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ABSTRACT 
Ground Coupled Heat Pump (GCHP) systems 
connected to a set of vertical ground heat exchangers 
require short and long term dynamic analysis of the 
surrounding ground for an optimal operation. The 
thermal response of the ground for a multiple 
Borehole Heat Exchanger (BHE) field can be 
described by proper temperature response factors or 
“g-functions”. This concept was firstly introduced by 
Eskilson (1987). The g-functions are a family of 
solutions of the transient heat conduction equation and 
each of them refer to a given borehole field geometry. 
Furthermore the g-functions are the core of many 
algorithms for simulating the ground response to a 
GCHP system, including the well-known commercial 
software EED. 

Analytical approaches based on the Finite Line Source 
(FLS) model have been developed by Eskilson (1987), 
Zeng et al. (2002) and later by Lamarche (2007). Such 
solutions can be in principle applied together with 
space superposition to infer the thermal response for 
any BHE configuration. 

This study is a continuation of the previous work 
presented in Acuña et al. (2012), and a further 
investigation is devoted to optimize a numerical model 
of a squared configuration of 64 boreholes using the 
commercial software Comsol Multiphysics©. 
Symmetry conditions and different Fourier numbers 
have been applied and explored together with the 
effects related to the dimensions of the calculation 
domain with respect to the BHE depth and BHE field 
width. Furthermore, a parametric analysis is addressed 
to boundary conditions, which points out possible 
limits on the calculation domain extension. The results 
of the proposed numerical model are compared with 
the g-functions embedded within the EED software as 
well as those calculated by FLS method through the 
spatial superposition. In a closer approximation to 
reality, the numerical model is also studied accounting 
for an adiabatic part at the top of the BHE. 

NOMENCLATURE 
 

Abbreviations 
BHE Borehole Heat Exchanger 
EED Earth Energy Design 
FLS Finite Line Source 
GCHP Ground Coupled Heat Pump 
GLHEPRO Professional Ground Loop Heat 

Exchanger Software 
SBM Superposition Borehole Model 
 
Symbols 
B Distance between BHEs (m) 
cp Specific heat (J kg-1K-1) 
D Buried depth of the borehole field (m) 
FoH Fourier number defined in equation [1] 
g-function g-function, defined in equation  [1] 
H Borehole length (m) 
k Thermal conductivity (W m-1K-1) 
Q̇′ Heat flux per unit length (W m-1) 
rb Borehole radius (m) 
S0 Ground dimension of a borehole field, 

D/H=0 
S1 Ground dimension of a buried borehole 

field, D/H=0.04 and 0.05 
Tave Average temperature (°C) 
Tgr Undisturbed ground temperature (°C) 
t Time (s) 
α Thermal diffusivity (m2 s-1) 
ρ Density (kg m-3) 
 
 
1. INTRODUCTION  

The characteristics of GCHP systems make this 
technology be recognized as one of the most 
sustainable for heating and cooling purposes in 
commercial and residential buildings. However, a 
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well-designed GCHP system requires a short and long 
term dynamic analysis of the ground’s thermal 
response. 

In these systems, a heat pump is coupled to a 
secondary circuit consisting of a set of heat 
exchangers buried in the ground. Typically, the heat 
exchanger are set up in a vertical layout and connected 
in parallel. Thus, a carrier fluid circulates through 
them, while the heat is exchanged to or from the 
surrounding ground and transferred from or to the heat 
pump. Thus, the ground acts as a heat source or sink 
for heating or cooling purposes, respectively. An 
optimal design requires the study of the thermal 
response of a borehole field for long periods. This 
response, which is based also on building heat loads 
and ground properties, determines the choice of the 
BHE arrangement and its geometrical characteristics 
such as BHE length and spacing. The design of the 
borehole length is subject to a prescribed temperature 
limits. The ground temperature must be kept on such 
levels suitable for coping with the limits imposed or 
required (in terms of performance) by the heat pump 
according to the building demand over the years.  

In the last two decades, different analytical and 
numerical methods have been proposed to determine 
the ground response to BHE systems. From the point 
of view of the numerical approach, probably the best 
known solutions are those developed by the 
Superposition Borehole Model (SBM), (Eskilson, 
1986). This finite difference methodology (cf also 
Eskilson, 1987) allowed a set of response factors for 
certain BHE configurations to be generated: these 
solutions are known as g-functions. The g-function is 
a non-dimensional temperature response factor that 
relates the borehole temperature and the 
extracting/injecting heat rate from the ground through 
the ground conductivity. Any g-function is a particular 
solution of the BHEs configuration which depends on 
a non-dimensional time and two non-dimensional 
geometrical parameters. The non-dimensional 
geometrical parameters can be written as the ratio of 
the borehole spacing and the borehole radius with 
respect to its borehole length, i.e.  rb/H and B/H. Since 
the SMB finite difference method resulted in a high 
computational time, the g-functions were first 
calculated as single BHE temperature field in space 
and time and then superposed in space. In such a way 
a significant number of BHEs configurations could be 
described and a library of g-functions was made 
available for design as the commercial software, EED 
(Hellstrom and Sanner, 1994). Recently, other design 
software such as GLHEPRO (Spitler, 2000) used 
similar libraries of g-functions for specific BHEs 
configurations. By temporal superposition of the 
thermal loads requirements of the building, the EED 
family of softwares are able to predict the response of 
the ground to a system of BHEs as a function of the 
building time series of heating and cooling loads. One 
limit of this approach (together with the unknown 
uncertainty of g-function values) is the limitation on 

the predefined BHE configurations implemented in 
the software. 

The fast semi-analytical approach based on the Finite 
Line Source developed by Lamarche (2007) presents a 
better flexibility to generate the g-function of any 
BHE configuration. In general, the analytical solution 
(with proper spatial superposition) is able to 
reproduce, with acceptable deviations, the response of 
the vertical BHE configurations calculated by 
Eskilson. Some authors as Sheriff (2007), Bernier and 
Cauret (2009) and Fossa (2011a, 2011b) applied the 
FLS solutions and their results confirm a good 
agreement with the original g-functions.  

In this paper a numerical model for a squared 
configuration of 64 boreholes was properly developed 
in Comsol Multiphysics© environment, as a 
continuation of the work recently presented by Acuña 
et al. (2012). The choice of the present configuration 
was made due to the fact it represents one of those 
cases where the FLS generated temperature response 
factors show not negligible differences with respect to 
the original g-functions. In addition this configuration 
allows the possibility to exploit some symmetries and 
hence to reduce the dimension of the calculation 
domain. A number of steps during the design of the 
numerical model were carried out to optimize either 
the mesh or the time steps to enhance the computing 
time. For this purpose, symmetry conditions and 
different Fourier numbers have been applied, as well 
as different strategies to design the mesh and set the 
characteristics of the solver. The temperature 
distribution obtained from the numerical model was 
then employed to generate the g-function for the 
present geometry in a range of FoH values from -5 to 
2. This g-function was then compared with the ones 
embedded within the EED software as well as with 
those calculated by FLS method. Moreover, in a closer 
approximation to a real case, the numerical model was 
also performed when an adiabatic part is considered at 
the top of the BHE, defined as buried depth of the 
borehole field in this study. Its response is also 
compared with the solution from the analytical FLS 
solution for the same buried depth in the borehole 
field. 

2. THEORETICAL BACKGROUND 

Of practical interest for the optimum operation of the 
heat pump is the estimation of the borehole wall 
temperature. In the GCHP systems, the borehole heat 
exchanger can be considered as a heat sink with 
respect to ground for winter operations. Some 
assumptions are behind any temperature response 
factor model, including homogeneous and isotropic 
surrounding medium. Another assumption is to 
consider only the heat conduction, hence neglecting 
any groundwater flow. The infinite line source theory 
represents the simplest method to evaluate the 
borehole wall temperature: in this case the heat source 
is considered as an infinite line in an infinite medium. 
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However, this model does not consider heat 
conduction in the vertical direction.  

The line source theory can be refined in different 
ways, including the introduction of a boundary surface 
to the conduction domain. The temperature of this 
surface can be set at the undisturbed ground 
temperature, assumption which is reasonable also to 
describe a deep BHE field (H=100-200 meters). In the 
following a brief review of the most important 
contributions to the BHE conduction problem is 
presented. 

Ingersoll et al. (1954) developed an analytical solution 
from the infinite line source (ILS) method to 
determine the thermal response factors for very simple 
BHE configurations. Later, Eskilson (1987) 
introduced the concept of g-function. To obtain the g-
function of a borehole field, Eskilson solved the 
temperature field for a 2D case of a single borehole, in 
which the medium is limited by a top surface at zero 
temperature and constant heat flux is applied to the 
source. Spatial superposition is then performed to 
evaluate the temperature distribution at the BHE 
positions for the whole borehole field. Eskilson 
devoted an extensive research on both analytical and 
numerical solutions. However, the author inclined 
towards the finite difference solution for calculating g-
functions. As mentioned before, the g-functions are 
nowadays implemented in commercial software, 
where the users can select the BHEs configuration and 
predict the response of the system for the specific 
energy requirements of the building. Even if current g-
function libraries are quite comprehensive, the user 
cannot however specify a particular pattern of the 
borehole field in present commercial codes.  

Zeng et al. (2002) proposed an analytical solution of 
the finite line source. This solution is a step forward 
with respect to the corresponding Eskilson one but it 
still involves important numerical issues, making it 
unattractive for practical applications. Recently, 
Lamarche and Beauchamp (2007) introduced a 
modification to the solution proposed by Zeng et al. 
(2002) which allows a faster calculation of finite 
length source temperature evolution. This solution is 
based on a mirror technique and on a double 
integration of the Fourier equation complete solution. 
The single FLS solution can be then superposed in 
space in order to calculate proper g-functions related 
to the particular geometry taken into account. In 
general, this approach allows the calculation of g-
functions with values very similar to the ones 
calculated by Eskilson (1987). However, differences 
about 10% are found in the asymptotic part of the 
curve for large BHEs configurations. The difference in 
the boundary conditions applied in Eskilson (1987) 
and Lamarche and Beauchamp (2007) may explain 
these discrepancies in the g-function. Eskilson’s 
(1987) solution considered a uniform wall temperature 
within all the boreholes when a constant heat flux is 
extracted from the borehole field, whereas the 
analytical solution in (Lamarche and Beauchamp, 

2007) assumed a constant and uniform heat flux 
extraction at the wall in all the boreholes within the 
field. 

In this paper, we developed a numerical model in 
accordance with the boundary conditions defined in 
(Lamarche and Beauchamp, 2007). Then, the g-
function of the present borehole field is evaluated by 
calculating the average temperature of the boreholes 
along the time. The g-function can be related to the 
average borehole temperature as expressed in equation 
[1]: 

𝑇𝑎𝑣𝑒(𝑟𝑏) = 𝑄′̇

2𝜋𝑘
∙ 𝑔�ln(9𝐹𝑜𝐻) , 𝑟𝑏 𝐻� ,𝐵 𝐻� � + 𝑇𝑔𝑟 [1] 

In equation [1], the Fourier number is used to define 
the non-dimensional time in terms of the borehole 
length when α is the thermal diffusivity of the ground. 
The Fourier number can be expressed as: 

𝐹𝑜𝐻 = 𝛼𝑡
𝐻2   [2] 

 

3. NUMERICAL MODEL 

As a continuation of the work presented by Acuña et 
al. (2012), a numerical analysis is performed for a 
borehole field consisting of a squared pattern of 8x8 
BHEs, including a number of improvements as 
compared to this earlier work where many 
simplifications were made. This section describes the 
new approach used for the numerical generation of the 
g-function. 

3.1 The borehole field geometry 

The geometrical characteristics of the borehole field 
are listed in Table 1. 

Table 1 : Geometrical characteristics of the 8x8 
borehole field 

H (m) 100 
rb (m) 0.05 
B (m) 5 

 

The first simulations refer to the ground response 
when the borehole heat exchangers are thermally 
active from the top of the surface, as it is the case 
when boreholes are grouted -most borehole fields in 
central and south Europe. Moreover, in a closer 
approximation to real applications in north Europe, 
where groundwater filled boreholes with water table 
levels varying from 0 to several meters, and also to 
cope with some assumptions adopted by Eskilson 
(1987), a model was created according to the 
assumption that there is an adiabatic part at the top of 
the BHE. This condition was simulated by locating the 
heat sources in the Comsol model at a level below the 
ground top surface, as they were “buried” to a given 
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depth of some meters. Eskilson did not specify clearly 
the buried depth of the borehole field in his studies. 
Our numerical model is built up for a buried depth of 
four and five meters. In Table 2, the study cases with 
regard to the buried depth of the borehole field are 
listed.  

Table 2 : Study cases with regard to the buried 
depth of the borehole field 

Study cases D (m) 
1 0 
2 4 
3 5 

 

3.2 The heat transfer in the borehole field 

The heat transfer problem is only accounted for the 
surrounding domain of the boreholes, i.e. not inside 
the borehole heat exchanger. Therefore, our system is 
simplified to one domain, which corresponds to the 
ground surrounding the boreholes. Then a tri-
dimensional transient heat transfer problem is solved 
in this domain. To this aim, the following conditions 
are set up:  

As an initial condition, the whole domain is supposed 
to be at an initial constant temperature. In our case, 
this temperature is set to Tgr=8°C, a typical value of 
the undisturbed temperature in southern Sweden.  

In the surrounding boundaries of the borehole field, a 
temperature condition is set at the top surface and at 
boundary surfaces far enough from the borehole field. 
These boundaries are set in the radial direction and 
downwards of the borehole field, with a temperature 
corresponding again to an undisturbed level equal to 
Tgr. 

Regarding the boundary condition at BHE surface, a 
constant and equal heat flux is imposed at the borehole 
wall. This study assumes a total heat flux of 6400 W, 
i.e. 1 W/m borehole. Thus, the heat transfer inside the 
borehole field is solved in agreement with the 
boundary conditions defined in the FLS-solution 
Lamarche and Beauchamp (2007), only differing from 
the fact that our geometry is fixed and the outer 
boundary (undisturbed ground) should actually move 
freely as the borehole field is loaded.  

The numerical model has been solved according to 
different steps, which are explained in detail in chapter 
4. The response of our numerical model is tested at 
each stage by comparing the g-function with the one 
from the analytical solution Lamarche and Beauchamp 
(2007) and the related superposition process for the 
8x8 geometry. The numerical model allows generating 
the borehole temperature at every instant of time. By 
applying equation [1], the g-function is easily obtained 
for a known heat flux injection. It should be noted that 
for a borehole buried at a certain depth, the solution 
from the numerical model is verified with the FLS 
solution having the same buried distance, according to 
Table 2. 

4. OPTIMIZATION STRATEGIES  

A typical issue with numerical models is the reduction 
of the computational time. Since this problem applies 
in a severe way also to the present case, some 
strategies of optimization are applied here to speed up 
the solution of the problem. These strategies take into 
account the optimization of the geometry, the time 
step and the overall duration of the simulation.  

4.1 Geometry optimization 

First, the optimization strategies with regard to the 
geometry are applied. The borehole field geometry 
presented in Acuña et al, (2012) is reduced to a quarter 
of the total volume by considering symmetry in the 
system. Thus, an adiabatic condition is defined at the 
symmetry faces. To solve the heat transfer problem, 
the thermal properties are defined in this domain in 
accordance with typical values in the south of Sweden. 
Worth noticing that the derivation of the g-function 
values is not affected by the thermophysical data set 
employed for the calculation of the ground domain 
temperatures. These values are shown in Table 2.  

Table 3: Thermal properties of the ground volume 

cp (J/kg K) 870 
k (W/m K) 3.1 
ρ (kg/m3) 2300 

 

Then, a parametric study is carried out with respect to 
the ground volume extension.  

 
Figure 1: Computational domain and simplified 

geometry of the 8x8 borehole field 

 

The volume has been increased in the radial direction 
and downwards the borehole field. The surrounding 
domain of the borehole field must be enlarged in such 
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way that its volume is the minimum necessary to 
represent properly the thermal response of the 
borehole field. Thus, the heat transfer problem is 
solved by enlarging the ground volume until the 
solution does not change any more  when the 
simulation time is selected in order to have 
ln(9FoH)=2. This minimum volume was achieved 
using 150 m and 100 m to the side and downwards of 
the borehole field, respectively. The model generates a 
similar response to the one from the “minimum 
volume” when the ground volume increases up to 300 
and 400 m in the radial and downwards the borehole 
field, respectively. Moreover, the numerical solution is 
compared with the analytical solution.   Figure 1 
shows a picture of a quarter of the borehole field and 
the final volume of its surrounding ground.  

 

For a borehole field buried a depth of four or five 
meters, the size of the domain in our numerical model 
was increased until its response did not changed with 
the size of the ground volume. Therefore, a parametric 
study in relation to the ground volume is also carried 
out in case of a buried borehole field.  

 

Figure 2: Computational domain and geometry of 
the 8x8 borehole field buried 4 meters in 
depth.  

 

After a number of simulations, the minimum volume, 
in which the response from the numerical model does 
not change, is 500 and 200 meters in the radial 
direction downwards the borehole field, respectively, 
for values of ln(9FoH) around 2. The model presents a 
similar response to the one defined as “minimum 
volume” when the volume is enlarged to 500 and 300 
meters to the side and downwards the borehole field, 
respectively.  The numerical solution using a buried 

depth is compared with the FLS solution. The 
geometry for a buried borehole field is shown in 
Figure 2. This is a correct size choice, at least when 
the ratio D/H is equal to 0.04 or 0.05. Further work 
will be devoted to set a ground volume independent on 
the size, i.e. as an infinite element domain.   

4.2 Simulation time optimization 

When the strategies to optimize the geometry have 
been set up and verified to represent properly the 
response of the system for all the cases proposed in 
Table 2, a simulation time optimization is applied.  

The simulation time optimization is carried out by 
modifying the thermal properties of the ground, since 
they affect the Fourier number which in turn is the 
independent variable of the g-function representation. 
Since the Fourier number is related to the thermal 
properties of the medium by means of the thermal 
diffusivity as expressed in equation [2], the overall 
duration can be decreased by modifying the thermal 
properties of the ground.  This modification implies 
the increase of the thermal conductivity and the 
decrease of the specific heat and the density. The 
numerical model should represent the response of the 
system for values of the ln(9FoH) around 2, since this 
is the typical condition when a g-function (referred to 
any borehole field geometry) reaches its  asymptotic 
value.  

The starting point of the simulation time optimization 
is the part where the geometry is reduced to a quarter 
of the total volume and the thermal properties are 
those in Table 2. The thermal properties in Table 3 
correspond to the values used in the first re-scaled 
problem study in this section. The end time of 
simulation can extend up to 200 years in the first 
investigation. In the second part of the analysis, which 
is performed using the values in Table 3, the time 
horizon is reduced to 35 years, again for ln(9FoH) 
values around 2. 

Table 3: Thermal properties of the borehole field 

cp (J/kg K) 500 
K (W/m K) 6 
ρ (kg/m3) 1500 

 

In a third and final step, the time horizon is decreased 
to around 4 years thanks to the thermal property listed 
in Table 4.  

Table 4: Thermal properties of the borehole field 

cp (J/kg K) 100 
k (W/m K) 6 
ρ (kg/m3) 1000 

 

In Figure 3, the study time is shown in relation to the 
three different thermal properties listed in Table 2, 3 
and 4 against the ln(9FoH). However, it should be 
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noted that the decrease of the end time of simulation 
implies a lower maximum time step in the solver. 
Therefore, a maximum time step of 120 days, 30 days 
and 10 days is set when considering the thermal 
properties of Table 2, 3 and 4, respectively. 

 

Figure 3: Strategy of optimization based on the 
Fourier number 

In Table 5, the computing time is shown with respect 
to the thermal properties considered in each case. The 
computing times are similar for D equal to 4 and 5 m, 
so these are presented in a single column in Table 5 
labelled as buried.  The values presented in Table 5 
correspond to the simulations run with a computer of 8 
GB RAM with a processor Intel® Core ™ i7-860 
CPU at 2.80 GHz.  

Table 5: Optimization Strategy- Computing Time 

Thermal 
Properties 

Time 
Stepping 

(days) 

Computing Time 
(min) 

No Buried Buried 

Table 2 120 180 330 

Table 3 30 150 240* 

Table 4 10 70 120* 

(*) the response is acceptable in a certain range of the ln(9FoH). 

This  optimization strategy shows that it is possible to 
decrease the computing time by increasing the thermal 
properties of the ground and setting proper time steps 
in the solver when the ratio is D/H=0. However, when 
a certain buried depth is considered this strategy is 
only valid for values of ln(9FoH) lower than about -1. 
For higher values of ln(9FoH), the numerical model 
was not able to  properly represent the theoretical 
response of the borehole field. Consequently, this time 
optimization strategy is not applied in case of a buried 
borehole field. Further work will be devoted to this 
observation. 

4.3 Mesh 

The elements of the mesh play an important role in the 
results as well as in the simulation time. Thus, an 
optimization strategy is also applied to improve the 
mesh with respect to the one presented in Acuña et al, 
(2012).  

Considering the geometry of Figure 1, where the 
borehole heat exchangers are not buried, the elements 
of the mesh are created by selecting a triangular mesh 
at the top face of the domain. Then, a swept is applied 
along the borehole length. Finally, the bottom part of 
the domain, under the boreholes, is meshed with 
tetrahedral elements. The domain consists of around 
135256 elements in total. The mesh is created in such 
a way that small elements are chosen at the top and the 
bottom of the near region of the BHEs. 

Since the geometry is different when having a buried 
borehole field, the mesh is constructed in a different 
way. A triangular mesh is set at the horizontal plane 
where the BHE are buried. The triangular elements are 
swept along the borehole depth. A free tetrahedral 
mesh is chosen in the upper part of the domain 
between the surface and the buried borehole field. The 
downward part of the borehole field is built in the 
same manner used in the non-buried case using 
tetrahedral free elements. The number of elements 
increases to around 440000 elements when the 
borehole field is buried. The volume above the 
borehole field, around the buried depth, consists of 
around 73000 elements. 

5. RESULTS 

Besides the results presented in section 4 concerning 
the optimization strategies, the resulting g-functions 
are presented here. 

The g-functions obtained from the numerical model 
are labelled as Comsol for different ratios of D/H. 
These results are compared with those generated from 
the analytical FLS solution with proper superposition 
in correspondence to the same ratio D/H, referred as 
FLS, and those generated with the commercial 
software Energy Earth Designer, EED. 
 

5.1 The borehole field is not buried 

 

 

Figure 4: g-function generated with Comsol, the 
FLS method and EED, D/H=0 
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The g-function generated from the numerical model 
fits well with the solution obtained from the analytical 
solution, labelled in the graph as FLS. A small 
discrepancy can be appreciated between these in 
Figure 4 when the ln(9FoH) reaches values around 2. 
None of these g-functions is in good accordance with 
the one generated with EED, which possibly has to do 
with the different boundary conditions used in each of 
these approaches. Further work is being dedicated to 
generating a g-function showing better agreement with 
the Eskilson result. 

5.2 The borehole field is buried 4 meters in depth 

 

 

Figure 5: g-function generated with Comsol, the 
FLS method and EED, D/H=0.04 

Figure 5 shows the g-function obtained from the 
numerical model when the surrounding volume is kept 
in the same size as in the initial case (Figure 1). This 
solution is labelled as Comsol D/H=0.04 S0, where S0 
is referred to the initial volume dimensions. There is a 
slight better agreement between the Comsol and the 
FLS solution when the surrounding volume is 
increased (Figure 2). This solution is labelled as 
Comsol D/H=0.04 S1, where S1 makes reference to 
the increased surrounding. It can be observed that the 
two numerical solutions do not differ significantly and 
the percentage difference is below 1.5%.  In Figure 5, 
the analytical solution when the borehole field is not 
buried is also included, FLS D/H=0. Comparing the 
solutions with respect to the buried depth, the g-
function presents higher values when the borehole 
field is buried. This fact can be explained by recalling 
that all the models have a top surface boundary 
condition where undisturbed ground temperature is 
imposed. This condition cools down the ground and 
hence reduces the borehole field average asymptotic 
temperature, from which the g-function depends and it 
is calculated on. In the solution generated with EED, 
the buried depth is not well specified.  

The comparison of the solution generated with EED 
with those from our numerical model and the 
analytical solution shows that Comsol and FLS 
functions agree well with each other, but differences 

with EED become higher when a certain buried depth 
is considered. 

5.3 The borehole field is buried 5 meters in depth 

Figure 6 shows the g-functions obtained when the 
borehole field has a buried depth of 5 m. By 
increasing the surrounding volume, the numerical 
solution presents a good agreement with the analytical 
approach for a similar buried depth. These solution are 
labelled as Comsol D/H=0.05 S1 and FLS D/H=0.05 
for the numerical and analytical approaches, 
respectively.  

  

 

Figure 6: g-function generated with Comsol, FLS 
and EED, D/H=0.05 

The FLS generated g-function for D/H =0.04 is also 
included in Figure 6.The g-function for a buried depth 
of 5 meters presents slightly high values than when a 
buried depth of 4 m is used, as could be expected from 
the considerations on the increasing distance from the 
imposed temperature top surface. This difference is 
more notable at the asymptotic part of the curve. Thus, 
the differences with EED solution become slightly 
higher than in the previous cases, which are also more 
relevant for a values of ln(9FoH) around 2. 

6. CONCLUSIONS 

A numerical model has been built in order to perform 
g-function calculation for complex BHE domains. In 
the present paper a 64 BHE square arrangement has 
been chosen. A constant heat flux is applied as a 
boundary condition on the borehole walls. The 
analyses have been performed by first assessing the 
effects of the dimensions of the calculation domain, 
mesh characteristics and time step. Once defined 
suitable calculation parameters, the model has been 
run to calculate the BHE field temperature transfer 
function (g-function) for a number of cases where the 
buried depth ratio D/H was changed while keeping 
other variables constant. The numerical g-functions 
been compared with the semi-analytical functions 
obtained by the FLS theory and proper superposition. 
The agreement was good, for all the D/H conditions 
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here investigated. The comparison was extended to the 
g-function values that can be inferred from the 
commercial code EED. In this case both the numerical 
solution and the FLS one present a significant 
deviation from the EED solution, especially in the 
ln(9FoH) range from -2 to 2. These differences with 
the EED solution become higher as the buried depth 
increases. Further investigation of the present research 
group will be addressed to assess and reduce these 
discrepancies, which may be ascribed to different 
boundary conditions. 
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