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ABSTRACT 
Estimating petrophysical properties of geothermal 
reservoirs is always a challenging task. The highest 
interest is typically on permeability and thermal 
conductivity, which are especially important 
parameters for numerical reservoir models. Typically 
only very few data exist while the budget is often 
small. To improve the understanding an extended and 
joint data exploration is therefore of vital importance. 

In a pilot study the potential of extended data analysis 
methods is demonstrated for a Rotliegend reservoir in 
Germany. Along a 47 m long core measurements with 
a distance of only 1 mm were performed, summing up 
to 32,000 data points. This dense data distribution 
allows for studying the spatial continuity and 
variability in detail using one-dimensional 
semivariograms (spatial variance). Aim of the study is 
to identify spatial correlations between different 
physical properties, especially thermal conductivity 
and density, and to use this correlation for large scale 
volumetric estimations. Modelling variograms for 
mineral resource estimation is a common practice but 
difficult for geothermal reservoirs due to an extreme 
sparseness of data. To circumvent this problem the 
variogram is constructed on dense data sets (e.g. core 
and/or outcrop) and transferred into the reservoir using 
density values calculated based on seismic sections. 
The validity of this approach depends on the 
correlation between thermal conductivity and density. 
If such a correlation is given a similar spatial 
correlation can be presumed. Finally the volumetric 
calculation of the petrophysical properties can be 
performed by Co-Kriging or Kriging with external 
drift. 

As an outlook the applicability of stochastic and 
inverse methods will be discussed. 

 

 

1. INTRODUCTION  
Within the last years, with the rapid development of 
renewable energies, the geothermal reservoir potential 
estimation became an increasingly important and 
challenging task. Most of the recent studies are 
performed to provide geophysical information 
(seismic, logs) and laboratory measurements as basis 
for geothermal modelling. For example Arndt et al. 
(2011) and Bär et al. (2011) modelled the 3D 
geothermal potential of the federal state of Hessen 
(Germany) using a GOCAD 3D structural model, 
parameterised with the statistically evaluated values of 
different rocks’ thermophysical and hydraulic 
parameters (thermal conductivity, permeability, 
porosity and many more) using Monte Carlo methods 
and a multicriteria approach to evaluate the 
geothermal potential.  

With small budgets it is vital to consider which might 
be the best way to deal with field observations and 
laboratory measurements available. All available data 
should be used for statistical analysis to compute best 
estimates and error bounds.  

Kriging with external drift is a widely used technique 
for the spatial prediction of co-regionalized variables. 
Application fields in the geosciences include for 
example groundwater hydrogeology like Rivest et al. 
(2008); Kitanidis (1997) and soil sciences like 
Bourennane et al. (2008 and 2012) but it is only rarely 
used in geothermal studies.  

The aims of the study are: 

- to characterise the spatial variability of thermal 
conductivity and density 

- to establish correlations of the petrophysical 
properties. 

- to compare the result of the volumetric calculation 
of the petrophysical properties by different 
approaches. 

2. METHOD 
The core samples used in this study were collected 
from a research drilling “Grube Messel GA2” (GA2). 
It is located in the Sprendlinger Horst in the federal 
state of Hessen (Germany) at the coordinates of X: 
3480950 and Y: 5530350 (See Fig. 1). The Permo-
Carboniferous rocks are part of the sedimentation area 
of the largest intramontane molasse-basin of the 
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varsican mountains. The area of the research borehole 
is located between the Saar-Nahe-Basin in the west 
and the Werra-Fulda-Basin in the east.  

The southern border of the horst is defined by mostly 
carboniferous intrusive crystalline bedrock of the 
Odenwald. In the west, the eastern fault of the Upper 
Rhine Graben; in the North WSW – ENE striking 
normal faults parallel to the river Main and in the east 
the Gersprenzgraben are the borders of the Horst. The 
whole area is characterized by fracture blocks which 
mostly formed during the formation of the Upper 
Rhine graben but show signs of reactivation of 
variscan faults. Two dominant strike directions exist 
including the conjugate faults: in the north the NE-SW 
fault direction is dominant; in the south the NNE-SSW 
fault direction is dominant. In the region of 
Sprendlinger Horst, the clastic and volcanic rocks of 
the Permo-Carboniferous cover an area of 
approximately 140 km² with thicknesses of up to 250 
m. These Permo-Carboniferous rocks are discordantly 
overlain by Quaternary Eolian sands and locally by 
Tertiary volcanics and sediments. The underlying 
crystalline basement of the Sprendlinger Horst 
developed in the late phase of the Variscan orogenesis 
in the Carboniferous and is part of the Middle German 
Crystalline Rise.   

At the end of the variscan orogenesis intramontane 
basins developed during the Permo-Carboniferous. 
The Saar-Nahe-Basin as the western part of such a 
basin was paleogeographically connected to the 
Sprendlinger Horst, which subdivided this basin from 
the Werra-Fulda Basin east of the Horst. 

The rocks in the Saar-Nahe-Basin were deposited 
from Upper Carboniferous to late Permian, but in the 
Sprendlinger Horst, deposition only took place from 
the early to the late Permian. 

The description of the lithology is mainly based on 
descriptions from similar rocks from Saar-Nahe-Basin 
(Schäfer 2011 and references therein) due to the little 
reference from the Sprendlinger Horst (Marell 1989; 
Müller 1996). 

2.1 Sample Collection 
In 2004, the GA2 borehole drilling was performed to 
investigate several Eocene deposits from the 
Sprendlinger Horst which were along a straight line in 
the east of Darmstadt and parallel to the old Variscan 
strike. The borehole total length is 80 m. The study 
only used the continuous cores from 2.5 to 50 m under 
the surface, which is located in the middle Moret or 
Langen Formation (Marell 1989) (Mainly sandstone, 
conglomerate, intercalated with variably fine 
laminated claystones). As example some core photos 
are presented in Fig. 2.   

 

 

Figure 1: Location map of Messel GA2 borehole. 

2.2 Laboratory Measurement  
The optical scanning method (Popov et al. 1999) was 
employed for measuring the rock thermal conductivity 
both on oven dry and wet core samples due to its easy 
use and the possibility of continuous measurements 
along the whole core. The optical scanning method is 
based on scanning a primed and black coloured 
sample surface with a focused and operated mobile 
heat source. Along a 47 m long core measurements 
with a distance of only 1 mm were performed, 
summing up to 32,000 data points. The thermal 
conductivity and density profile is shown in Figure 3.  

The density data used originate from the borehole 
geophysical logs conducted by the Leibniz Institute 
for Applied Geophysics (LIAG). 
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Figure 2: Example of the core; photos are from up 
to down at 7-8 m, 16-17 m, 22-23 m, 31-32 m, 
40-41 m, 45-46 m, and 46-47 m.  The 
formation names are labelled on each sample 
as well as the distribution. 

2.3 Density and Thermal Conductivity 
Relationship  
The thermal conductivity is related to the density, and 
within the interval 2-3 g/cm³ the density dependence 
for various rock types can be expressed by individual 
linear functions (Cermak and Rybach 1982) as Eq. 1. 

   ሾ1ሿ 

Where  is thermal conductivity;  is the density; A 
and B are coefficients. 

 

.  

 

Figure 3: Thermal conductivity (TC) and density 
profiles of the GA2 with lithology and 
porosity. The thermal conductivity.  
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Figure 4: Relationship diagram of all samples’ 
thermal conductivity with density. 
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Figure 5: Sandstone thermal conductivity versus 
density.   
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Figure 6: Siltstone thermal conductivity versus 
density. 
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Figure 7: Conglomerate thermal conductivity 
versus density. 
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Figure 8: Claystone thermal conductivity versus 
density. 

The results of the thermal conductivity measurements 
of the following groups: the total data (GA2), 
sandstone, siltstone, conglomerate and claystone are 
plotted in Fig. 4 to 8.  

The thermal conductivity ( ) is proportional to the 
density ( ) for most of the given series: the higher the 
wet bulk density the higher the thermal conductivity. 

However, besides of a general correlation, i.e. increase 
in thermal conductivity is always somehow related to 
an increase of the density it becomes also obvious that 
the quantitative correlation is poor. 

2.4 Variograms 
Experimental variograms are a convenient tool for the 
analysis of spatial data as they are based on a simple 
measure of dissimilarity. Such a tool of geostatistical 
analysis is helpful to identify the spatial distribution 
and behaviour of the parameters studied by setting 
theoretical semi-variogram models that show the 
correlation of the variable in different directions and 
distances of separation. These models can estimate the 
values of the studied variable in areas not sampled by 
interpolation through ordinary kriging (Dale et al. 
2002). 

The variability of a regionalized variable  is 
measured along the core depth by calculating the 
dissimilarity between pairs of data values, and  
for example, located at two points  and  in the 
core.  

The dissimilarity  depends on the spacing and on the 
orientation of the point pair, which is described by a 
vector , 

  ሾ2ሿ  
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By forming the average of the dissimilarities  for 
all  point pairs that can be linked by a vector , we 
obtain the experimental variogram. 

  ሾ3ሿ 

Usually it can be observed that the dissimilarity 
between values increases on average when the spacing 
between the pairs of sample points is increased at low 
separation distance. 

The variogram can be discontinuous at the origin, due 
to the ‘’nugget-effect’’, which means that the values 
of the variable change abruptly at a very small scale, 
like gold grades when a few gold nuggets are 
contained in the samples (Hudson and Wackernagel 
1994). 

For the measured thermal conductivity values a 
theoretical variogram was estimated with no nugget 
effect. A spherical model was fitted to the variogram 
and this model (see Fig. 9) is used in Ordinary Kriging 
(OK) and Kriging with External Drift (KED) (Chauvet 
and Galli 1982). 

Table 1 Summary statistics for measured dry 
thermal conductivity. 

Minimum 1.107 

Maximum 3.745 

Mean 2.3638 

Median 2.3900 

Standard deviation 0.2670 

Variance 0.071 

Skewness -0.379 

Kurtosis 0.469 

Number of observations 31049 

 

 

Figure 9 Histogram of measured thermal 
conductivity. The red solid line shows 
normal distribution.   
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Figure 10 Variograms of thermal conductivity      
fitted with a spherical and a nugget model 
fitted to lag 15 m. The nugget effect is 0.04, 
sill is 0.03 and range is 9.59 m. 

2. Ordinary kriging theory 
When the local mean may vary significantly over the 
study area, for example, the thermal conductivity of 
9.7 – 10 m varies from 1.416 to 2.013 W/(m*K), 
depending on the low density; recall that the overall 
thermal conductivity is 2.364 W/(m*K). 

Ordinary kriging (OK) allows one to account for such 
local variation of the mean by limiting the domain of 
stationarity of the mean to the local neighbourhood 

 centered on the location  being estimated.  

=         [4] 

where  is the variants of the basic linear 
regression estimator.  is the weight assigned to 
datum  interpreted as a realization of the 

. The quantities  and  are the 
expected cvalues of the  and . The 
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number of data involved in the estimation as well as 
their weights may change from one location to 
another.  

The linear estimator [4] is then a linear combination of 
the  plus the constant local mean 

: 

=  

                                                                                   [5] 

The unknown local mean  is filtered from the 
linear estimator by forcing the kriging weights to sum 
to 1. The ordinary kriging estimator  is thus 
written as a linear combination only of the 

: 

  

with                                              [6] 

The OK estimator [6] is unbiased since the error mean 
is equal to zero. 

The minimization of the error variance under the non-
bias condition  calls for the 
definition of a Lagrangian , which is a function of 
the data weights  , and a Lagrange parameter 

: 

ሾ7ሿ                                      

The optimal weights  are obtained by setting to 
zero each of the  partial first derivatives: 

   

൅  ൌ0    

   

The ordinary kriging system includes  
linear equations with  unknowns: the 

 weights  and the Lagrange parameter 
 that accounts for the constraint on the weights: 

 

Although the mean  is assumed stationary only 
with the local neighbourhood , leading to the 
following system: 

 

The resulting minimum error variance, called OK 
variance, is obtained by substituting the first  
equations of the ordinary kriging system [9] into the 
error variance (Goovaerts, 1997): 

        ሾ10ሿ 

2.5 Kriging with a trend model theory 
The mean function  is called the ‘drift’. The KT 
estimator of the trend is expressed as a linear 
combination of  random variables: 

       ሾ11ሿ 

where  is the weight.  
The  unknown coefficients  are filtered 
from the linear estimator by imposing the following 

 constraints: 
           [12] 

By convention, the first trend function  is the 
unit constant, that is . Hence the first 
condition is similar to the OK constraint on the 
weights: . 
The constraints allow one to express the KT estimator 
as linear combination of only the : 

                               [13]  
with      
The kriging with trend estimator is unbiased since the 
error mean is equal to zero: 

 
The minimization of the corresponding error variance, 
under the  non-bias conditions calls for the 
definition of a Lagrangian . The procedure is 
similar to that for ordinary kriging except that there 
are now  Lagrange parameters  
accounting for the  constraints on the weights. 
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Setting the  partial first derivatives to 
zero yields the following system of  
linear equations: 

 
Accounting for the first  equations in system 
[14], the minimized error variance becomes 

                                                                                 [15] 
Note that for , system [14] reverts to the 
ordinary kriging system [8]. Thus, the KT estimator 
[13] and kriging variance [15] are equal to the OK 
estimator [6] and kriging variance [10]. 
 
Kriging with a trend model requires a prior 
determination of (1) the K trend functions , and 
(2) the covariance of the residual component 

 (Goovaerts 1997). 
                   
The auxiliary variables should be incorporated in the 
form of an external drift only if they are highly 
linearly correlated with the variable of interest. 
Otherwise it is preferable to use the method of co-
kriging, which requires the fitting of a model for the 
cross-variograms between the different variables 
(Hudson and Wackernagel 1994).  

With the significant linear relation exists between 
thermal conductivity and density, it is possible to fit a 
variogram in 1D (only depth) and use density as an 
internal drift.  

The two estimators differ by the definition of the trend 
component. Figure 10 shows both KED (solid red 
line) and OK (dashed blue line) estimates of the 
variables of transformed thermal conductivity. Both 
KED and OK estimates are fairly similar. The largest 
differences occur for the missing value segment (like 
underground 44 to 48 meter), where the two KED and 
OK slope estimates differ more. The secondary 
parameter contribution influences the estimates in the 
Kriging with an external drift.  

 

Figure 10 Kriging thermal conductivity (TC) with 
density drift. The gray line is transformed 
thermal conductivity. The dashed blue line 
and the solid red line indicate respectively 
the results of Ordinary Kriging and Kriging 
with External Drift (KED).  

3. CONCLUSIONS 
Ordinary kriging as well as KED are established on 
the basis of the variogram function which represents 
the spatial data variability. 

These first tests show the principal applicability of 
multi-variable geostatistics for improving the forecast 
of reservoir parameters. Future work will be to test 
advantages of Co-Kriging compared to KED. Once 
these tests are completed the geostatistical approach 
will be applied to a large seismic data-set which is 
available at the borehole location. Here seismic data, 
which are also strongly correlated with density, will be 
used for derivation of a large scale variogram and will 
be used as secondary variable while interpolating the 
density.  
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