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ABSTRACT 

In reservoir engineering and geophysics it is 
important to have a fundamental understanding of 
time dependent processes of fluid flow and 
species precipitation in the permeable rocks and 
their compaction. The porosity and effective stress 
evolution history of porous rock, involved into 
these processes, is described by a poro-visco-
elastic (Maxwell-type) constitutive law. But such a 
process is disturbed by the precipitation and 
accumulations of a species in there P-T stability 
zones. This processes lead to decreasing of 
porosity and permeability. Mathematical model of 
coupled processes of sediment compaction and 
pore feeling by precipitation is developed. We 
formulate the coupled system of equations 
describing sediment accumulation and 
compaction, fluid and matter flow and dissolved 
species precipitation, and illustrate 
interdependence of the processes by numerical 
examples.      

INTRODUCTION 

During geological history of the Earth crust, 
subsurface fluid movement plays an important 
role in the process of geological media 
evolution, (Fife, Price, Thompson 1978). 
Modeling of subsurface flow has been 
recognized as an important for mineralogy, 
geochemistry, hydrology, petroleum geology, 
reservoir engineering and so on, (Barenblat, 
Entov and Ryzhik 1990).  Subsurface fluid flow 
is the most powerful process of reactive solute 
transport, (Dagan and Cvetcovic, 1996). 
Problem, related to fluid movement in sediments 
during their accumulation and burying, is known 
as dewatering and compaction problem, has 
been studying widely; see Wangen (2001), 
Suetnova and Vaseur (2000) for review. 
Pervasive pressure solution transfer describes 
permanent porosity reduction in stressed porous 

aggregates saturated by an aqueous solution. 
This process includes dissolution of the grain 
contacts due to stress-enhanced solubility, 
solute transport by diffusion along the grain 
contacts, and precipitation of the solute on the 
free faces of the grains. Pressure solution 
transfer corresponds to a response of the 
aggregate in an attempt to increase the grain-to-
grain contiguity so as to redistribute the local 
effective stress over a larger grain-to-grain 
contact area. The porosity and effective stress 
evolution history of porous rock, involved into 
this process, is described by a poro-visco-elastic 
(Maxwell-type) constitutive law, (Suetnova and 
Vaseur, 2000).  But it was not considered the 
interdependence problem of  compaction driven 
fluid movement and process of precipitations of 
dissolved matter transported by fluid to its P-T 
precipitation domain. In present paper we 
formulate the coupled system of equations, 
describing a sediment accumulation and 
compaction, fluid and matter flow and dissolved 
species precipitation, and illustrate 
interdependence of the processes by numerical 
examples.      

SYSTEM OF GOVERNING 

EQUATIONS 

It is considered the growing domain of saturated 
porous media, which represent accumulating fluid 
feeling sediments peel. In the frame of poro-visco-
elastic (Maxwell-type) rheology law, porosity loss, 
fluid movement, effective stress and sediment 
compaction obey the following equations, 
(Suetnova and Vaseur, 2000). To outline the 
studying effects we consider 1D formulation. The 
volumetric stress-strain rate relation is: 
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where m , ftote ppp −= ,η  are porosity, 

effective pressure and shear viscosity. Here, totp , 

fp  are  total stress and pressure of fluid, η /m is 

the bulk effective viscosity of solid matrix, pK is 
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the bulk modulus, the reciprocal of which is the 

pore compressibility mp
m

e







∂
∂=β . The pore 

fluid movement is described by the Darcy’s 
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where fV , sV , t , y , fρ , sρ , k , µ , g  are 

velocity of fluid and rock matrix, time, depth 
coordinate, directed upward, density of fluid and 
matrix, permeability, viscosity of fluid, gravity 
acceleration, respectively. 
The continuity equations for the fluid and the solid 
matrix require 
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Thermal conductivity equations for the fluid and 
the solid matrix require 
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where f , fC , sC , C , K  temperature, thermal 

capacity of fluid, matrix and rock, thermal 
conductivity of rock , respectively. 
In order to complete the system of governing 
equations (1)-(5), we formulate the boundary 
conditions. At the lower impervious boundary 

)(tby =  velocities fV , sV  are equal to V1, the 

subsidence velocity of the base of the basin. 
Porosity at the upper boundary is equal to 0m .  

Temperature gradient at the base B are known 
constants, effective pressure ep  at the upper 
boundary is equal to zero 
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The matrix permeability is assumed to be power 

law functions of porosity 2
0 mkk = , (Barenblat, 

Entov and Ryzhik, 1990).  

SOLUTION AND CONCLUSION 

For convenience, we transform the fixed 
coordinate system into a moving one, in which the 

base of the basin corresponds to the coordinate 
0=′y  and the upper boundary grows with a 

constant velocity 1VV −= . Such a transformation 
does not change the full derivatives in the 
equation (1) and allow reducing the number of 
variables, using boundary conditions. 
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To reduce a number of coefficients we use a π -
theorem and scaling procedure (Barenblatt, 1996) 
by introducing porosity value 0m , density 

difference fs ρρρ −=∆ , velocity V  and 

gravity acceleration g  which determine 
characteristic scales of compaction 

length g
VL ρ

η
∆= , pressure difference due to 

buoyancy on this length gLP ρ∆= and 

compaction time  VLT = . 
Governing system of equations written in 
dimensionless form and to be short using the 
same notations is the next  
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where 021 )( mAAA −= , 2/ LKT=κ  , 
of 273/=Θ .Using the typical representative for 

porous rocks parameters values we evaluate non-

dimensional coefficient 
00 mkg

V
ρ

µε ∆=  as 

25 105.4108.0 −− ⋅<<⋅ ε  (Suetnova, and 
Chernyavskii, 2001). Non-dimensional coefficient 
a is known as “Maxwell relaxation time” for   non-
dimensional visco-elastic problem. Calculated a 

vary as 13 1010 −− ÷ in the frame of representative 
physical parameter of sedimentation and values of 

assumed viscosity variations sPa ⋅÷ 2220 1010 . 

Dimensional “Maxwell relaxation time” βητ =  

vary as max s53 1010 ÷ , that is time period of 
accumulation m1001 ÷  of sediments. When 
taking in mind the geological time scale and 
slowness of process of overburden pressure 
growing, we can consider viscous process of 
sediment compaction, because of viscous effects 
dominant. In the domain corresponding P-T 
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condition of some species precipitation, the 
system of governing equations should be 
completed by the equation of pore feeling by 
precipitation  
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and corresponding change )1( smm −→  in the 
equations (Suetnova, 2007). Here s is a part of 
pore space occupied by a precipitated matter, 

cch ,  are concentrations of species in pore 
feeling mater and in pore fluid. Provided that the 
kinetic barriers to crystal growth are small 
compared with other rate- limiting processes, we 
assume that precipitated matter is in local 
thermodynamic equilibrium with surrounding fluid. 
In the frame of assumption that permeability is 
power law function of porosity, it is clear that 
precipitation decreases free porosity. So, 
precipitation should affect fluid velocity, which is 
determined by compaction. Because of non-
linearity of the system, we investigate this problem 
numerically. As an example, we study the process 
of methane solution in pore water and its 
precipitation as hydrate in hydrate stability zone. 
We performed calculations for different time 

moments with parameters  214
0 10 mk −= , 

33 /106.1 mkg⋅=∆ ρ , sPa ⋅⋅= −3105.2µ , 

smV /105 10−⋅= , sPa ⋅⋅= 21105η , 

kmB o /40= . The thickness of hydrate stability 
zone, ch and the dependences of ceq  on  P-T 
were taken using results of Davie, Zatsepina and 
Buffet (2004). Figures 1 and 2 illustrate the non-
dimensional quantities s and Vf  versus sediments 
thickness, normalized to its final thickness, 
resulting after 2 My of sedimentation.  
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Figure 1. The resulting distribution of precipitated 
matter as a part of pore space.  
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Figure 2. Fluid velocity inside sediments 
(unmarked curve represents case with 
precipitation, marked - without precipitation). 
 
It is clear that precipitation affects fluid velocity in 
sediments. We conclude that, hydrodynamic 
modeling of porous rocks during geological time 
scale required accounting of variation free pore 
space and fluid velocity due to precipitation of 
species. 
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