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ABSTRACT

Comparison of analytical theories on heat extraction
from hot dry rock (HDR) has been presented in the
literature by various authors..

In this paper a physical model, it is proposed to
analyze the phenomenon of heat exchange between
water and hot dry rock as a homogeneous and
isotropic impermeable medium. Cold water enters a
vertical fracture from below, extracts heat from the
rock, during the ascent of through the fracture. The
equations governing the heat exchange are the
conduction equation in the rock, and convection in the
fluid. The study of this phenomenon, is conducted in
two parts, a single fracture through the rock, and the
case of multiple fractures with an infinite series of
parallel fractures with equal distance. In addition to
comparing the analytical solutions in the literature, the
comparison was extended with numerical solutions
solved by numerical methods based on reverse —
Laplace transform, and the resulting solutions from
software models built on finite element method
(FEM). These solutions, are given in dimensionless
terms, describing the trend of the temperature as a
function of time, and in the case of multi — fracture as
a function of the spacing between the fractures
themselves.

Finally, a comparison between single fracture, and
multi — fracture is presented, to show that in the case
of multi — fracture the system is much more efficient
for heat extraction than in the case of single fracture,
for the same flow rate, as the multi — fracture presents
a greater surface area of heat exchange between rock
and fluid.

1. INTRODUCTION

The intense development of residential and industrial
activities increased in recent decades, consuming
mainly fossil fuels, resulting in climate change,
greenhouse effect and environmental pollution.

World Climate Conferences and agreements signed by
all the countries, have lead to an agreement in
reducing greenhouse gas emissions, improving the
efficiency of systems and processes, developing new
technologies and diversifying as much as possible
renewable energy sources.

Among the energy sources, geothermal energy is
considered sustainably affordable, non-polluting, and
renewable. It can be exploited for power generation,
as well as for district heating.

The simple concept behind the Hot Dry Rock (HDR),
is to exploit the thermal energy of the rock
underground, heated over time by the presence of
magma below.

The rock transfers heat to the water, which flows
through the fractures of the rock, which are formed by
the hydraulic pressure of the water, injected
artificially.

In the zones of thermal anomaly, where faults occur,
or in volcanic areas, the water temperature reaches
high values of temperature, such as to provide hot
water, steam, hot springs, fumaroles.

In HDR systems, two wells are installed below the
ground, allowing the extraction and the re - injection
of hot water (cooled by enthalpy exchange in a turbine
and/or in a heat exchanger).

Many studies have been conducted by various authors,
who presented the first simple theories of heat
exchange between water and rock (single fracture),
and then the generalized phenomenon of multi -
fractures and randomly fractured rock, where a
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parameter that identifies the density of fractures of the
rock is necessary.

The principal authors who worked on this field are:
e Carslaw and Jaeger (1959);
e Lauwerier (1955);
e Bodvarsson (1969 - 1970 - 1972 - 1974);

e Gringarten et al . (1975).

2. PRINCIPAL THEORIES ON THE
EXTRACTION OF HEAT FROM THE ROCK
THROUGH THE HEAT EXCHANGE
BETWEEN THE ROCK AND WATER

A simplified solution of the problem was carried out
by Carslaw and Jaeger (1959). Afterwards Lauwerier
in 1955 modelled the heat transfer of a hot fluid
injected into a fracture of thin, porous medium
containing petroleum high density, in order to increase
extractability of oil, reducing its viscosity. The
mathematical study of Carslaw and Jaeger was
resumed by Bodvarsson as well in his various studies
(1969 - 1970 - 1972 - 1974), to quantify the extraction
of heat from a hot dry rock, in the simple case of a
single fracture. Similarly Gringarten et al . (1975) has
extended the problem from a single rock to a rock
with multiple vertical fractures, parallel and at the
same distance. The model of Gringarten is much
closer to reality, as in a geothermal reservoir rock
multiple fractures are present in order to achieve a
high heat exchange surface, assuring the heat
throughout the life cycle of the geothermal reservoir.

2.1 Carslaw and Jaeger (1948 — 1959)

The study of the extraction of heat in a single fracture,
was conducted initially by Carslaw and Jaeger (1959)
based on the following equations (Figure 1):
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Figure 1: Heat extraction in a single fracture

2.2 Lauwerier (1955)

Lauwerier proposed a mathematical model for the
injection of hot water in a porous medium saturated
with oil by studying the problem in partial differential
equations.

The hypotheses considered are: uniform thickness,
permeability and porosity of the reservoir, constant
flow, infinite conductivity in the direction normal to
the flow, absence of axial conduction, thermal
equilibrium between water and rock. The energy
balance equation used by Lauwerier is:
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The general equation for the heat conduction of the
rock in the HDR is:
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2.3 Bodvarsson (1969 - 1970 — 1972 — 1974)

The study conducted by Bodvarsson (1969) defines a
simple theoretical model for the evolution of the
temperature of the water passing through a single
fracture of impermeable rock. The assumptions made
by the author are:

e Model fracture consisting of a flat open space
of constant width 4 between two large blocks
of homogeneous, isotropic, impermeable
rock;

e The plane y = 0 coincides with one of the two
edges of the fracture, with the y-axis oriented
towards the adjacent rock;

e The x-axis follows the development of the
fracture;

e Along the fracture, a constant mass flow per
unit depth z of the fracture;



e  Temperature of the rock 7 (x, y, f) does not
depend on z;

e The temperature range is symmetrical with
respect to the fracture and the width 4 is
small in order to consider constant the
temperature of the fluid; one considers then
the temperature of the fluid equal to that of
the rock in y = 0;

e Transport of heat by conduction and
convection in the rock along the x axis in the
fracture;

e Absence of conduction along the x-axis.

The temperature field in the rock can be expressed by
means of the heat equation:
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The effect of convective transport is considered as a

boundary condition on the surfaces of the fracture:
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where:
pw [kg/m’] = water density

¢, [J/(kg K)] = Specific heat of the water

b [m]= width of the fracture
q [kg/(s m)] = specific mass flow rate along the
fracture

A[W/(mK)]= thermal conductivity of the rock

An interesting case study is presented by Bodvarsson
considering constant flow and sinusoidal temperature
change, assuming the temperature 7=Aexp(iex) in x
=0, y = 0, where 4 is an arbitrary, real amplitude.

The solution of the dimensionless temperature, is
equal to:

T,=4 erf{ (a\x/%y)} 8]

2.4 Gringarten, Witherspoon and Ohnishi (1975)

The authors have presented a more complete model on
the extraction of heat from HDR, starting from the
analytical solution of Carslaw and Jaeger and from
Bodvarsson. They extend the problem of heat transfer
from single fracture to multi - fracture, as, in general,
a HDR geothermal reservoir presents multi — fracture.
This allows, assuming the same flow rate, to increase
the heat exchange surface, allowing to extract water at
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higher temperatures over the time, thus increasing the
life of the reservoir. (see Figure 2).

MULTIPLE VIRTICAL
FRACTURES

Figure 2: Scheme of a multi-fracture HDR.

The assumptions underlying the model are:
e linear model;

e infinite vertical fractures parallel and
equidistant;

e  width of fractures are uniform;

e rock is homogeneous, isotropic and
impermeable;

e width of fracture are negligible compared to
the distance between fractures.

e density and specific heat of rock and fluid are
constant;

e constant thermal conductivity of the rock;
e volume flow of the fluid is constant;

e the water temperature 7,, (z, f) is uniform in
each section of the fracture and for each
height z equal to the temperature of the rock
on the edge x = b;

e no conduction in the vertical direction of the
fracture and in the rock; all the heat is
transferred by conduction horizontal by into
the rock and by forced convection in the
fracture;

e initially, both the water in the fracture and the
rock are at the same temperature; this
temperature is not uniform along the fracture
but it depends on z. At a given height z, the
initial value of the temperature is calculated
is: T,,) = T,, - za where T,, is the temperature
of the rock at the injection point and w is the
temperature gradient of the rock [K / m] ;
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e 1o flow of heat is exchanged with the contour
at a distance x = xE + b.

The differential equation that governs the temperature
of the water is obtained by writing the thermal balance
of an element of fracture with a volume dV' =dz * db *
1m’,

The heat equation in the rock is described as:
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The heat transfer between water and rock assumes
pure convection of water and pure conduction in the
rock:

[10]

T (r.1) vaTw(y,t)} IPPRACS)

bp.c,
P [ ot oy x|,

Where:
pwlkg/m’]= water density

¢, [J/kg K] = water specific heat

b[m]= fracture width

T, [K]= water temperature
t[s]= time;

v [m/s] = water velocity

AR[W/m K] = rock thermal conductivity;
Tr [K] = rock temperature.

The equations of the model studied by Gringarten for
the single fracture can be expressed as:

Tolty)=1- 2ﬁ[2]0‘5{1 -exp[- 4:0, ﬂ - —ﬁ)erfLH i

Where fis dimensionless parameter of the geothermal
gradient.

For multi — fracture and single fracture the equation
for #= 0 can be written as:
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These two equations can be solved by means of both
Papoulis (1957) and Gaver — Stehfest (1979) methods.

3. APPROACH TO THE STUDY BY MEANS OF
THE FEM MODEL

The finite element method (FEM), is a suitable
numerical technique to find approximate solutions of
boundary value problems, and the initial values

described by partial differential equations, reducing
them to a system of algebraic equations.

The problem domain is discretized to form a grid
(mesh). On each element (triangles, quadrilaterals,
tetrahedra, hexahedral), the solution is assumed to be a
linear combination of basic functions or shape
functions.

Given a strong formulation in the edge of the domain,
and assigned to the conditions, they may be of the

type:

e Neumann condition: the derivative of the
function (flow) takes on values imposed on
the edge of the domain;

e Dirichlet condition: the solution
(temperature) takes on values imposed on the
edge of the domain;

e  Condition of Robin: it imposes a link
between flow and temperature on the edge of
the domain.

The model used here is COMSOL Multiphysics which
considers heat equation for conduction in solids and
both conduction and convection in fluids. Heat
equation in the rock:
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General equation of conduction and convection in the
fluid:
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4. RESULTS

The size of the rock and fracture are those considered
by the example of Harlow and Pracht (1972) and
Gringarten et al. (1975): rock size is 1000 m height
and 1000 m depth; the other data are listed in table 1.

In the case of single fracture flow rate is equal to Q =
0,145 [m’/s]; in the case of multiple fracture N = 10
fractures were considered, where in each fracture Qy =
Q/N = 0.0145 [m’/s], thus leading to the same overall
flow rate.

In Figures 3 and 4, the FEM models of single fracture
and multi - fracture respectively are presented, , with
the boundary conditions and the mesh used.

As regards the mesh, in the fracture, where the water
flows, the rectangular shape has been chosen, while in
the rock the mesh was based on triangular finite
elements. This choice ensures an accurate solution,
and leads to time saving.



Table 1 - Project data by Harlow and Pracht
(1972).

Q [m’/s] 0.145 | Volumetric flow rate

pw [kg/m3] 1000 | Density water

cw [J/(kgK)] | 4184 | Specific heat water

pr [kg/m3] 2650 | Density rock

¢; [J/(kgK)] 1046 | Specific heat rock

A [W/(mK)] |2.6 | Conductivity rock

T, [°C] 300 | Initial temperature of the rock

Two [°C] 65 Water inlet temperature

The results in the case of single fracture, are
represented in Figure 5. In this graph the
dimensionless temperature of the outlet water from the
rock, as a function of dimensionless time, is shown.
The results show the analytic theory of Lauwerier the
numerical solutions of Gringarten et al., resolved by
both the methods of Papoulis and Gaver — Stehfest as
well as FEM solution with COMSOL Multiphysics.
All the solutions follow the same trend. The numerical
solution of Gringarten et al. resolved by the method of
Papoulis differs 3.5% compared to the other methods.

In Figure 6, instead, the dimensionless temperature of
the outlet water from the rock as a function of
dimensionless time is shown, in the case of single
fracture, considering the dimensionless geothermal
gradient S, defined by Gringarten et al. Two values of
gradient (=0 and = 0.1) were considered. Also in
this case the numerical solution resolved by the
method of Papoulis differs by + 3.5% compared to
FEM method. The presence of the geothermal gradient
allows initially to extract water at a higher
temperature; then all the cases show similar trends.

Gringarten et al. defined a simplified method for the
preliminary design of a geothermal power plant,
capable of producing electricity using the heat
extracted from the rock to the water. For this purpose,
a series of data are imposed, such as the thermal
properties of the rock and the water present in situ,
while another set of data must be fixed depending on
the technical and economic considerations, which are
realized, as a function of the useful life of the
geothermal reservoir. In this case the choice will be
based on the number of vertical fractures, the size of
individual fractures, and the spacing between
fractures. These parameters are chosen considering the
graph of Figure 7 presented in the article of Gringarten
et al (1975), which represents the dimensionless
temperature of the outlet water from the rock as a
function of the dimensionless time, by varying the
spacing of the dimensionless fracture in the rock. This
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graph, in the article was obtained via the numerical
solution of Papoulis.

Adiabatic \ T mll'tlet fhox

Trd = 300[°C\

Symmetry
boyndary

Tw(J\= 65[°C]
Q = 0.145 [m¥/s]

Adiabatic /

Figure 3: FEM Model for the single fracture.

T outlet flux Adiabatic \ T nitr;t fhux
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boundary boundary
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Figure 4: FEM Model for the multy — fracture.

For comparing the different methods the calculations
using different fracture spacing have been carried out.

In Figure 8, the results reported by Gringarten et al.
(1975), the numerical method of Gaver - Stehfest used
in this work and the FEM model in COMSOL

5
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Multiphysics are shown for a temperature gradient =
0 as a function of multi - fracture spacing.
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Figure 5: Dimensionless water outlet temperature
versus dimensionless time for the single fracture
theory.
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Figure 6: Dimensionless water outlet temperature
versus dimensionless time theory with geothermal
gradient B for the single fracture theory.

The results of Gringarten et al. (1975) based on the
numerical methods of Papoulis has been compared to
the Gaver — Stehfest method: the two methods have
the same trend of dimensionless temperature as a
function of dimensionless time, depending on the
dimensionless spacing between the fractures. The
small differences between the two solutions depend on
the approximations made by the two methods, which
lead to a maximum error of 7.5% in the case of a
single fracture.

The method of Gaver - Stehfest is currently most used,
in the field of hydrogeological and geothermal
problems, as it is easier to implement compared to the
method of Papoulis, which approximates the solutions
with polynomials of n - degree.

The solutions obtained by FEM models are very
interesting, because the solution depends on the
calculating step and on the mesh used.

6

Papoulis and COMSOL curves follow the same trend,
with a maximum difference in the results in the case
of single fracture of about 7%.

The numerical solutions based on Gaver — Stehfest
and the FEM model have a maximum difference of
3%. This allows to say that the solution of Gaver -
Stehfest is preferable, compared to the method of
Papoulis, used by Gringarten et al., since it is easier to
implement, even in a spreadsheet, offering results
closer to an accurate solution as the one of the FEM
models.
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Figure 7: Dimensionless water outlet temperature
versus dimensionless time depending on the of
fracture spacing (solved with Papoulis method).
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Figure 8: Dimensionless water outlet temperature
versus dimensionless time for Gringarten, Papoulis
method and the FEM model.

The input data defined by Harlow and Pracht (1972),
have been applied to the example of Gringarten et al.
(1975). In this case temperature a function of time for
various values of vertical fractures spacing have been
calculated as shown in Figure 9:

ZV = Tr _TVD (Tr _TWO) [15]
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Figure 9: Water outlet temperature versus time for
different fracture spacings xe, with T,, = 300 °C,
and T, =65 °C.

Finally, as an example of the trend of temperatures in
the different cases, the temperature of the rock in
various time steps are reported for a single fracture
(Figure 10), and multi - fracture (xe = 640m) (Figure
11).

4. CONCLUSIONS

A collection of the main theories of heat extraction in
Hot Dry Rock has been presented.

The analysis of this study started with the simplest
case: the extraction of steam and hot water from the
rock in a single fracture, comparing the analytical
theories of various authors, with numerical relations
using the anti - Laplace transform, and the results with
a FEM model, considering the presence of geothermal
gradient in the case of thermal anomaly.

The authors Gringarten et al. (1975) studied a model,
more simplified but more realistic, with heat
extraction in the case of HDR with multiple fractured
rock, fractures, vertical and parallel, by dividing the
total flow of water in N fractures in the rock. The
numerical equation which is resolved only by
numerical methods using anti - Laplace transforms,
were considered. In this work the both numerical
methods of Papoulis and Gaver — Stehfest have been
used. Results have shown that the multi fracture
technique permits to extract more energy compared to
single fracture, increasing the lifetime of the thermal
resource.

The results of multi fracture were then compared with
FEM models, highlighting that the numerical method
proposed by Gaver - Stehfest, in addition to being
easier to implement than the method of Papoulis,
presents fewer errors of approximation.

Finally, it is important to consider another aspect, in
reality fractures are not really vertical and parallel, but
the crack propagation is changed due to the effects of
thermal stress cracking, in fact, some authors have
studied this aspect confirming: an extraction of
geothermal energy greater than the model proposed by
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Gringarten et al. (1975). Further research will be
addressed to consider the effects on the thermal
performance of a geothermal reservoir.
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Figure 10: Temperature maps over the time for a
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Figure 11: temperature maps over the time for a
multi — fracture xe = 640 m.



