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ABSTRACT

This paper discusses a method of characterizing
fracture connectivity in geothermal reservoirs using
conductive fluid injection and electrical resistivity
measurements. A ‘library’ of discrete fractal fracture
networks with different spatial fractal dimensions was
generated. For each of the networks, the time history
of electric potential difference between well pairs was
calculated as a conductive fluid was injected into the
reservoir. The conductive fluid travels along fracture
paths from the injector towards the producers causing
the electric potential difference to drop. The changes
in electric potential are related to the connectivity of
the fracture network. One of the fracture networks was
used as a hypothetical geothermal reservoir and
inverse modelling was used to match the time-history
of the electric potential to other fracture networks. For
comparison, inverse analysis was also used to match
tracer return curves alone and the study showed that
locations of connected areas were estimated better
using the electric potential approach. Thermal return
curves for the reservoir were calculated and the results
showed promising possibilities for using electric
potential measurements to  predict thermal
breakthrough.

1. INTRODUCTION

Fracture configuration is central to the performance of
Enhanced Geothermal Systems (EGS), as well as to
that of conventional reservoirs in fractured volcanic
rocks. Interconnected fractures control mass and heat
transport in the reservoir and if injected fluid reaches
production wells before it is fully heated, unfavorable
effects on energy production will result due to
decreasing fluid enthalpies. Consequently,
inappropriate placement of injection or production
wells can lead to premature thermal breakthrough.
Such premature thermal breakthroughs have occurred
in numerous geothermal reservoirs, as described by
Horne (1982), and observed in The Geysers (Beal et
al.,, 1994). Thus, characterizing fractures in the
reservoir is crucial to ensure adequate supply of

geothermal fluids and efficient thermal operation of
the wells.

Current geophysical methods, such as self-potential
and direct current surveys are commonly used to
explore geothermal fields (Garg et al., 2007). Seismic
and electromagnetic surveys have also been useful for
identifying boundaries between flow units (Chen,
2010; Parra et al., 2006) and to detect fractures at
small depth (Jeannin, 2006). However, at greater
depth these surveys cannot identify fractures that are
small-scaled in comparison to the reservoir.

In the method considered in this study, conductive
fluid injection would be used with electrical resistivity
measurements to estimate the connectivity of fracture
networks. The electric potential drops as conductive
fluid fills fractures from the injector towards the
producer. Therefore, the time-lapse electric potential
data are related to the connectivity of the fracture
network. Electrodes would be placed inside the
geothermal wells to measure the resistivity more
accurately in the deeper part of the reservoir. Irving
and Singha (2010) have demonstrated an attempt to
use Bayesian Markov-chain-Monte-Carlo (McMC)
methodology to jointly invert dynamic cross-well and
surface resistivity data with tracer concentration data
to estimate hydraulic conductivities in heterogeneous
geological environments. They concluded that using
resistivity data instead of tracer data alone was worth
the most where flow was controlled largely by highly
connected flow paths. A key difference in our study is
that we are estimating the connectivity of reservoirs
with discrete fractures instead of grid-blocks.

Field studies by Rouleau and Gale (1985) suggest that
fracture connectivity is dependent on fracture
orientation, spacing, and trace length but connectivity
has also been quantified by the size of a group of
linked fractures, known as a “cluster’ (Stauffer, 1985).
In this project, the connectivity is characterized by the
Fractional Connected Area (FCA) which is the
fraction of the total area that is connected by clusters
of fractures, as described by Ghosh and Mitra (2009).
Fractional Connected Area provides a good indicator
of the overall fracture density and does not relate the
cluster size to only the connectivity within the largest
cluster as seen in other methods (Odling, 1997).
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Figure 1: A fractal fracture network with fractal dimension equaltoa) D=1.0and b) D = 1.8.

First, discrete fractal fracture networks were modelled
representing  fracture-dominated flow paths in
geothermal reservoirs. Then, a flow simulator was
used to simulate the flow of a conductive tracer
through the networks and to solve the electric fields at
each time step by utilizing the analogy between Ohm's
law and Darcy's law. One of the networks was chosen
as a hypothetical ‘true’ reservoir and inverse
modelling was used to match the time-histories of the
electric potential to other candidate fracture networks.
This method was compared to estimating connectivity
using tracer return curves alone. In the end, the
possibility of using the electrical approach to estimate
thermal-return curves was investigated.

2. ALIBRARY OF FRACTURE NETWORKS

A ‘library’ of discrete fractal fracture networks
representing fractured geothermal reservoirs was
generated. Time-histories of electric potential
difference between well pairs were calculated for all
the networks as a conductive fluid was injected into
the reservoir. General Purpose Research Simulator
(GPRS) developed at Stanford University (Cao, 2002)
was used to simulate both the tracer flow and the
electric fields at each time-step as demonstrated earlier
by Magnusdottir and Horne (2012). This section
describes how the fractal fracture networks were
generated and modelled for the flow and electric
simulations.

2.1 Discrete fractal fracture networks

Discrete fracture networks (DFN) were modelled
using a Discrete Fracture Network (DFN) approach by
Karimi-Fard et al. (2003) and the triangular mesh was
formed using Triangle (Shewchuk, 1996). The
fractures were assumed to follow a power-law length
distribution as seen in field studies that have been
performed on fault systems at different length scales
(Shaw and Gartner, 1986; Main et al., 1990). The
length distribution can be described by the following
equations (Nakaya et al., 2003),

N()=BI"" [1]

a= Isz} log N (1) / log(1/1) [2]

B=(lna)" [3]

where a is the fractal dimension of the fracture length
distribution, /,,. is the maximum fracture length and
N(l) is the number of fractures with lengths larger than
[, so [=l,,, when N(l)=1. The spatial distribution of the
fractures is also assumed to be fractal. Therefore, the
relationship between the fractal dimension D within an
L x L square domain and N(r), the number of boxes of
size r that include the center point of fractures, can be
represented by a fractal equation using the box-
counting approach (Barton and Larsen, 1985),

D:I‘ing log N(r)/log(/r) [4]

where r = LIk (k=1,2,3,...). Discrete-fracture networks
with fractal dimensions ranging from D = 1.0 to 1.8
with 0.1 increments were created using a method
described by Nakaya et al. (2003). The angles normal
to the fractures were chosen to have two different
distributions, both equally as likely to be chosen. The
angles had a normal distribution with the mean either
as 45° or as 135°, and with a standard deviation of 5°.
The maximum fracture length was set as /,,,,=600 m
and the aperture was defined by,

Wy =C-1° [5]

where w,,, is the aperture and C is a constant. Olson
(2003) describes how this power law equation was
used to fit various fracture datasets of different sizes,
usually with e = 0.4. Here, e was set as 0.4, C as 0.002
m*® and the size of the reservoir was set as 1000 x
1000 m?. Figure 1 shows an example of a fracture
network with fractal dimension D = 1.0 and one with
D = 1.8. The fracture connectivity for the network
with higher fractal dimension is considerably better.

2.2 Simulation using GPRS

The conductive tracer injected into the reservoirs was
assumed to be a NaCl solution and the resistivity of
the solution, p,, was calculated using a three-
dimensional regression formula established by Ucok
et al. (1980). They concluded that the dependence of
resistivity is best represented by the formula:

p, =by+bT ™ +b,T+bT° +b,T° [6]



where T is temperature and b are coefficients found
empirically. The best fit for the concentration
dependence was found to be:

p, =10/(Ac) U

A =B, —B,c"? + BycIn(c) + higher order terms [8]

Coefficients B depend on the solution chemistry and ¢
is the molar concentration.

In this project, the tracer concentration resulting from
the flow simulation is changed into molar
concentration and the following B coefficient matrix
for the three-dimensional regression analysis of the
data studied by Ucok et al. (1980) is used to calculate
the resistivity of the NaCl solution,

3.470 -6.650 2.633

-59.23 198.1 64.80

B= 0.4551 -0.2058 0.005799
-0.346E-5 7.368E-5 6.741E-5
-1.766E-6 8.787E-7  -2.136E-7

Then, the resistivity of the water saturated rock, p, was
calculated using Archie’s law (Archie, 1942),
p=m¢"p, 0]
where (1 is the porosity of the rock, p,, is the resistivity
of the NaCl solution and m and » are empirical
constants. Archie (1942) concluded that for typical
sandstones in oil reservoirs the coefficient m is
approximately 1 and » is approximately 2 but Keller
and Frischknecht (1996) showed that this power law is
valid with varying coefficients based on the rock type.
In this case, m was set as 0.62 and » as 1.95, which
corresponds to well-cemented sedimentary rocks with
porosity 5-25% (Keller and Frischknecht, 1996).

For the fracture network examples used in this study,
one injection and three production wells were
modelled. Water was injected at the rate of 10 kg/s
and conductive tracer was 22 wt% of the water
injected. The fractures were modeled to be filled with
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(fresh) water before any conductive tracer was
injected so the initial tracer mass was set to 0.05 wt%.
The production wells were modelled to deliver against
a bottom-hole pressure of 10° Pa with productivity
index of 4x10™* m®, The initial pressure was set to 10°
Pa and the temperature to 25°C. The porosity of the
fractures was defined as 0.9 and the permeability was
determined by:

2
w

= 10

B [10]
where w is the aperture of the fractures. The matrix
blocks were given a porosity value of 0.1 and the
permeability was set as 1x10™° m?. After using GPRS
to solve for the tracer flow, the analogy between
Darcy’s law and Ohm’s law (Muskat, 1932) was
utilized and GPRS used to also solve the electric field.
An electric current was set equal to 1 A at the injector
and as -1 A at Producer 1 and the potential field was
calculated based on the resistivity of the field at each
time step. Then, the same procedure was repeated for
all the other well pairs. Further details about how
GPRS was used to calculate the electric field can be
found in Magnusdottir and Horne (2012).

2.3 Number of fracture networks increased

The computer power available for this study allowed
for 800 candidate fracture networks to be generated. In
order to increase the number of distinctive fracture
networks the mirror images of the networks were used
as well. The location of the injector and producers is
symmetrical about a vertical line in the middle of the
reservoir. For a fracture network, the electric potential
between the injector and Producer 1, is the same as the
electric potential between injector and Producer 2 for
the mirror image of the network (and vice versa)
(Figure 2). The same applies for electric potential
between Producer 1 and Producer 3, and between
Producer 2 and Producer 3. Other well pairs are
unchanged. Thus, the number of distinctive fracture
networks was doubled and a total of 1600 different
fracture networks were used for the inverse analysis in
this study.
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Figure 2: a) A fractal fracture network b) The mirror image of the fracture network in a).
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Figure 3: a) A hypothetical reservoir and b) the best match when using electric potential difference between

wells.

3. INVERSE ANALYSIS

One of the fracture networks in the library of 1600
networks was chosen as a hypothetical ‘true’
geothermal reservoir. Inverse analysis was used with
the time histories of the electric potential to estimate
the connectivity of the reservoir. The connectivity was
quantified by Fractional Connected Area (FCA). FCA
is defined by the summed area of all clusters within a
fracture network divided by the total sample area
where the area of a cluster is delineated by the
simplest polygon around the extremities of a fracture
cluster.

Due to the relatively small number of fracture
networks, a grid search algorithm could be used to
compare the reservoir response to that of all the
fracture networks in the library of networks. For the
‘true’ reservoir, the best match was found using least
squares, where the sum of the squared deviations
between the electric curves for the true reservoirs and
the electric curves for the fracture networks is
minimized. For every well pair in the reservoir, the
following least squares criterion was calculated,
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where y; is the electric potential difference between
well pair j in the true reservoir at time ; and f; is the
corresponding electric potential for the fracture
network. Then, the sum of O; for all well pairs was
minimized to find the best match.

3.1 Hypothetical reservoir

The fracture network chosen as the ‘true’ geothermal
reservoir is shown in Figure 3a. The spatial fractal
dimension of the reservoir is D = 1.2 and the
Fractional Connected Area (FCA) is 18%. Electric
potential difference between well pairs and tracer
return curves at the producers are shown in Figure 4.
The electric potential difference between the injector
and Producer 1 drops considerably faster than that
between other well pairs due to the connected area
between the injector and Producer 1. After the
conductive tracer reaches Producer 1, the tracer travels
towards Producer 3 through the fractured area in the
lower left corner of the reservoir. The tracer travels,
however, relatively slowly towards Producer 2
because there are no fractures in that area. The tracer
return curves at the producers also indicate a
considerably better connection towards Producer 1
than towards the other producers. The tracer reaches
Producer 1 after 1 day but reaches Producer 2 after 26
days and Producer 3 after 28 days.
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Figure 4: Electric potential difference between wells (to the left) and tracer return curves (to the right).

4



x 10
15r T T T T T
1 —=— Injector and Producer 1
o —— Injector and Producer 2
—=— Injector and Producer 3
—&— Producer 1 and Producer 3
Producer 2 and Producer 3
10F] Producer 1 and Producer 2 H

Electric Potential Difference between VWells [\/]

Time [days]

. v g SRR e
0 10 20 30 40 50 80 90

Tracer Concentration [qui'kgm]

0.25

o
]
T

o
o
T

=

o

=

@
T

Magnusdottir and Horne

—&— Producer 1
—<— Producer 2
—&— Producer 3
—S— Injector

Time [days]

Figure 5: The electric potential difference between wells (to left) and tracer return curves (to right) for the

fracture network in Figure 3b.

3.2 Inversion of electric potential data

The inverse analysis compared the time histories of
the electric potential difference between well pairs for
the reservoir in Figure 3 to the ‘library’ of 1600
fracture networks. The network that gave the best
match is seen in Figure 3b. The curves for the electric
potential (Figure 5) show a very similar behaviour to
the curves for the true reservoir described previously
in Figure 4.

The Fractional Connected Area (FCA) of the network
in Figure 3b was compared to the FCA of the true
reservoir. The results were FCA = 25% for the best
match while FCA for the reservoir was FCA = 18%.
Thus, FCA matches relatively well. The difference in
FCA can be explained by fractures in the true
reservoir that are located close to the injector and
leading towards Producer 1, but do not intersect any of
the fractures in the connected area. These few
fractures contribute to the flow but do not increase the
size of the connected area. In another case studied
previously (Magnusdottir and Horne, 2013) FCA
matched very well but this example demonstrates that
large fractures not intersecting other fractures can also
contribute significantly to the flow. Thus, estimating
FCA with very high precision is not of interest here
but to rather obtain an idea of where the fractures
contributing to the flow are located in order to better
understand the flow system.

The location of the connected areas is another
similarity that can be seen between the best match and
the real reservoir. In both cases the connected
fractures are located similarly between the injector and
Producer 1, resulting in a drop in potential difference
between these wells as conductive fluid is injected
into the reservoir. The connected area in the lower left
corner of Figure 3a is also predicted correctly, causing
the tracer to travel from the upper connected area,
along the left side of the reservoir, towards Producer
3. Therefore, the electric potential difference between
Producer 1 and Producer 3 drops considerably faster
than the electric potential difference between Producer
2 and Producer 3. These results indicate a good
possibility of using this electric approach to determine

fractional connected area as well as the general
locations of the connected fractures.

The tracer return curves for the best match, shown in
Figure 5, show somewhat different behavior than the
tracer return curves for the hypothetical reservoir
(Figure 4). Thus, it was of interest to compare the
performance results of using the electrical approach to
those using only tracer return curves to predict
connected areas.

3.3 Inversion of tracer return curves

The inverse analysis was performed again for the
reservoir in Figure 3a, but this time the objective
function measured the difference between the model
calculation of just the simple tracer return curves and
the corresponding tracer return curves for the true
reservoir. The best match when comparing the tracer
return curves can be seen in Figure 6. For this case,
the time histories of the electric potential difference
between the wells (Figure 7) do not match as well as
when they were used to find the best match. However,
as expected, the tracer return curves match better than

before.
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Figure 6: The best match when using tracer return
curves.
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fracture network in Figure 6.

Here, FCA = 19% so FCA matches very well to the
true reservoir where FCA = 18%. However, for the
best match all of that connected area is located only
between the injector and Producer 1. Thus, tracer
return curves indicate a good connection between the
injector and Producer 3 but fail to predict the
connected area between Producer 1 and Producer 3.

The location of connected area is better predicted
using the electric approach and the same observation
was also valid for other cases not shown here (another
example is shown in Magnusdottir and Horne, 2013).
The advantages of using the electric measurements
include having more extensive data and being able to
see the changes as the conductive fluid flows through
the network even before the tracer would have reached
the production wells.

4. ESTIMATION OF THERMAL RETURN

Thermal return curves were studied to investigate the
possibility of using electrical potential measurements
to predict temperature declines in geothermal
reservoirs. The initial temperature of the reservoirs
was set as 200°C and the injected fluid was at 100°C.
Water was injected at 1 kg/s and the production wells
were modelled to deliver against a bottom-hole
pressure of 10° Pa with productivity index of 4x10™?
m?. Other parameters were unchanged.

Figure 8 shows the thermal return curves for the ‘true’
reservoir in Figure 3a and the best match reservoir
based on the electric potential approach (Figure 3b).
The thermal return curves for the best match show
similar behaviour to that of the ‘true’ reservoir. The
temperature declines considerably faster in Producer 1
than in the other producers due to the connected area
located between the injector and Producer 1.
Therefore, the production rate in Producer 1 would
need to be decreased to prevent premature thermal
breakthrough.
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Figure 8: Thermal return curves for the true
reservoir in Figure 3a and the best match
using electric potential approach (Figure 3b).

Other cases were also studied, as shown in Figure 9.
The thermal return curves in Figure 9c for the
reservoir in Figure 9a show very similar behaviour to
the best match (Figure 9b). The temperature at
Producer 1 and at Producer 3 drops slowly because
there are no fractures in the top half of the reservoir.
Thus, there are no fast-flow paths leading towards
these  producers causing premature thermal
breakthrough as seen previously in Figure 8. The
reservoir in Figure 9d and the best match in Figure 9e
have similar connected areas in the top part of the
reservoirs, causing the temperature to drop relatively
quickly at Producer 1 and Producer 2. However, the
drop is not as steep as seen at Producer 1 in Figure 8.
The behaviour at Producer 3 for this example is also
similar for the reservoir and the best match.

These examples have shown promising possibilities
for using inversion of electric potential measurements
with conductive fluid injection to gain information
about thermal return curves. Future work involves
further investigating this potential and to compare this
method to predicting thermal return curves using only
tracer tests.
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Figure 9: a) Reservoir 2, b) best match for Reservoir 2 when using electric potential, ¢) thermal return curves
for Reservoir 2, d) Reservoir 3, e) best match for Reservoir 3 when using electric potential, f) thermal

return curves for Reservoir 3.

5. CONCLUSIONS

In this work, time histories of electric potential
difference between wells were used in an inverse
analysis to estimate the Fractional Connected Area
(FCA) of a hypothetical reservoir. A library of fracture
networks was generated and the electric potential
computed as a conductive fluid was injected into the
reservoir. One of the networks was chosen as a
hypothetical ‘true’ reservoir and the time-lapse electric
potential data was compared to all the other networks
to find the best match using a grid-search algorithm.
The reservoir and the best match had a similar FCA
and the connected areas had similar locations. For
comparison, the inverse analysis was also performed
matching only the tracer return curves at the
producers. The best match gave similar FCA but the
locations of the connected areas were somewhat
different from those of the true reservoir. The same
observation was made in other examples not included
here.

The possibility of using the electric approach to
estimate thermal breakthrough was investigated.
Thermal return curves for the true reservoir and the
best match obtained using the electric approach
showed similar behaviour. Additionally, other cases
studied also showed similar temperature decline for
the chosen reservoirs and their best matches. Future
work will include investigating this possibility further.
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