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ABSTRACT

The hydraulic behavior of fractures is important for
understanding geothermal reservoirs. Thus
experimental and numerical analysis of fractures is
important. The roughness of the surfaces of natural
fractures has an effect on their permeability.
Analytical methods fail to predict this effect in
different scales. Here the hydraulic properties of rough
fractures are investigated with numerical methods.

The fracture model consists of two identical self-affine
surfaces, sheared element wise against each other. The
heterogeneous aperture is represented by hydraulic
conductivity in the numerical model. We use the finite
element method in 2D for simulating the fluid flow
through the fracture model. Fluid flow is forced with
Dirichlet  boundary  conditions parallel and
perpendicular to the shearing direction.

The calculated mean flow through all investigated
fractures show an anisotropic behavior, dependent on
the orientation of the pressure gradient. The flow
parallel (perpendicular) to the shearing direction is
increased (enhanced). The effect of channeling
perpendicular to the direction is the reason for the
anisotropy in fluid flow.

1. INTRODUCTION

Characterizing the hydraulic conductivities of rock
masses is a key component during development and
engineering of various underground installations like
geothermal power plants, waste repositories or
tunneling. The intrinsic permeability of intact rock is
extremely low; however the rock mass usually
contains a dense network of fractures with a relatively
high hydraulic conductivity, which determine the
hydraulic properties of the rock mass. To estimate
hydraulic conductivities of fractures the cubic law for
laminar fluid flow in a parallel plate model with
constant aperture is commonly applied:

=£82g [1]

where Q is the fluid flow, a the aperture, g the
gravitation acceleration, v the kinetic viscosity, ah/AL
the hydraulic pressure gradient through the fracture
and B the width of the fracture.

However, the surface of natural fractures is rough,
which strongly affects the hydraulic properties of
fractures. First efforts to consider the roughness of
fractures in fluid flow calculations were conducted
experimentally by Lomize (1951), Louis (1967) and
Witherspoon et al. (1980) who derived empirical
relations describing the hydraulic behavior. These
integrate fracture roughness into the cubic law, not
considering scaling effects of fracture surface
topography. Rock fractures consist of an upper and a
lower fracture surface and an open fracture aperture in
between. At some points both fracture surfaces touch,
creating contact areas with zero conductivity. These
contact areas and areas of low aperture limit fluid flow
in the fracture which creates curved fluid flow paths
and tortuosity which reduces hydraulic conductivity.

Most of the empirically derived laws were obtain from
the study of laboratory scale samples and various
testing methods on them. To extrapolate these findings
to hectometric or Kkilometric scales of typical
reservoirs the size effects must be taken into account
(Murata et al., 2002) appropriately. In the course of
development of fractal mathematics (Mandelbrot,
1985, Peitgen et al., 1988) the rough surfaces could be
described as self-affine structures with a correlation
between heights of asperities and their spatial
distribution. Brown (1995, 1987) wused this
mathematical concept to describe surface roughness of
fractures by a set of three parameters (fractal
dimension, roughness, length scale). In addition, his
approach makes it easy to create synthetic fracture
surfaces for numerical studies (Brown et al., 1995,
Glover et al., 1997).

To enhance fluid flow in a fractured rock mass, e.g. to
create an enhanced geothermal system (EGS) (Genter
et al., 2010), well bores in an intact rock mass are
pressurized with fluid to reduce effective normal
stresses of pre-existing fractures to enable shearing
(Fjaer et al., 2008). Shearing usually enhances
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hydraulic permeability as fractures experience opening
by dilation (Barton et al., 1985, Willis-Richards et al.,
1996, Chen et al., 2000). However, during shear small
asperities of may be eroded creating additional contact
areas that potentially reduce hydraulic conductivity
(Zimmerman et al., 1992). Accompanying shearing
motion of rock, hydraulic anisotropy develops which
makes the rock more conductive parallel to the
shearing direction and less conduction perpendicular
to the shearing direction (Meheust and Schmittbuhl,
2001, Auradou et al., 2005, Yeo et al., 1998).

In this paper we quantitatively analyze hydraulic
anisotropy introduced by shearing of synthetic
fractures. Fractures are generated by shearing two
identical fractal fracture surfaces incorporating
dilation to obtain an aperture distribution. The
geometrical properties of such created fractures are
analyzed and their hydraulic properties investigated by
numerical flow calculations using a finite element
code. By studying anisotropy of a set of 1000
synthetic fractures we find that the magnitude and the
scatter of anisotropy between the fractures increase
with increasing amount of shearing. All sheared
fractures, without exceptions, show a larger hydraulic
permeability to flow perpendicular to the shearing
direction than parallel to it.

2.2D FRACTURE MODEL

We use the program SAFFT (Méheust &Schmittbuhl,
2001) to generate synthetic self-affine surfaces. The
code creates normal distributed pseudo random
numbers, which initially have no spatial correlation.
By multiplying them with the spectral density function
G(k), a spatial correlation is introduced:

GK) = €K, 2]

where k=274 is the wave vector with the wavelength
A, Cis a constant and « is the slope of the so obtained
logarithmic power spectrum (Brown, 1987). The slope
« is related to the Hurst exponent H by H = (a - 1)/2
for fractal surfaces (Mandelbrot, 1983). The Hurst
exponent is an index for the roughness of the surface.
By applying the inverse Fourier transformation on the
power spectrum a surface with spatially correlated
values for the heights is obtained. As the code uses a
fast Fourier transformation, surface sizes are restricted
to 2". In this study we use surface sizes of 128 x 128
to 512 x 512 elements. The Hurst exponent H,
defining the fractal dimension D of surface by D = 3 -
H, is always set to H=0.8, being a universal value for
granite (Boffa et al., 1998, Neuville et al., 2011), the
typical reservoir rock for enhanced geothermal
systems.

We base the scaling of the fractures on field
measurements obtained from real granite by
Schmittbuhl et al. (1993). Therefore for a typical
fracture size a variation of the topography in the order
of 30 mm is employed.

To generate a sheared fracture two identical generated
self-affine surfaces are shifted by a number of
elements. The vertical height of the upper surface is
then adjusted such that both surfaces do not intersect
but are in contact on at least one contact point. The
difference between both surface heights is taken as the
sheared fracture’s aperture (Figure 1: Construction of
aperture from identical lower and upper surfaces and a
horizontal shearing by 20 elements with the
assumption of a contact point.

). Although we do not take into account any material
abrasion of small rock asperities or other mechanical
interaction of the fracture surfaces we will use the
term shearing for this process in the following.
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Figure 1: Construction of aperture from identical
lower and upper surfaces and a horizontal
shearing by 20 elements with the assumption
of a contact point.

The arithmetic mean @ and the standard deviation o
of the aperture heights a; are calculated with every
shearing step using the equations

F= ~Iha [3]

and

o= Thglor - EF. ]

Figure 2: Mean aperture (top) and standard deviation
(bottom) of aperture as a function of the element-wise
horizontal shear for four fractures of grid size 512 x
512 elements.

shows the mean aperture and the standard deviation
as a function of the horizontal shear for four fractures
with the grid size of 512 x 512 elements. Both, the
mean and the standard deviation of the aperture, grow
almost linearly with the shearing steps. This is in
agreement with laboratory measurements of granite
samples (Chen et al., 2000).



Mean Aperture

0.6+

0.4-

0.2-

Standard Deviation

0.0

0 5 10 15 20
Shear [elements]

Figure 2: Mean aperture (top) and standard
deviation (bottom) of aperture as a function
of the element-wise horizontal shear for four
fractures of grid size 512 x 512 elements.

3. NUMERICAL SIMULATIONS

For numerical simulations we use the finite element
program FRACTure (Kohl & Hopkirk, 1995), which
solves the partial differential equation describing
pressure diffusion:

KR =0, 5]

where K is the hydraulic conductivity and P the
pressure. The hydraulic conductivities K; for each
element i are calculated with the local aperture heights
a; using the cubic law:

. Fp &
Ky & T [6]

Here k; is the permeability and x the dynamic
viscosity. The numerical simulations were done using
Dirichlet boundary conditions. The pressure at one
border is set with P = 1 and at the opposed border with
P = 0. At this stage simulations were run
dimensionless, as we do not include non-linear flow
behavior (turbulent flow, tortuosity, etc.) in the
simulation of the hydraulic behavior of fractures. For
each fracture we run two numerical simulations. First
we set the boundary conditions parallel to the shearing
direction and second perpendicular to the shearing
direction.
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In Figure 3 the positions of the Dirichlet boundary
conditions and the evolving forced fluid flow Q,; and
Q> in the fracture are shown. Q,; is the flow
perpendicular to the shearing direction and Q,, parallel
to it.
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Figure 3: Boundary conditions of the model a) for flow
orthogonal to the shearing direction and b) for
flow parallel to the shearing direction, which were
run for each fracture.

4. HYDRAULIC PRESSURE DISTRIBUTION IN THE
FRACTURE

The numerical simulations with FRACTure result in a
very heterogeneous pressure distribution in the
fracture. Figure 4 c-d shows a pressure distribution
with different flow directions in terms of isobars.
Derived from this, different fluid velocities arise
dependent on the boundary conditions. The fluid
velocity v; of each element is the magnitude of the two
fluid vector components in x;- and in xp-direction. The
magnitude of the fluid velocity components are
presented in Figure 4 e-f. The fluid velocities, where
the flow is forced perpendicular to the shearing
direction are higher than fluid velocities, where the
flow is forced parallel to the shearing direction.
Especially in regions with high permeability there are
high fluid velocities by a pressure gradient
perpendicular to the shearing direction (Figure 4 e-f).
If you look at the same region, but with flow parallel
to the shearing direction, the fluid velocities are much
lower. The reason for this lies in the hydraulic
barriers, where the pressure is highly reduced (Figure
4 c-d), so that after the barrier remains only low
pressure gradients and the fluid velocity is low.

5. RESULTS

The results of the finite element simulation are used
for calculating a mean flow through the fracture. The
flow Q; for each element in the fracture is a
multiplication of the modulus of the fluid velocities
and the aperture height:

L= boglug 7]

The mean flow 6 along the fracture width L is the
arithmetic mean of all elements:

L R [8]
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Figure 4: Hydraulic properties of a fracture of 128 x 128 elements in size and sheared with displacement of 0.375 elements.
(a) Aperture and (b) permeability with marks on a flow channel (magenta) and a hydraulic barrier (yellow). (c-d)
show the pressure profile for the two flow simulation, (e-f) show the magnitude of fluid velocity and (g-h) show the
fluid flow rate per element.

According to the different position of Dirichlet
boundary conditions (Figure 4) fluid flow is parallel to
shearing direction of orthogonal to the shearing

The index i represents the element number and n the
whole number of elements in the 2D fracture model.



direction. Interestingly, the hydraulic flux (Equation
9) is different for both model runs. The fracture gets
hydraulically anisotropic through the shearing process.
The flux parallel to shearing direction is less that
orthogonal to the shearing direction (Figure 5). For
reference we calculate the flux for the parallel plate
model using the average geometric aperture and the
cubic law. For every fracture the hydraulic flux of this
parallel plate model is between the two fluxes (parallel
and orthogonal) of the rough fractures. The hydraulic
anisotropy is observed for each fracture analyzed but
varies widely in a range of at least 6% to 76 %.
Exceptionally high magnitudes of anisotropy are
results of local features, which arise from the fracture
wall topography and the shearing. In the case of
fracture 2 of size 128 x 128 are long hydraulic barrier
(marking in Figure 4 b) of very small aperture and
thus hydraulic conductivity is created by the shearing.
This barrier hinders fluid flow orthogonal to the
shearing direction.
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Figure 5: Average flux per fracture width

orthogonal to shearing direction (black), parallel

to shearing (blue) and the parallel plate model

(red) calculated from mean geometric aperture

for reference. Fracture 2 of grid size 128 x 128

elements.

The effect of shear induced anisotropy has already
been observed numerically by Méheust & Schmittbuhl
(2001) and numerically and experimentally by
Auradou et al. (2005). Contrary to Auradou et al.
(2005) we do not find increasing anisotropy with
increasing shear for every single fracture. Instead for
some fractures we see decreasing or roughly constant
anisotropy, while for some others anisotropy increases
considerably with increasing shear (Figure 6). The
different response of the anisotropy characteristic to
different magnitudes of shear is evidence for the
importance of the actual fracture topography on the
hydraulic properties. Furthermore, synthetic fractures
of larger grid size show smaller variations of
anisotropy among several fractures. For a larger
number of discretized elements, extrema with small
apertures are less important for the hydraulic behavior
of the whole fracture system.
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Figure 6: Anisotropy of hydraulic flux [%] for grid size
of 128 x 128 elements (left) and 512 x 512
elements (right).

In the previous discussion several characteristics of
the fractures and of the flow in these fractures were
shown exemplarily for four synthetic fractures of
128 x 128 elements in size. Among these four
fractures pronounced variations have been observed,
leading to the need to analyze the fluid flow behavior
in a statistically representative manner. Therefore we
conducted an extensive study using a catalog of 1000
synthetic fractures of size 512 x 512 elements. For
each fracture two simulations with the different
boundary conditions relative to the shearing direction
were run for each displacement step between 1 and 10
elements of shear. The result is a statistically
representative study of the anisotropy behavior of
fractures with different degrees of shear displacement
(Figure 7). For small shear displacements we obtain a
narrow distribution of anisotropy. With increasing
shear  displacement, the distribution  widens
considerably, and gets a positive skew, representing
fractures with high values of hydraulic anisotropy. For
low values of anisotropy the relative frequency is
about constant or slightly decreasing for increasing
shear displacement. The mean anisotropy value
changes from 24% to 38% with increasing
displacement. The overall change of anisotropy levels
off, with very similar frequency distributions for
displacements > 6 elements.
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Figure 7: Distribution of hydraulic
anisotropy for different magnitudes of shear
calculated from a set of 1000 fractures.

6. CONCLUSIONS

We analyzed the hydraulic behavior of synthetically
generated rough fractures. The 2D fracture model is
made out of two identical self-affine fracture surfaces,
which are sheared element-wise. Through the shearing
process of the fracture surfaces the mean geometric
aperture and its standard deviation are increasing
continuously. The same effect can also be seen on the
mean fluid flow. Dependent on the orientation of the
boundary conditions different hydraulic flow is
observed, each fracture shows hydraulic anisotropy
but of a greatly varying degree dependent on the
actual topography of the fracture. For every fracture
we observe higher fluid flow orthogonal to the
shearing direction and less fluid flow parallel to the
shearing direction, when compared to the parallel
plate  model. Contrary to previous observations
(Auradou et al., 2005) anisotropy may also decrease
with increasing magnitudes of shear. No correlation
between hydraulic anisotropy and mean aperture or
standard deviation of aperture is observed. Instead, the
hydraulic anisotropy originates from geometric
barriers which form during the shearing process and
limit fluid flow parallel to the shearing direction.
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