities and normal stress evolution.
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