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ABSTRACT 
This paper discusses a method of characterizing 
fracture connectivity in geothermal reservoirs using 
conductive fluid injection and electrical resistivity 
measurements. A ‘library’ of discrete fractal fracture 
networks with different spatial fractal dimensions was 
generated. For each of the networks, the time history 
of electric potential difference between well pairs was 
calculated as a conductive fluid was injected into the 
reservoir. The conductive fluid travels along fracture 
paths from the injector towards the producers causing 
the electric potential difference to drop. The changes 
in electric potential are related to the connectivity of 
the fracture network. One of the fracture networks was 
used as a hypothetical geothermal reservoir and 
inverse modelling was used to match the time-history 
of the electric potential to other fracture networks. For 
comparison, inverse analysis was also used to match 
tracer return curves alone and the study showed that 
locations of connected areas were estimated better 
using the electric potential approach. Thermal return 
curves for the reservoir were calculated and the results 
showed promising possibilities for using electric 
potential measurements to predict thermal 
breakthrough.  

1. INTRODUCTION 
Fracture configuration is central to the performance of 
Enhanced Geothermal Systems (EGS), as well as to 
that of conventional reservoirs in fractured volcanic 
rocks. Interconnected fractures control mass and heat 
transport in the reservoir and if injected fluid reaches 
production wells before it is fully heated, unfavorable 
effects on energy production will result due to 
decreasing fluid enthalpies. Consequently, 
inappropriate placement of injection or production 
wells can lead to premature thermal breakthrough. 
Such premature thermal breakthroughs have occurred 
in numerous geothermal reservoirs, as described by 
Horne (1982), and observed in The Geysers (Beal et 
al., 1994). Thus, characterizing fractures in the 
reservoir is crucial to ensure adequate supply of 

geothermal fluids and efficient thermal operation of 
the wells. 

Current geophysical methods, such as self-potential 
and direct current surveys are commonly used to 
explore geothermal fields (Garg et al., 2007). Seismic 
and electromagnetic surveys have also been useful for 
identifying boundaries between flow units (Chen, 
2010; Parra et al., 2006) and to detect fractures at 
small depth (Jeannin, 2006). However, at greater 
depth these surveys cannot identify fractures that are 
small-scaled in comparison to the reservoir. 

In the method considered in this study, conductive 
fluid injection would be used with electrical resistivity 
measurements to estimate the connectivity of fracture 
networks. The electric potential drops as conductive 
fluid fills fractures from the injector towards the 
producer. Therefore, the time-lapse electric potential 
data are related to the connectivity of the fracture 
network. Electrodes would be placed inside the 
geothermal wells to measure the resistivity more 
accurately in the deeper part of the reservoir. Irving 
and Singha (2010) have demonstrated an attempt to 
use Bayesian Markov-chain-Monte-Carlo (McMC) 
methodology to jointly invert dynamic cross-well and 
surface resistivity data with tracer concentration data 
to estimate hydraulic conductivities in heterogeneous 
geological environments. They concluded that using 
resistivity data instead of tracer data alone was worth 
the most where flow was controlled largely by highly 
connected flow paths. A key difference in our study is 
that we are estimating the connectivity of reservoirs 
with discrete fractures instead of grid-blocks. 

Field studies by Rouleau and Gale (1985) suggest that 
fracture connectivity is dependent on fracture 
orientation, spacing, and trace length but connectivity 
has also been quantified by the size of a group of 
linked fractures, known as a ‘cluster’ (Stauffer, 1985). 
In this project, the connectivity is characterized by the 
Fractional Connected Area (FCA) which is the 
fraction of the total area that is connected by clusters 
of fractures, as described by Ghosh and Mitra (2009). 
Fractional Connected Area provides a good indicator 
of the overall fracture density and does not relate the 
cluster size to only the connectivity within the largest 
cluster as seen in other methods (Odling, 1997). 
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Figure 1: A fractal fracture network with fractal dimension equal to a) D = 1.0 and b) D = 1.8. 

First, discrete fractal fracture networks were modelled 
representing fracture-dominated flow paths in 
geothermal reservoirs. Then, a flow simulator was 
used to simulate the flow of a conductive tracer 
through the networks and to solve the electric fields at 
each time step by utilizing the analogy between Ohm's 
law and Darcy's law. One of the networks was chosen 
as a hypothetical ‘true’ reservoir and inverse 
modelling was used to match the time-histories of the 
electric potential to other candidate fracture networks. 
This method was compared to estimating connectivity 
using tracer return curves alone. In the end, the 
possibility of using the electrical approach to estimate 
thermal-return curves was investigated. 

2. A LIBRARY OF FRACTURE NETWORKS 
A ‘library’ of discrete fractal fracture networks 
representing fractured geothermal reservoirs was 
generated. Time-histories of electric potential 
difference between well pairs were calculated for all 
the networks as a conductive fluid was injected into 
the reservoir. General Purpose Research Simulator 
(GPRS) developed at Stanford University (Cao, 2002) 
was used to simulate both the tracer flow and the 
electric fields at each time-step as demonstrated earlier 
by Magnusdottir and Horne (2012). This section 
describes how the fractal fracture networks were 
generated and modelled for the flow and electric 
simulations. 

2.1 Discrete fractal fracture networks  
Discrete fracture networks (DFN) were modelled 
using a Discrete Fracture Network (DFN) approach by 
Karimi-Fard et al. (2003) and the triangular mesh was 
formed using Triangle (Shewchuk, 1996). The 
fractures were assumed to follow a power-law length 
distribution as seen in field studies that have been 
performed on fault systems at different length scales 
(Shaw and Gartner, 1986; Main et al., 1990). The 
length distribution can be described by the following 
equations (Nakaya et al., 2003), 
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where a is the fractal dimension of the fracture length 
distribution, lmax is the maximum fracture length and 
N(l) is the number of fractures with lengths larger than 
l, so l=lmax when N(l)=1. The spatial distribution of the 
fractures is also assumed to be fractal. Therefore, the 
relationship between the fractal dimension D within an 
L × L square domain and N(r), the number of boxes of 
size r that include the center point of fractures, can be 
represented by a fractal equation using the box-
counting approach (Barton and Larsen, 1985),  
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where r = L/k (k=1,2,3,…). Discrete-fracture networks 
with fractal dimensions ranging from D = 1.0 to 1.8 
with 0.1 increments were created using a method 
described by Nakaya et al. (2003). The angles normal 
to the fractures were chosen to have two different 
distributions, both equally as likely to be chosen. The 
angles had a normal distribution with the mean either 
as 45° or as 135°, and with a standard deviation of 5°. 
The maximum fracture length was set as lmax=600 m 
and the aperture was defined by, 

                                    elCw ⋅=max                        [5] 

where wmax is the aperture and C is a constant. Olson 
(2003) describes how this power law equation was 
used to fit various fracture datasets of different sizes, 
usually with e = 0.4. Here, e was set as 0.4, C as 0.002 
m3/5 and the size of the reservoir was set as 1000 × 
1000 m2. Figure 1 shows an example of a fracture 
network with fractal dimension D = 1.0 and one with 
D = 1.8. The fracture connectivity for the network 
with higher fractal dimension is considerably better. 

2.2 Simulation using GPRS 
The conductive tracer injected into the reservoirs was 
assumed to be a NaCl solution and the resistivity of 
the solution, ρw, was calculated using a three-
dimensional regression formula established by Ucok 
et al. (1980). They concluded that the dependence of 
resistivity is best represented by the formula: 
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where T is temperature and b are coefficients found 
empirically. The best fit for the concentration 
dependence was found to be: 

)/(10 cw Λ=ρ                              [7] 

termsorderhigherccBcBB ++−=Λ )ln(2
2/1

10   [8] 

Coefficients B depend on the solution chemistry and c 
is the molar concentration.  

In this project, the tracer concentration resulting from 
the flow simulation is changed into molar 
concentration and the following B coefficient matrix 
for the three-dimensional regression analysis of the 
data studied by Ucok et al. (1980) is used to calculate 
the resistivity of the NaCl solution, 

 3.470 -6.650 2.633 
 -59.23 198.1 64.80 
B = 0.4551 -0.2058 0.005799 
 -0.346E-5 7.368E-5 6.741E-5 
 -1.766E-6 8.787E-7 -2.136E-7 
 
Then, the resistivity of the water saturated rock, ρ, was 
calculated using Archie’s law (Archie, 1942), 

                                 w
nm ρφρ −=                             [9] 

where � is the porosity of the rock, ρw is the resistivity 
of the NaCl solution and m and n are empirical 
constants. Archie (1942) concluded that for typical 
sandstones in oil reservoirs the coefficient m is 
approximately 1 and n is approximately 2 but Keller 
and Frischknecht (1996) showed that this power law is 
valid with varying coefficients based on the rock type. 
In this case, m was set as 0.62 and n as 1.95, which 
corresponds to well-cemented sedimentary rocks with 
porosity 5-25% (Keller and Frischknecht, 1996). 

For the fracture network examples used in this study, 
one injection and three production wells were 
modelled. Water was injected at the rate of 10 kg/s 
and conductive tracer was 22 wt% of the water 
injected. The fractures were modeled to be filled with 

(fresh) water before any conductive tracer was 
injected so the initial tracer mass was set to 0.05 wt%. 
The production wells were modelled to deliver against 
a bottom-hole pressure of 106 Pa with productivity 
index of 4×10-12 m3. The initial pressure was set to 106 
Pa and the temperature to 25°C. The porosity of the 
fractures was defined as 0.9 and the permeability was 
determined by: 
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where w is the aperture of the fractures. The matrix 
blocks were given a porosity value of 0.1 and the 
permeability was set as 1×10-10 m2. After using GPRS 
to solve for the tracer flow, the analogy between 
Darcy’s law and Ohm’s law (Muskat, 1932) was 
utilized and GPRS used to also solve the electric field. 
An electric current was set equal to 1 A at the injector 
and as -1 A at Producer 1 and the potential field was 
calculated based on the resistivity of the field at each 
time step. Then, the same procedure was repeated for 
all the other well pairs. Further details about how 
GPRS was used to calculate the electric field can be 
found in Magnusdottir and Horne (2012). 

2.3 Number of fracture networks increased 
The computer power available for this study allowed 
for 800 candidate fracture networks to be generated. In 
order to increase the number of distinctive fracture 
networks the mirror images of the networks were used 
as well. The location of the injector and producers is 
symmetrical about a vertical line in the middle of the 
reservoir. For a fracture network, the electric potential 
between the injector and Producer 1, is the same as the 
electric potential between injector and Producer 2 for 
the mirror image of the network (and vice versa) 
(Figure 2). The same applies for electric potential 
between Producer 1 and Producer 3, and between 
Producer 2 and Producer 3. Other well pairs are 
unchanged. Thus, the number of distinctive fracture 
networks was doubled and a total of 1600 different 
fracture networks were used for the inverse analysis in 
this study.  

 

 
Figure 2: a) A fractal fracture network b) The mirror image of the fracture network in a).  



Magnusdottir and Horne 

 4 

 
Figure 3: a) A hypothetical reservoir and b) the best match when using electric potential difference between 

wells. 

3. INVERSE ANALYSIS 
One of the fracture networks in the library of 1600 
networks was chosen as a hypothetical ‘true’ 
geothermal reservoir. Inverse analysis was used with 
the time histories of the electric potential to estimate 
the connectivity of the reservoir. The connectivity was 
quantified by Fractional Connected Area (FCA). FCA 
is defined by the summed area of all clusters within a 
fracture network divided by the total sample area 
where the area of a cluster is delineated by the 
simplest polygon around the extremities of a fracture 
cluster.  

Due to the relatively small number of fracture 
networks, a grid search algorithm could be used to 
compare the reservoir response to that of all the 
fracture networks in the library of networks. For the 
‘true’ reservoir, the best match was found using least 
squares, where the sum of the squared deviations 
between the electric curves for the true reservoirs and 
the electric curves for the fracture networks is 
minimized. For every well pair in the reservoir, the 
following least squares criterion was calculated, 

                         ∑
=

−=
n

i
iij fyQ

1

2)(                         [11] 

where yi is the electric potential difference between 
well pair j in the true reservoir at time i and fi is the 
corresponding electric potential for the fracture 
network. Then, the sum of Qj for all well pairs was 
minimized to find the best match. 

3.1 Hypothetical reservoir 
The fracture network chosen as the ‘true’ geothermal 
reservoir is shown in Figure 3a. The spatial fractal 
dimension of the reservoir is D = 1.2 and the 
Fractional Connected Area (FCA) is 18%. Electric 
potential difference between well pairs and tracer 
return curves at the producers are shown in Figure 4. 
The electric potential difference between the injector 
and Producer 1 drops considerably faster than that 
between other well pairs due to the connected area 
between the injector and Producer 1. After the 
conductive tracer reaches Producer 1, the tracer travels 
towards Producer 3 through the fractured area in the 
lower left corner of the reservoir. The tracer travels, 
however, relatively slowly towards Producer 2 
because there are no fractures in that area. The tracer 
return curves at the producers also indicate a 
considerably better connection towards Producer 1 
than towards the other producers. The tracer reaches 
Producer 1 after 1 day but reaches Producer 2 after 26 
days and Producer 3 after 28 days.  

 
Figure 4: Electric potential difference between wells (to the left) and tracer return curves (to the right).  
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Figure 5: The electric potential difference between wells (to left) and tracer return curves (to right) for the 

fracture network in Figure 3b. 

3.2 Inversion of electric potential data 
The inverse analysis compared the time histories of 
the electric potential difference between well pairs for 
the reservoir in Figure 3 to the ‘library’ of 1600 
fracture networks. The network that gave the best 
match is seen in Figure 3b. The curves for the electric 
potential (Figure 5) show a very similar behaviour to 
the curves for the true reservoir described previously 
in Figure 4. 

The Fractional Connected Area (FCA) of the network 
in Figure 3b was compared to the FCA of the true 
reservoir. The results were FCA = 25% for the best 
match while FCA for the reservoir was FCA = 18%. 
Thus, FCA matches relatively well. The difference in 
FCA can be explained by fractures in the true 
reservoir that are located close to the injector and 
leading towards Producer 1, but do not intersect any of 
the fractures in the connected area. These few 
fractures contribute to the flow but do not increase the 
size of the connected area. In another case studied 
previously (Magnusdottir and Horne, 2013) FCA 
matched very well but this example demonstrates that 
large fractures not intersecting other fractures can also 
contribute significantly to the flow. Thus, estimating 
FCA with very high precision is not of interest here 
but to rather obtain an idea of where the fractures 
contributing to the flow are located in order to better 
understand the flow system. 

The location of the connected areas is another 
similarity that can be seen between the best match and 
the real reservoir. In both cases the connected 
fractures are located similarly between the injector and 
Producer 1, resulting in a drop in potential difference 
between these wells as conductive fluid is injected 
into the reservoir. The connected area in the lower left 
corner of Figure 3a is also predicted correctly, causing 
the tracer to travel from the upper connected area, 
along the left side of the reservoir, towards Producer 
3. Therefore, the electric potential difference between 
Producer 1 and Producer 3 drops considerably faster 
than the electric potential difference between Producer 
2 and Producer 3. These results indicate a good 
possibility of using this electric approach to determine 

fractional connected area as well as the general 
locations of the connected fractures. 

The tracer return curves for the best match, shown in 
Figure 5, show somewhat different behavior than the 
tracer return curves for the hypothetical reservoir 
(Figure 4). Thus, it was of interest to compare the 
performance results of using the electrical approach to 
those using only tracer return curves to predict 
connected areas. 

3.3 Inversion of tracer return curves 
The inverse analysis was performed again for the 
reservoir in Figure 3a, but this time the objective 
function measured the difference between the model 
calculation of just the simple tracer return curves and 
the corresponding tracer return curves for the true 
reservoir. The best match when comparing the tracer 
return curves can be seen in Figure 6. For this case, 
the time histories of the electric potential difference 
between the wells (Figure 7) do not match as well as 
when they were used to find the best match. However, 
as expected, the tracer return curves match better than 
before. 

 
Figure 6: The best match when using tracer return 

curves. 



Magnusdottir and Horne 

 6 

 
Figure 7: The electric potential difference between wells (to left) and tracer return curves (to right) for the 

fracture network in Figure 6. 

Here, FCA = 19% so FCA matches very well to the 
true reservoir where FCA = 18%. However, for the 
best match all of that connected area is located only 
between the injector and Producer 1. Thus, tracer 
return curves indicate a good connection between the 
injector and Producer 3 but fail to predict the 
connected area between Producer 1 and Producer 3. 

The location of connected area is better predicted 
using the electric approach and the same observation 
was also valid for other cases not shown here (another 
example is shown in Magnusdottir and Horne, 2013). 
The advantages of using the electric measurements 
include having more extensive data and being able to 
see the changes as the conductive fluid flows through 
the network even before the tracer would have reached 
the production wells. 

4. ESTIMATION OF THERMAL RETURN 
Thermal return curves were studied to investigate the 
possibility of using electrical potential measurements 
to predict temperature declines in geothermal 
reservoirs. The initial temperature of the reservoirs 
was set as 200°C and the injected fluid was at 100°C. 
Water was injected at 1 kg/s and the production wells 
were modelled to deliver against a bottom-hole 
pressure of 106 Pa with productivity index of 4×10-12 
m3. Other parameters were unchanged. 

Figure 8 shows the thermal return curves for the ‘true’ 
reservoir in Figure 3a and the best match reservoir 
based on the electric potential approach (Figure 3b). 
The thermal return curves for the best match show 
similar behaviour to that of the ‘true’ reservoir. The 
temperature declines considerably faster in Producer 1 
than in the other producers due to the connected area 
located between the injector and Producer 1. 
Therefore, the production rate in Producer 1 would 
need to be decreased to prevent premature thermal 
breakthrough.  

 
Figure 8: Thermal return curves for the true 

reservoir in Figure 3a and the best match 
using electric potential approach (Figure 3b). 

Other cases were also studied, as shown in Figure 9. 
The thermal return curves in Figure 9c for the 
reservoir in Figure 9a show very similar behaviour to 
the best match (Figure 9b). The temperature at 
Producer 1 and at Producer 3 drops slowly because 
there are no fractures in the top half of the reservoir. 
Thus, there are no fast-flow paths leading towards 
these producers causing premature thermal 
breakthrough as seen previously in Figure 8. The 
reservoir in Figure 9d and the best match in Figure 9e 
have similar connected areas in the top part of the 
reservoirs, causing the temperature to drop relatively 
quickly at Producer 1 and Producer 2. However, the 
drop is not as steep as seen at Producer 1 in Figure 8. 
The behaviour at Producer 3 for this example is also 
similar for the reservoir and the best match. 

These examples have shown promising possibilities 
for using inversion of electric potential measurements 
with conductive fluid injection to gain information 
about thermal return curves. Future work involves 
further investigating this potential and to compare this 
method to predicting thermal return curves using only 
tracer tests. 
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Figure 9: a) Reservoir 2, b) best match for Reservoir 2 when using electric potential, c) thermal return curves 

for Reservoir 2, d) Reservoir 3, e) best match for Reservoir 3 when using electric potential, f) thermal 
return curves for Reservoir 3. 

5. CONCLUSIONS 
In this work, time histories of electric potential 
difference between wells were used in an inverse 
analysis to estimate the Fractional Connected Area 
(FCA) of a hypothetical reservoir. A library of fracture 
networks was generated and the electric potential 
computed as a conductive fluid was injected into the 
reservoir. One of the networks was chosen as a 
hypothetical ‘true’ reservoir and the time-lapse electric 
potential data was compared to all the other networks 
to find the best match using a grid-search algorithm. 
The reservoir and the best match had a similar FCA 
and the connected areas had similar locations. For 
comparison, the inverse analysis was also performed 
matching only the tracer return curves at the 
producers. The best match gave similar FCA but the 
locations of the connected areas were somewhat 
different from those of the true reservoir. The same 
observation was made in other examples not included 
here. 

The possibility of using the electric approach to 
estimate thermal breakthrough was investigated. 
Thermal return curves for the true reservoir and the 
best match obtained using the electric approach 
showed similar behaviour. Additionally, other cases 
studied also showed similar temperature decline for 
the chosen reservoirs and their best matches. Future 
work will include investigating this possibility further. 
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