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ABSTRACT 

The hydraulic behavior of fractures is important for 
understanding geothermal reservoirs. Thus 
experimental and numerical analysis of fractures is 
important. The roughness of the surfaces of natural 
fractures has an effect on their permeability. 
Analytical methods fail to predict this effect in 
different scales. Here the hydraulic properties of rough 
fractures are investigated with numerical methods. 

The fracture model consists of two identical self-affine 
surfaces, sheared element wise against each other. The 
heterogeneous aperture is represented by hydraulic 
conductivity in the numerical model. We use the finite 
element method in 2D for simulating the fluid flow 
through the fracture model. Fluid flow is forced with 
Dirichlet boundary conditions parallel and 
perpendicular to the shearing direction. 

The calculated mean flow through all investigated 
fractures show an anisotropic behavior, dependent on 
the orientation of the pressure gradient. The flow 
parallel (perpendicular) to the shearing direction is 
increased (enhanced). The effect of channeling 
perpendicular to the direction is the reason for the 
anisotropy in fluid flow. 

1. INTRODUCTION 
Characterizing the hydraulic conductivities of rock 
masses is a key component during development and 
engineering of various underground installations like 
geothermal power plants, waste repositories or 
tunneling. The intrinsic permeability of intact rock is 
extremely low; however the rock mass usually 
contains a dense network of fractures with a relatively 
high hydraulic conductivity, which determine the 
hydraulic properties of the rock mass. To estimate 
hydraulic conductivities of fractures the cubic law for 
laminar fluid flow in a parallel plate model with 
constant aperture is commonly applied:  

   [1] 

where Q is the fluid flow, a the aperture, g the 
gravitation acceleration, ν the kinetic viscosity, Δh/ΔL 
the hydraulic pressure gradient through the fracture 
and B the width of the fracture.  

However, the surface of natural fractures is rough, 
which strongly affects the hydraulic properties of 
fractures. First efforts to consider the roughness of 
fractures in fluid flow calculations were conducted 
experimentally by Lomize (1951), Louis (1967) and 
Witherspoon et al. (1980) who derived empirical 
relations describing the hydraulic behavior. These 
integrate fracture roughness into the cubic law, not 
considering scaling effects of fracture surface 
topography. Rock fractures consist of an upper and a 
lower fracture surface and an open fracture aperture in 
between. At some points both fracture surfaces touch, 
creating contact areas with zero conductivity. These 
contact areas and areas of low aperture limit fluid flow 
in the fracture which creates curved fluid flow paths 
and tortuosity which reduces hydraulic conductivity. 

Most of the empirically derived laws were obtain from 
the study of laboratory scale samples and various 
testing methods on them. To extrapolate these findings 
to hectometric or kilometric scales of typical 
reservoirs the size effects must be taken into account 
(Murata et al., 2002) appropriately. In the course of 
development of fractal mathematics (Mandelbrot, 
1985, Peitgen et al., 1988) the rough surfaces could be 
described as self-affine structures with a correlation 
between heights of asperities and their spatial 
distribution. Brown (1995, 1987) used this 
mathematical concept to describe surface roughness of 
fractures by a set of three parameters (fractal 
dimension, roughness, length scale). In addition, his 
approach makes it easy to create synthetic fracture 
surfaces for numerical studies (Brown et al., 1995, 
Glover et al., 1997). 

To enhance fluid flow in a fractured rock mass, e.g. to 
create an enhanced geothermal system (EGS) (Genter 
et al., 2010), well bores in an intact rock mass are 
pressurized with fluid to reduce effective normal 
stresses of pre-existing fractures to enable shearing 
(Fjaer et al., 2008). Shearing usually enhances 
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hydraulic permeability as fractures experience opening 
by dilation (Barton et al., 1985, Willis-Richards et al., 
1996, Chen et al., 2000). However, during shear small 
asperities of may be eroded creating additional contact 
areas that potentially reduce hydraulic conductivity 
(Zimmerman et al., 1992). Accompanying shearing 
motion of rock, hydraulic anisotropy develops which 
makes the rock more conductive parallel to the 
shearing direction and less conduction perpendicular 
to the shearing direction (Meheust and Schmittbuhl, 
2001, Auradou et al., 2005, Yeo et al., 1998).  

In this paper we quantitatively analyze hydraulic 
anisotropy introduced by shearing of synthetic 
fractures. Fractures are generated by shearing two 
identical fractal fracture surfaces incorporating 
dilation to obtain an aperture distribution. The 
geometrical properties of such created fractures are 
analyzed and their hydraulic properties investigated by 
numerical flow calculations using a finite element 
code. By studying anisotropy of a set of 1000 
synthetic fractures we find that the magnitude and the 
scatter of anisotropy between the fractures increase 
with increasing amount of shearing. All sheared 
fractures, without exceptions, show a larger hydraulic 
permeability to flow perpendicular to the shearing 
direction than parallel to it. 

2. 2D FRACTURE MODEL 
We use the program SAFFT (Méheust &Schmittbuhl, 
2001) to generate synthetic self-affine surfaces. The 
code creates normal distributed pseudo random 
numbers, which initially have no spatial correlation. 
By multiplying them with the spectral density function 
G(k), a spatial correlation is introduced: 

   [2] 

where k=2π/λ is the wave vector with the wavelength 
λ, C is a constant and α is the slope of the so obtained 
logarithmic power spectrum (Brown, 1987). The slope 
α is related to the Hurst exponent H by H = (α – 1)/2 
for fractal surfaces (Mandelbrot, 1983). The Hurst 
exponent is an index for the roughness of the surface. 
By applying the inverse Fourier transformation on the 
power spectrum a surface with spatially correlated 
values for the heights is obtained. As the code uses a 
fast Fourier transformation, surface sizes are restricted 
to 2n. In this study we use surface sizes of 128 × 128 
to 512 × 512 elements. The Hurst exponent H, 
defining the fractal dimension D of surface by D = 3 – 
H, is always set to H=0.8, being a universal value for 
granite (Boffa et al., 1998, Neuville et al., 2011), the 
typical reservoir rock for enhanced geothermal 
systems. 

We base the scaling of the fractures on field 
measurements obtained from real granite by 
Schmittbuhl et al. (1993). Therefore for a typical 
fracture size a variation of the topography in the order 
of 30 mm is employed. 

To generate a sheared fracture two identical generated 
self-affine surfaces are shifted by a number of 
elements. The vertical height of the upper surface is 
then adjusted such that both surfaces do not intersect 
but are in contact on at least one contact point. The 
difference between both surface heights is taken as the 
sheared fracture’s aperture (Figure 1: Construction of 
aperture from identical lower and upper surfaces and a 
horizontal shearing by 20 elements with the 
assumption of a contact point. 

). Although we do not take into account any material 
abrasion of small rock asperities or other mechanical 
interaction of the fracture surfaces we will use the 
term shearing for this process in the following. 

 

Figure 1: Construction of aperture from identical 
lower and upper surfaces and a horizontal 
shearing by 20 elements with the assumption 
of a contact point. 

The arithmetic mean a  and the standard deviation σ  
of the aperture heights ai are calculated with every 
shearing step using the equations 

   [3] 

and 

.  [4] 

Figure 2: Mean aperture (top) and standard deviation 
(bottom) of aperture as a function of the element-wise 
horizontal shear for four fractures of grid size 512 × 
512 elements. 

 shows the mean aperture and the standard deviation 
as a function of the horizontal shear for four fractures 
with the grid size of 512 × 512 elements. Both, the 
mean and the standard deviation of the aperture, grow 
almost linearly with the shearing steps. This is in 
agreement with laboratory measurements of granite 
samples (Chen et al., 2000). 
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Figure 2: Mean aperture (top) and standard 
deviation (bottom) of aperture as a function 
of the element-wise horizontal shear for four 
fractures of grid size 512 × 512 elements. 

3. NUMERICAL SIMULATIONS 
For numerical simulations we use the finite element 
program FRACTure (Kohl & Hopkirk, 1995), which 
solves the partial differential equation describing 
pressure diffusion: 

   [5] 

where K is the hydraulic conductivity and P the 
pressure. The hydraulic conductivities Ki for each 
element i are calculated with the local aperture heights 
ai using the cubic law: 

   [6] 

Here ki is the permeability and μ the dynamic 
viscosity. The numerical simulations were done using 
Dirichlet boundary conditions. The pressure at one 
border is set with P = 1 and at the opposed border with 
P = 0. At this stage simulations were run 
dimensionless, as we do not include non-linear flow 
behavior (turbulent flow, tortuosity, etc.) in the 
simulation of the hydraulic behavior of fractures. For 
each fracture we run two numerical simulations. First 
we set the boundary conditions parallel to the shearing 
direction and second perpendicular to the shearing 
direction.  

In Figure 3 the positions of the Dirichlet boundary 
conditions and the evolving forced fluid flow Qx1 and 
Qx2 in the fracture are shown. Qx1 is the flow 
perpendicular to the shearing direction and Qx2 parallel 
to it.  

 

Figure 3: Boundary conditions of the model a) for flow 
orthogonal to the shearing direction and b) for 
flow parallel to the shearing direction, which were 
run for each fracture.  

4. HYDRAULIC PRESSURE DISTRIBUTION IN THE 
FRACTURE 

The numerical simulations with FRACTure result in a 
very heterogeneous pressure distribution in the 
fracture. Figure 4 c-d shows a pressure distribution 
with different flow directions in terms of isobars. 
Derived from this, different fluid velocities arise 
dependent on the boundary conditions. The fluid 
velocity vi of each element is the magnitude of the two 
fluid vector components in x1- and in x2-direction. The 
magnitude of the fluid velocity components are 
presented in Figure 4 e-f. The fluid velocities, where 
the flow is forced perpendicular to the shearing 
direction are higher than fluid velocities, where the 
flow is forced parallel to the shearing direction. 
Especially in regions with high permeability there are 
high fluid velocities by a pressure gradient 
perpendicular to the shearing direction (Figure 4 e-f). 
If you look at the same region, but with flow parallel 
to the shearing direction, the fluid velocities are much 
lower. The reason for this lies in the hydraulic 
barriers, where the pressure is highly reduced (Figure 
4 c-d), so that after the barrier remains only low 
pressure gradients and the fluid velocity is low. 

5. RESULTS 

The results of the finite element simulation are used 
for calculating a mean flow through the fracture. The 
flow Qi for each element in the fracture is a 
multiplication of the modulus of the fluid velocities 
and the aperture height: 

   [7] 

The mean flow Q  along the fracture width L is the 
arithmetic mean of all elements: 

   [8] 
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Figure 4: Hydraulic properties of a fracture of 128 × 128 elements in size and sheared with displacement of 0.375 elements. 
(a) Aperture and (b) permeability with marks on a flow channel (magenta) and a hydraulic barrier (yellow). (c-d) 
show the pressure profile for the two flow simulation, (e-f) show the magnitude of fluid velocity and (g-h) show the 
fluid flow rate per element.

The index i represents the element number and n the 
whole number of elements in the 2D fracture model.  

According to the different position of Dirichlet 
boundary conditions (Figure 4) fluid flow is parallel to 
shearing direction of orthogonal to the shearing 
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direction. Interestingly, the hydraulic flux (Equation 
9) is different for both model runs. The fracture gets 
hydraulically anisotropic through the shearing process. 
The flux parallel to shearing direction is less that 
orthogonal to the shearing direction (Figure 5). For 
reference we calculate the flux for the parallel plate 
model using the average geometric aperture and the 
cubic law. For every fracture the hydraulic flux of this 
parallel plate model is between the two fluxes (parallel 
and orthogonal) of the rough fractures. The hydraulic 
anisotropy is observed for each fracture analyzed but 
varies widely in a range of at least 6 % to 76 %. 
Exceptionally high magnitudes of anisotropy are 
results of local features, which arise from the fracture 
wall topography and the shearing. In the case of 
fracture 2 of size 128 × 128 are long hydraulic barrier 
(marking in Figure 4 b) of very small aperture and 
thus hydraulic conductivity is created by the shearing. 
This barrier hinders fluid flow orthogonal to the 
shearing direction. 

Figure 5: Average flux per fracture width 
orthogonal to shearing direction (black), parallel 
to shearing (blue) and the parallel plate model 
(red) calculated from mean geometric aperture 
for reference. Fracture 2 of grid size 128 × 128 
elements. 

The effect of shear induced anisotropy has already 
been observed numerically by Méheust & Schmittbuhl 
(2001) and numerically and experimentally by 
Auradou et al. (2005). Contrary to Auradou et al. 
(2005) we do not find increasing anisotropy with 
increasing shear for every single fracture. Instead for 
some fractures we see decreasing or roughly constant 
anisotropy, while for some others anisotropy increases 
considerably with increasing shear (Figure 6). The 
different response of the anisotropy characteristic to 
different magnitudes of shear is evidence for the 
importance of the actual fracture topography on the 
hydraulic properties. Furthermore, synthetic fractures 
of larger grid size show smaller variations of 
anisotropy among several fractures. For a larger 
number of discretized elements, extrema with small 
apertures are less important for the hydraulic behavior 
of the whole fracture system. 

 

Figure 6: Anisotropy of hydraulic flux [%] for grid size 
of 128 × 128 elements (left) and 512 × 512 
elements (right).  

In the previous discussion several characteristics of 
the fractures and of the flow in these fractures were 
shown exemplarily for four synthetic fractures of 
128 × 128 elements in size. Among these four 
fractures pronounced variations have been observed, 
leading to the need to analyze the fluid flow behavior 
in a statistically representative manner. Therefore we 
conducted an extensive study using a catalog of 1000 
synthetic fractures of size 512 × 512 elements. For 
each fracture two simulations with the different 
boundary conditions relative to the shearing direction 
were run for each displacement step between 1 and 10 
elements of shear. The result is a statistically 
representative study of the anisotropy behavior of 
fractures with different degrees of shear displacement 
(Figure 7). For small shear displacements we obtain a 
narrow distribution of anisotropy. With increasing 
shear displacement, the distribution widens 
considerably, and gets a positive skew, representing 
fractures with high values of hydraulic anisotropy. For 
low values of anisotropy the relative frequency is 
about constant or slightly decreasing for increasing 
shear displacement. The mean anisotropy value 
changes from 24% to 38% with increasing 
displacement. The overall change of anisotropy levels 
off, with very similar frequency distributions for 
displacements > 6 elements. 
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Figure 7: Distribution of hydraulic 
anisotropy for different magnitudes of shear 
calculated from a set of 1000 fractures.  

6. CONCLUSIONS 

We analyzed the hydraulic behavior of synthetically 
generated rough fractures. The 2D fracture model is 
made out of two identical self-affine fracture surfaces, 
which are sheared element-wise. Through the shearing 
process of the fracture surfaces the mean geometric 
aperture and its standard deviation are increasing 
continuously. The same effect can also be seen on the 
mean fluid flow. Dependent on the orientation of the 
boundary conditions different hydraulic flow is 
observed, each fracture shows hydraulic anisotropy 
but of a greatly varying degree dependent on the 
actual topography of the fracture. For every fracture 
we observe higher fluid flow orthogonal to the 
shearing direction and less fluid flow parallel to the 
shearing direction, when compared to the parallel 
plate model. Contrary to previous observations 
(Auradou et al., 2005) anisotropy may also decrease 
with increasing magnitudes of shear. No correlation 
between hydraulic anisotropy and mean aperture or 
standard deviation of aperture is observed. Instead, the 
hydraulic anisotropy originates from geometric 
barriers which form during the shearing process and 
limit fluid flow parallel to the shearing direction. 
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