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ABSTRACT

Ground Coupled Heat Pump (GCHP) systems
connected to a set of vertical ground heat exchangers
require short and long term dynamic analysis of the
surrounding ground for an optimal operation. The
thermal response of the ground for a multiple
Borehole Heat Exchanger (BHE) field can be
described by proper temperature response factors or
“g-functions”. This concept was firstly introduced by
Eskilson (1987). The g-functions are a family of
solutions of the transient heat conduction equation and
each of them refer to a given borehole field geometry.
Furthermore the g-functions are the core of many
algorithms for simulating the ground response to a
GCHP system, including the well-known commercial
software EED.

Analytical approaches based on the Finite Line Source
(FLS) model have been developed by Eskilson (1987),
Zeng et al. (2002) and later by Lamarche (2007). Such
solutions can be in principle applied together with
space superposition to infer the thermal response for
any BHE configuration.

This study is a continuation of the previous work
presented in Acufia et al. (2012), and a further
investigation is devoted to optimize a numerical model
of a squared configuration of 64 boreholes using the
commercial ~ software  Comsol  Multiphysics®©.
Symmetry conditions and different Fourier numbers
have been applied and explored together with the
effects related to the dimensions of the calculation
domain with respect to the BHE depth and BHE field
width. Furthermore, a parametric analysis is addressed
to boundary conditions, which points out possible
limits on the calculation domain extension. The results
of the proposed numerical model are compared with
the g-functions embedded within the EED software as
well as those calculated by FLS method through the
spatial superposition. In a closer approximation to
reality, the numerical model is also studied accounting
for an adiabatic part at the top of the BHE.

NOMENCLATURE

Abbreviations

BHE Borehole Heat Exchanger
EED Earth Energy Design

FLS Finite Line Source

GCHP Ground Coupled Heat Pump

GLHEPRO Professional Ground Loop Heat
Exchanger Software

SBM Superposition Borehole Model

Symbols

B Distance between BHES (m)

Cp Specific heat (J kg?K™)

D Buried depth of the borehole field (m)

Foy Fourier number defined in equation [1]

g-function  g-function, defined in equation [1]

H Borehole length (m)

k Thermal conductivity (W m™K™)

Q' Heat flux per unit length (W m™)

My Borehole radius (m)

SO Ground dimension of a borehole field,
D/H=0

S1 Ground dimension of a buried borehole
field, D/H=0.04 and 0.05

Tave Average temperature (°C)

Ty Undisturbed ground temperature (°C)

t Time (s)

a Thermal diffusivity (m? s™)

p Density (kg m™)

1. INTRODUCTION

The characteristics of GCHP systems make this
technology be recognized as one of the most
sustainable for heating and cooling purposes in
commercial and residential buildings. However, a
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well-designed GCHP system requires a short and long
term dynamic analysis of the ground’s thermal
response.

In these systems, a heat pump is coupled to a
secondary circuit consisting of a set of heat
exchangers buried in the ground. Typically, the heat
exchanger are set up in a vertical layout and connected
in parallel. Thus, a carrier fluid circulates through
them, while the heat is exchanged to or from the
surrounding ground and transferred from or to the heat
pump. Thus, the ground acts as a heat source or sink
for heating or cooling purposes, respectively. An
optimal design requires the study of the thermal
response of a borehole field for long periods. This
response, which is based also on building heat loads
and ground properties, determines the choice of the
BHE arrangement and its geometrical characteristics
such as BHE length and spacing. The design of the
borehole length is subject to a prescribed temperature
limits. The ground temperature must be kept on such
levels suitable for coping with the limits imposed or
required (in terms of performance) by the heat pump
according to the building demand over the years.

In the last two decades, different analytical and
numerical methods have been proposed to determine
the ground response to BHE systems. From the point
of view of the numerical approach, probably the best
known solutions are those developed by the
Superposition Borehole Model (SBM), (Eskilson,
1986). This finite difference methodology (cf also
Eskilson, 1987) allowed a set of response factors for
certain BHE configurations to be generated: these
solutions are known as g-functions. The g-function is
a non-dimensional temperature response factor that
relates the borehole temperature and the
extracting/injecting heat rate from the ground through
the ground conductivity. Any g-function is a particular
solution of the BHEs configuration which depends on
a non-dimensional time and two non-dimensional
geometrical ~ parameters. The  non-dimensional
geometrical parameters can be written as the ratio of
the borehole spacing and the borehole radius with
respect to its borehole length, i.e. r,/H and B/H. Since
the SMB finite difference method resulted in a high
computational time, the g-functions were first
calculated as single BHE temperature field in space
and time and then superposed in space. In such a way
a significant number of BHEs configurations could be
described and a library of g-functions was made
available for design as the commercial software, EED
(Hellstrom and Sanner, 1994). Recently, other design
software such as GLHEPRO (Spitler, 2000) used
similar libraries of g-functions for specific BHEs
configurations. By temporal superposition of the
thermal loads requirements of the building, the EED
family of softwares are able to predict the response of
the ground to a system of BHEs as a function of the
building time series of heating and cooling loads. One
limit of this approach (together with the unknown
uncertainty of g-function values) is the limitation on

the predefined BHE configurations implemented in
the software.

The fast semi-analytical approach based on the Finite
Line Source developed by Lamarche (2007) presents a
better flexibility to generate the g-function of any
BHE configuration. In general, the analytical solution
(with proper spatial superposition) is able to
reproduce, with acceptable deviations, the response of
the wvertical BHE configurations calculated by
Eskilson. Some authors as Sheriff (2007), Bernier and
Cauret (2009) and Fossa (2011a, 2011b) applied the
FLS solutions and their results confirm a good
agreement with the original g-functions.

In this paper a numerical model for a squared
configuration of 64 boreholes was properly developed
in  Comsol Multiphysics© environment, as a
continuation of the work recently presented by Acufia
et al. (2012). The choice of the present configuration
was made due to the fact it represents one of those
cases where the FLS generated temperature response
factors show not negligible differences with respect to
the original g-functions. In addition this configuration
allows the possibility to exploit some symmetries and
hence to reduce the dimension of the calculation
domain. A number of steps during the design of the
numerical model were carried out to optimize either
the mesh or the time steps to enhance the computing
time. For this purpose, symmetry conditions and
different Fourier numbers have been applied, as well
as different strategies to design the mesh and set the
characteristics of the solver. The temperature
distribution obtained from the numerical model was
then employed to generate the g-function for the
present geometry in a range of Foy values from -5 to
2. This g-function was then compared with the ones
embedded within the EED software as well as with
those calculated by FLS method. Moreover, in a closer
approximation to a real case, the numerical model was
also performed when an adiabatic part is considered at
the top of the BHE, defined as buried depth of the
borehole field in this study. Its response is also
compared with the solution from the analytical FLS
solution for the same buried depth in the borehole
field.

2. THEORETICAL BACKGROUND

Of practical interest for the optimum operation of the
heat pump is the estimation of the borehole wall
temperature. In the GCHP systems, the borehole heat
exchanger can be considered as a heat sink with
respect to ground for winter operations. Some
assumptions are behind any temperature response
factor model, including homogeneous and isotropic
surrounding medium. Another assumption is to
consider only the heat conduction, hence neglecting
any groundwater flow. The infinite line source theory
represents the simplest method to evaluate the
borehole wall temperature: in this case the heat source
is considered as an infinite line in an infinite medium.



However, this model does not consider heat
conduction in the vertical direction.

The line source theory can be refined in different
ways, including the introduction of a boundary surface
to the conduction domain. The temperature of this
surface can be set at the undisturbed ground
temperature, assumption which is reasonable also to
describe a deep BHE field (H=100-200 meters). In the
following a brief review of the most important
contributions to the BHE conduction problem is
presented.

Ingersoll et al. (1954) developed an analytical solution
from the infinite line source (ILS) method to
determine the thermal response factors for very simple
BHE configurations. Later, Eskilson (1987)
introduced the concept of g-function. To obtain the g-
function of a borehole field, Eskilson solved the
temperature field for a 2D case of a single borehole, in
which the medium is limited by a top surface at zero
temperature and constant heat flux is applied to the
source. Spatial superposition is then performed to
evaluate the temperature distribution at the BHE
positions for the whole borehole field. Eskilson
devoted an extensive research on both analytical and
numerical solutions. However, the author inclined
towards the finite difference solution for calculating g-
functions. As mentioned before, the g-functions are
nowadays implemented in commercial software,
where the users can select the BHEs configuration and
predict the response of the system for the specific
energy requirements of the building. Even if current g-
function libraries are quite comprehensive, the user
cannot however specify a particular pattern of the
borehole field in present commercial codes.

Zeng et al. (2002) proposed an analytical solution of
the finite line source. This solution is a step forward
with respect to the corresponding Eskilson one but it
still involves important numerical issues, making it
unattractive for practical applications. Recently,
Lamarche and Beauchamp (2007) introduced a
modification to the solution proposed by Zeng et al.
(2002) which allows a faster calculation of finite
length source temperature evolution. This solution is
based on a mirror technique and on a double
integration of the Fourier equation complete solution.
The single FLS solution can be then superposed in
space in order to calculate proper g-functions related
to the particular geometry taken into account. In
general, this approach allows the calculation of g-
functions with values very similar to the ones
calculated by Eskilson (1987). However, differences
about 10% are found in the asymptotic part of the
curve for large BHEs configurations. The difference in
the boundary conditions applied in Eskilson (1987)
and Lamarche and Beauchamp (2007) may explain
these discrepancies in the g-function. Eskilson’s
(1987) solution considered a uniform wall temperature
within all the boreholes when a constant heat flux is
extracted from the borehole field, whereas the
analytical solution in (Lamarche and Beauchamp,

2007) assumed a constant and uniform heat flux
extraction at the wall in all the boreholes within the
field.

In this paper, we developed a numerical model in
accordance with the boundary conditions defined in
(Lamarche and Beauchamp, 2007). Then, the g-
function of the present borehole field is evaluated by
calculating the average temperature of the boreholes
along the time. The g-function can be related to the
average borehole temperature as expressed in equation

[1]:
Tave(Tp) = % ' g(ln(9FoH) vrb/H , B/H) + Tg‘r [1]

In equation [1], the Fourier number is used to define
the non-dimensional time in terms of the borehole
length when « is the thermal diffusivity of the ground.
The Fourier number can be expressed as:

Foy =;_§ [2]
3. NUMERICAL MODEL

As a continuation of the work presented by Acufia et
al. (2012), a numerical analysis is performed for a
borehole field consisting of a squared pattern of 8x8
BHEs, including a number of improvements as
compared to this earlier work where many
simplifications were made. This section describes the
new approach used for the numerical generation of the
g-function.

3.1 The borehole field geometry

The geometrical characteristics of the borehole field
are listed in Table 1.

Table 1 : Geometrical characteristics of the 8x8
borehole field

H(m) | 100
r, (m) | 0.05
B(m) | 5

The first simulations refer to the ground response
when the borehole heat exchangers are thermally
active from the top of the surface, as it is the case
when boreholes are grouted -most borehole fields in
central and south Europe. Moreover, in a closer
approximation to real applications in north Europe,
where groundwater filled boreholes with water table
levels varying from 0 to several meters, and also to
cope with some assumptions adopted by Eskilson
(1987), a model was created according to the
assumption that there is an adiabatic part at the top of
the BHE. This condition was simulated by locating the
heat sources in the Comsol model at a level below the
ground top surface, as they were “buried” to a given
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depth of some meters. Eskilson did not specify clearly
the buried depth of the borehole field in his studies.
Our numerical model is built up for a buried depth of
four and five meters. In Table 2, the study cases with
regard to the buried depth of the borehole field are
listed.

Table 2 : Study cases with regard to the buried
depth of the borehole field

Study cases | D (m)
1 0
2 4
3 5

3.2 The heat transfer in the borehole field

The heat transfer problem is only accounted for the
surrounding domain of the boreholes, i.e. not inside
the borehole heat exchanger. Therefore, our system is
simplified to one domain, which corresponds to the
ground surrounding the boreholes. Then a tri-
dimensional transient heat transfer problem is solved
in this domain. To this aim, the following conditions
are set up:

As an initial condition, the whole domain is supposed
to be at an initial constant temperature. In our case,
this temperature is set to T,=8°C, a typical value of
the undisturbed temperature in southern Sweden.

In the surrounding boundaries of the borehole field, a
temperature condition is set at the top surface and at
boundary surfaces far enough from the borehole field.
These boundaries are set in the radial direction and
downwards of the borehole field, with a temperature
corresponding again to an undisturbed level equal to
Tor.

Regarding the boundary condition at BHE surface, a
constant and equal heat flux is imposed at the borehole
wall. This study assumes a total heat flux of 6400 W,
i.e. 1 W/m borehole. Thus, the heat transfer inside the
borehole field is solved in agreement with the
boundary conditions defined in the FLS-solution
Lamarche and Beauchamp (2007), only differing from
the fact that our geometry is fixed and the outer
boundary (undisturbed ground) should actually move
freely as the borehole field is loaded.

The numerical model has been solved according to
different steps, which are explained in detail in chapter
4. The response of our numerical model is tested at
each stage by comparing the g-function with the one
from the analytical solution Lamarche and Beauchamp
(2007) and the related superposition process for the
8x8 geometry. The numerical model allows generating
the borehole temperature at every instant of time. By
applying equation [1], the g-function is easily obtained
for a known heat flux injection. It should be noted that
for a borehole buried at a certain depth, the solution
from the numerical model is verified with the FLS
solution having the same buried distance, according to
Table 2.
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4. OPTIMIZATION STRATEGIES

A typical issue with numerical models is the reduction
of the computational time. Since this problem applies
in a severe way also to the present case, some
strategies of optimization are applied here to speed up
the solution of the problem. These strategies take into
account the optimization of the geometry, the time
step and the overall duration of the simulation.

4.1 Geometry optimization

First, the optimization strategies with regard to the
geometry are applied. The borehole field geometry
presented in Acufia et al, (2012) is reduced to a quarter
of the total volume by considering symmetry in the
system. Thus, an adiabatic condition is defined at the
symmetry faces. To solve the heat transfer problem,
the thermal properties are defined in this domain in
accordance with typical values in the south of Sweden.
Worth noticing that the derivation of the g-function
values is not affected by the thermophysical data set
employed for the calculation of the ground domain
temperatures. These values are shown in Table 2.

Table 3: Thermal properties of the ground volume

Cp (kg K) 870
kK (W/mK) 3.1
p (kg/m°) 2300

Then, a parametric study is carried out with respect to
the ground volume extension.

:"i--' o.r_u

Figure 1: Computational domain and simplified
geometry of the 8x8 borehole field

The volume has been increased in the radial direction
and downwards the borehole field. The surrounding
domain of the borehole field must be enlarged in such



way that its volume is the minimum necessary to
represent properly the thermal response of the
borehole field. Thus, the heat transfer problem is
solved by enlarging the ground volume until the
solution does not change any more when the
simulation time is selected in order to have
In(9Fox)=2. This minimum volume was achieved
using 150 m and 100 m to the side and downwards of
the borehole field, respectively. The model generates a
similar response to the one from the “minimum
volume” when the ground volume increases up to 300
and 400 m in the radial and downwards the borehole
field, respectively. Moreover, the numerical solution is
compared with the analytical solution. Figure 1
shows a picture of a quarter of the borehole field and
the final volume of its surrounding ground.

For a borehole field buried a depth of four or five
meters, the size of the domain in our numerical model
was increased until its response did not changed with
the size of the ground volume. Therefore, a parametric
study in relation to the ground volume is also carried
out in case of a buried borehole field.

Figure 2: Computational domain and geometry of
the 8x8 borehole field buried 4 meters in
depth.

After a number of simulations, the minimum volume,
in which the response from the numerical model does
not change, is 500 and 200 meters in the radial
direction downwards the borehole field, respectively,
for values of In(9Foy) around 2. The model presents a
similar response to the one defined as “minimum
volume” when the volume is enlarged to 500 and 300
meters to the side and downwards the borehole field,
respectively. The numerical solution using a buried

depth is compared with the FLS solution. The
geometry for a buried borehole field is shown in
Figure 2. This is a correct size choice, at least when
the ratio D/H is equal to 0.04 or 0.05. Further work
will be devoted to set a ground volume independent on
the size, i.e. as an infinite element domain.

4.2 Simulation time optimization

When the strategies to optimize the geometry have
been set up and verified to represent properly the
response of the system for all the cases proposed in
Table 2, a simulation time optimization is applied.

The simulation time optimization is carried out by
modifying the thermal properties of the ground, since
they affect the Fourier number which in turn is the
independent variable of the g-function representation.
Since the Fourier number is related to the thermal
properties of the medium by means of the thermal
diffusivity as expressed in equation [2], the overall
duration can be decreased by modifying the thermal
properties of the ground. This modification implies
the increase of the thermal conductivity and the
decrease of the specific heat and the density. The
numerical model should represent the response of the
system for values of the In(9Foy) around 2, since this
is the typical condition when a g-function (referred to
any borehole field geometry) reaches its asymptotic
value.

The starting point of the simulation time optimization
is the part where the geometry is reduced to a quarter
of the total volume and the thermal properties are
those in Table 2. The thermal properties in Table 3
correspond to the values used in the first re-scaled
problem study in this section. The end time of
simulation can extend up to 200 years in the first
investigation. In the second part of the analysis, which
is performed using the values in Table 3, the time
horizon is reduced to 35 years, again for In(9Foy)
values around 2.

Table 3: Thermal properties of the borehole field

Cp (kg K) 500
K (W/m K) 6
p (kg/m°) 1500

In a third and final step, the time horizon is decreased
to around 4 years thanks to the thermal property listed
in Table 4.

Table 4: Thermal properties of the borehole field

Cy (kg K) 100
kK (W/mK) 6
p (kg/m) 1000

In Figure 3, the study time is shown in relation to the
three different thermal properties listed in Table 2, 3
and 4 against the In(9Foy). However, it should be
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noted that the decrease of the end time of simulation
implies a lower maximum time step in the solver.
Therefore, a maximum time step of 120 days, 30 days
and 10 days is set when considering the thermal
properties of Table 2, 3 and 4, respectively.

Thermal |
Properties

Table 4 3.9 hours 29 days ! 7.1 months 4.4 years
Thermal |
Properties | | |
Table 3 | 29.5 hours 7.2 months | 4.5 years |33 years
Thermal |
Properties | | |
Table 2 | 5.1 months 3.1years 123.1 years 1170.4 years
i - ¢ S E—
-4 -2 o 2
Ln(9Fo)

Figure 3: Strategy of optimization based on the
Fourier number

In Table 5, the computing time is shown with respect
to the thermal properties considered in each case. The
computing times are similar for D equal to 4 and 5 m,
so these are presented in a single column in Table 5
labelled as buried. The values presented in Table 5
correspond to the simulations run with a computer of 8
GB RAM with a processor Intel® Core ™ i7-860
CPU at 2.80 GHz.

Table 5: Optimization Strategy- Computing Time

Time Computing Time
Thermal Steppi (min)
Properties tepping No Buried Buried

(days) o0 Burie urie
Table 2 120 180 330
Table 3 30 150 240*
Table 4 10 70 120*

(*) the response is acceptable in a certain range of the In(9Foy).

This optimization strategy shows that it is possible to
decrease the computing time by increasing the thermal
properties of the ground and setting proper time steps
in the solver when the ratio is D/H=0. However, when
a certain buried depth is considered this strategy is
only valid for values of In(9Foy) lower than about -1.
For higher values of In(9Foy), the numerical model
was not able to properly represent the theoretical
response of the borehole field. Consequently, this time
optimization strategy is not applied in case of a buried
borehole field. Further work will be devoted to this
observation.

4.3 Mesh

The elements of the mesh play an important role in the
results as well as in the simulation time. Thus, an
optimization strategy is also applied to improve the
mesh with respect to the one presented in Acufia et al,
(2012).

Considering the geometry of Figure 1, where the
borehole heat exchangers are not buried, the elements
of the mesh are created by selecting a triangular mesh
at the top face of the domain. Then, a swept is applied
along the borehole length. Finally, the bottom part of
the domain, under the boreholes, is meshed with
tetrahedral elements. The domain consists of around
135256 elements in total. The mesh is created in such
a way that small elements are chosen at the top and the
bottom of the near region of the BHES.

Since the geometry is different when having a buried
borehole field, the mesh is constructed in a different
way. A triangular mesh is set at the horizontal plane
where the BHE are buried. The triangular elements are
swept along the borehole depth. A free tetrahedral
mesh is chosen in the upper part of the domain
between the surface and the buried borehole field. The
downward part of the borehole field is built in the
same manner used in the non-buried case using
tetrahedral free elements. The number of elements
increases to around 440000 elements when the
borehole field is buried. The volume above the
borehole field, around the buried depth, consists of
around 73000 elements.

5. RESULTS

Besides the results presented in section 4 concerning
the optimization strategies, the resulting g-functions
are presented here.

The g-functions obtained from the numerical model
are labelled as Comsol for different ratios of D/H.
These results are compared with those generated from
the analytical FLS solution with proper superposition
in correspondence to the same ratio D/H, referred as
FLS, and those generated with the commercial
software Energy Earth Designer, EED.

5.1 The borehole field is not buried

60 -

0.0005)

50 | e

40 | /
0 7
20 yd

g-function (t/ts, rb/H

10 - o

In(9Fo,)
—EED FLS ----Comsol

Figure 4: g-function generated with Comsol, the
FLS method and EED, D/H=0



The g-function generated from the numerical model
fits well with the solution obtained from the analytical
solution, labelled in the graph as FLS. A small
discrepancy can be appreciated between these in
Figure 4 when the In(9Foy) reaches values around 2.
None of these g-functions is in good accordance with
the one generated with EED, which possibly has to do
with the different boundary conditions used in each of
these approaches. Further work is being dedicated to
generating a g-function showing better agreement with
the Eskilson result.

5.2 The borehole field is buried 4 meters in depth

0.0005)

g-function (t/ts, rb/H

In(9FoH)

— -EED — -FLS D/H=0 FLS D/H=0.04
——Comsol D/H=0.04 SO <+« Comsol D/H=0.04 S1

Figure 5: g-function generated with Comsol, the
FLS method and EED, D/H=0.04

Figure 5 shows the g-function obtained from the
numerical model when the surrounding volume is kept
in the same size as in the initial case (Figure 1). This
solution is labelled as Comsol D/H=0.04 SO, where SO
is referred to the initial volume dimensions. There is a
slight better agreement between the Comsol and the
FLS solution when the surrounding volume is
increased (Figure 2). This solution is labelled as
Comsol D/H=0.04 S1, where S1 makes reference to
the increased surrounding. It can be observed that the
two numerical solutions do not differ significantly and
the percentage difference is below 1.5%. In Figure 5,
the analytical solution when the borehole field is not
buried is also included, FLS D/H=0. Comparing the
solutions with respect to the buried depth, the g-
function presents higher values when the borehole
field is buried. This fact can be explained by recalling
that all the models have a top surface boundary
condition where undisturbed ground temperature is
imposed. This condition cools down the ground and
hence reduces the borehole field average asymptotic
temperature, from which the g-function depends and it
is calculated on. In the solution generated with EED,
the buried depth is not well specified.

The comparison of the solution generated with EED
with those from our numerical model and the
analytical solution shows that Comsol and FLS
functions agree well with each other, but differences

with EED become higher when a certain buried depth
is considered.

5.3 The borehole field is buried 5 meters in depth

Figure 6 shows the g-functions obtained when the
borehole field has a buried depth of 5 m. By
increasing the surrounding volume, the numerical
solution presents a good agreement with the analytical
approach for a similar buried depth. These solution are
labelled as Comsol D/H=0.05 S1 and FLS D/H=0.05
for the numerical and analytical approaches,
respectively.

0.0005)

g-function (t/ts, rb/H

In(9FoH)
— -EED — -FLS D/H=0 FLS D/H=0.05
——Comsol D/H=0.04 S1 ---- Comsol D/H=0.05 S1

Figure 6: g-function generated with Comsol, FLS
and EED, D/H=0.05

The FLS generated g-function for D/H =0.04 is also
included in Figure 6.The g-function for a buried depth
of 5 meters presents slightly high values than when a
buried depth of 4 m is used, as could be expected from
the considerations on the increasing distance from the
imposed temperature top surface. This difference is
more notable at the asymptotic part of the curve. Thus,
the differences with EED solution become slightly
higher than in the previous cases, which are also more
relevant for a values of In(9Foy) around 2.

6. CONCLUSIONS

A numerical model has been built in order to perform
g-function calculation for complex BHE domains. In
the present paper a 64 BHE square arrangement has
been chosen. A constant heat flux is applied as a
boundary condition on the borehole walls. The
analyses have been performed by first assessing the
effects of the dimensions of the calculation domain,
mesh characteristics and time step. Once defined
suitable calculation parameters, the model has been
run to calculate the BHE field temperature transfer
function (g-function) for a number of cases where the
buried depth ratio D/H was changed while keeping
other variables constant. The numerical g-functions
been compared with the semi-analytical functions
obtained by the FLS theory and proper superposition.
The agreement was good, for all the D/H conditions
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here investigated. The comparison was extended to the
g-function values that can be inferred from the
commercial code EED. In this case both the numerical
solution and the FLS one present a significant
deviation from the EED solution, especially in the
In(9Foy) range from -2 to 2. These differences with
the EED solution become higher as the buried depth
increases. Further investigation of the present research
group will be addressed to assess and reduce these
discrepancies, which may be ascribed to different
boundary conditions.
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