

GEOTHERMAL RESOURCES DEVELOPMENT IN INDONESIA

By. Arif Munandar and Sri Widodo

Geothermal Research Group

Center for Geological Resources, Geological Agency,

Ministry of Energy and Mineral Resources

Jl. Soekarno-Hatta No. 444 Bandung 40254, Indonesia

E-mail: munandar16@yahoo.com

Keywords : *geothermal, Indonesia, volcanic, non-volcanic.*

ABSTRACT

Indonesia is a country that has a lot of geothermal resources. They are mainly distributed along the Indonesia Volcanic Belt, while others are also associated with non-volcanic environment (sedimentary or tectonic). As of December 2012, has been identified 299 geothermal locations with geothermal energy potential total of about 28,635 MWe consisting of 7,247 MWe Speculative Resources, 4,886 MWe Hypothetical Resources, 13,391 MWe Possible Reserves, 823 MWe Probable Reserves and 2,288 MWe of Proven Reserve.

Currently, the total of issued geothermal working areas (WKP) are 58 WKP consisting of 19 existing WKP (pre-the Law No. 27/2003) with its total geothermal energy potential about 10,869 MWe and 39 new WKP (based on the law No. 27/2003) with total geothermal energy potential about 4,758 MWe.

Indonesia has set a long-term policy for the development of geothermal energy, as embodied in the Geothermal Development Road Map 2004-2025. Indonesia has a target to develop geothermal energy around five percent of our national energy needs, or about 9,500 MWe generated by geothermal energy in 2025. Currently, Indonesia's geothermal energy produces only about 1,341 MWe, or less than 5% of the total resource potential of geothermal energy in Indonesia. Now, there are nine power plants in Indonesia that produce electricity from geothermal energy consists of 377 MWe in G. Salak, 200 MWe in Kamojang, 270 MWe in Darajat, 227 MWe in Wayang Windu, 60 MWe in Dieng, 80 in Lahendong, 12 MWe in Sibayak, 110 MWe in Ulubelu and 5 MWe in Ulumbu.

I. INTRODUCTION

Indonesia has abundant geothermal resources that identified until December 2012 are distributed on 299 locations with the total energy potential about 28,635 MWe. Geothermal locations in Indonesia mainly distributed along the Indonesian volcanic belt from Sumatera, Java, Bali, East Nusa Tenggara, Banda islands, to North Sulawesi. However, some are associated with non-volcanic environments

that mostly distributed in Bangka-Belitung, Sulawesi, Kalimantan and Papua islands.

Geothermal energy is known as sustainable energy and green energy, therefore its development appropriate with policy of Indonesia to reduce global emission. The factors can make geothermal energy to be priority for geothermal development in Indonesia. But in reality the development of geothermal energy has some barriers, until the current installed capacity of geothermal power plant (PLTP) has only reached 1,341 MWe.

II. TECTONIC SETTING OF INDONESIA

The position of the Indonesian archipelago is situated at the confluence of three major plates (Indian Australia - Aurasia - Pasifik) makes it have a complex tectonic structure, (figure 1). Subduction inter-continental and oceanic plates melting process produces a form of partial melting of magma in the mantle rocks and magma differentiation have on the way to the surface. The process forming pockets of magma which composition of acid to alkaline pathways that play a role in the formation of volcanoes known as the ring of fire.

The existence of a series of volcanoes in some parts of Indonesia and its tectonic activity as basis for the preparation of a conceptual model of the formation of geothermal system in Indonesia.

Figure 1. Tectonic setting of Indonesia, (Modified from Katili, 1973).

III. GEOTHERMAL SYSTEM IN INDONESIA

The picture below is a schematic cross-sectional model of a geothermal or hydrothermal system which is common along the Quaternary volcanic in Indonesia, such as Sumatera, Java, Bali, Nusa Tenggara, Maluku and North Sulawesi, (figure 2). While the next image is a schematic model of a geothermal system that occurred in the graben area with relatively flat topography, such as in parts of Sumatera are associated with the Great Sumatera Fault (GSF), (figure 3).

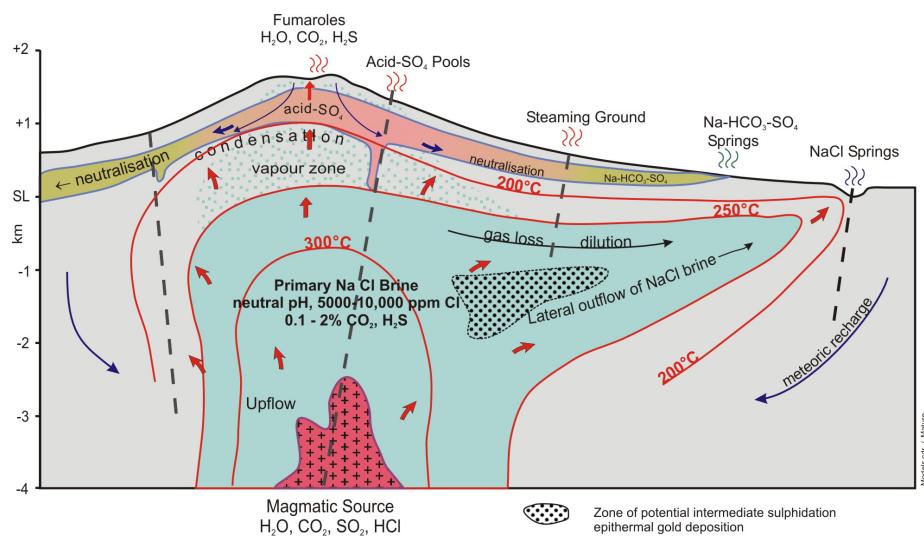


Figure 2. Cross-sectional schematic model of a geothermal or hydrothermal system which is common along the Quaternary volcanic.

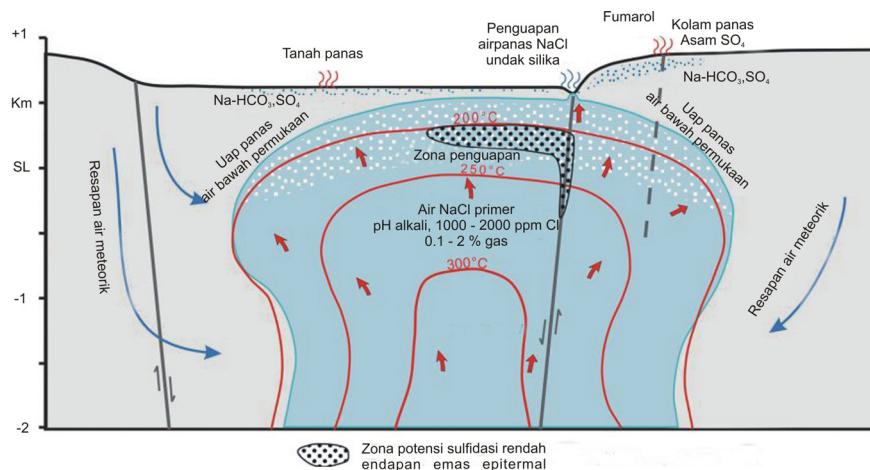


Figure 3. Sectional schematic of a geothermal or hydrothermal system on the graben (Lawless et al. 1995).

Based on the association of the order of geology, geothermal systems in Indonesia can be grouped into three (3) main types: volcanic, graben (volcano-tectonic) and non-volcanic. This type of grouping can be used as a guide in estimating the initial size of the potential energy in a geothermal system.

The following table 1. shows the relationship between a geothermal system to estimate the potential energy it contains, it appears that a great potential are generally owned by a complex and caldera volcanoes types.

Table 1. Relationship type geothermal systems in Indonesia and the estimated potential energy

Type	Temperature	Potency of Energy	Example
Volcanic	Strato volcano single	High ~ 250 °C	Intermediate 50 – 100 MW Tampomas and Ungaran
	Complex volcano	High ~ 250 °C	Large > 100 MW Salak, Wayang Windu and Lawu
	Caldera	High ~ 250 °C	Large > 100 MW Kamojang, Drajat, Ulumbu and Sibayak
Volcano - tectonic	Graben	Intermediate to high 200 - ~ 250 °C	Intermediate to large 50 - > 100 MW Sarula, Bonjol, Ranau lake and Sipaholon
Non-volcanic	Intrusive	Low to intermediate ~ 200 °C	Small to intermediate ~ 50 MW South Sulawesi, Central Sulawesi, South East Sulawesi and Buru

IV. GEOTHERMAL ENERGY DEVELOPMENT IN INDONESIA

Distribution of geothermal resources in Indonesia is largely attended a line of volcanoes on the island of Sumatera, Java, Bali, Nusa Tenggara, Sulawesi, Maluku and North Maluku. Geothermal resources are also found in some non-volcanic regions such as Bangka-Belitung, Kalimantan, Sulawesi, Buru, Seram and Papua islands. Until the December 2012, has identified 299 geothermal areas

throughout Indonesia with a total potential area reached 28,635 MWe (figure 4). The amount is updated annually in line with the discovery of geothermal areas of new or activities in order to improve the status of a preliminary survey into a detailed survey to the drilling of exploration. The data is then used as initial data in determining the working area of geothermal (WKP).

Figure 4. Distribution of geothermal areas in Indonesia, (Geological Agency of Indonesia, As of December 2012).

Indonesia's geothermal energy potential will change from time to time based on the results of investigations carried out either by the government or other parties. Status of geothermal energy potential of Indonesia until December 2012 are presented in the table 2.

Table 2. Geothermal potential of Indonesian islands.

No	ISLAND	NUMBER OF LOCATION	POTENCY OF GEOTHERMAL ENERGY (MMe)					Total Potency	Installed (MWe)		
			Resources		Reserves						
			Speculative (MWe)	Hyphotetic (MWe)	Possible (MWe)	Probable (MWe)	Proven (MWe)				
1	Sumatera	90	3089	2427	6867	15	380	12778	122		
2	Jawa	71	1710	1826	3708	658	1815	9717	1134		
3	Bali-Nusa Tenggara	28	360	417	1013	0	15	1805	5		
4	Kalimantan	12	145	0	0	0	0	145			
5	Sulawesi	65	1323	119	1374	150	78	3044	80		
6	Maluku	30	545	97	429	0	0	1071			
7	Papua	3	75	0	0	0	0	75			
	Total	299	7247	4886	13391	823	2288	28635	1,341		
			12,133		16,502						
			28,635								

The Indonesian government expects the development of geothermal energy in Indonesia to run well so that geothermal can act as a pillar of national energy security. This is evident through the establishment of Presidential Regulation. 5 Year 2006 on National Energy Policy. The government targets in the regulation of geothermal energy contribution in 2025 amounted to 5% of national energy consumption, equivalent to 9500 MWe (figure 5).

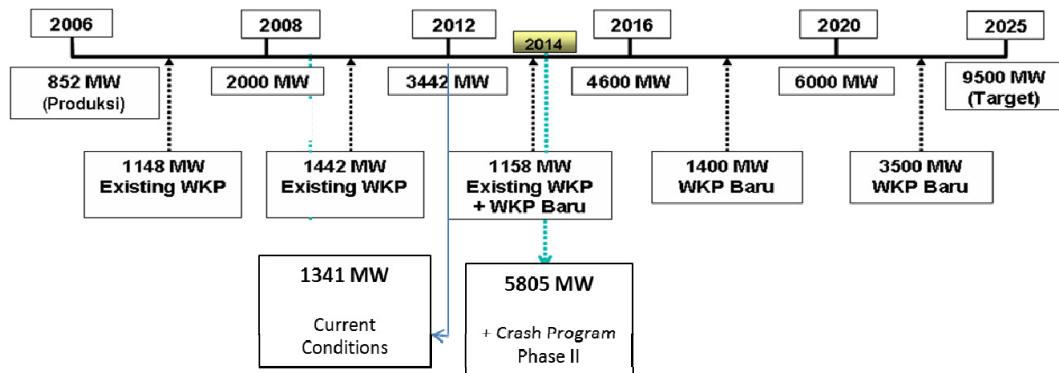


Figure 5. Road map of geothermal energy development in Indonesia 2006 – 2025.

In terms of stages of geothermal activity, the Act No. 27 stipulates that operational geothermal activity consists of five (5) phases, namely the Preliminary Survey, Exploration, Feasibility Study, Exploitation and Utilization. Stages of this activity is actually a means of supervisory control to the business actor. Preliminary Survey and Exploration is actually part of the exploration in a broad sense, but that the government should be given flexibility when drilling does not have the funds, then the beginning of exploration in the form of an integrated survey geo science surface of at least the government should do. To distinguish the Preliminary Survey, the stage of exploration operations is a geothermal drilling. In general the flow of geothermal exploitation activities are as shown below (figure 6).

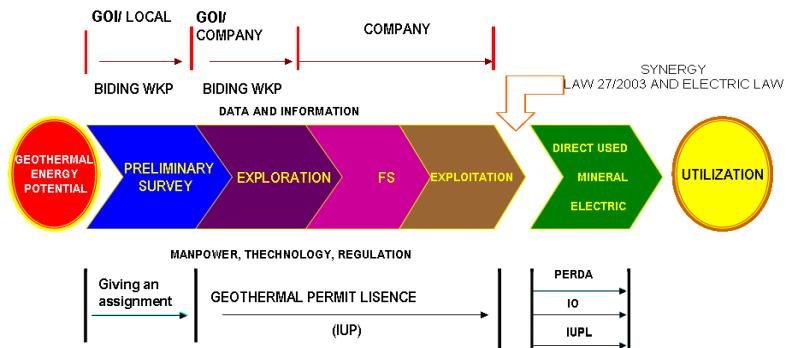


Figure 6. Chart of geothermal development based on Law No. 27/2003.

Efforts to reach the targets set out in the National Energy Policy and carry out this plan as stated in the road map is to encourage geothermal electricity production increases from existing and establish WKP new one to be developed. In pursuing the goal of adopting the new WKP, Government and / or Local Government conduct preliminary surveys or geothermal exploration in all parts of Indonesia. In accordance with their mandate, Geological Agency of Indonesia was appointed as the party that represents the government in the conduct of research, survey and exploration in an effort to improve the quality and quantity of data geothermal to reduce the risk of investment in the upstream sector. To improve the achievement of the implementation of geothermal preliminary surveys, the government may also assign the implementation of a preliminary survey of geothermal to other parties or who is often called the assignment of a preliminary survey of geothermal energy. Through this mechanism, the government commissioned a preliminary survey of geothermal energy to businesses that are interested in providing some privileges at the time the results of the preliminary survey assignment tendered.

Data and information geo science outcome of the investigation together with other data (especially land) will be used as the basis for the preparation and determination WKP. Procedures for determining the WKP is set up government through the Minister of Energy and Mineral Resources Regulation Number 11 of 2008 which requires that the data is already geo science can provide a preliminary description of geothermal systems. List of Indonesian geothermal WKP as of December 2012 are presented in appendix A (existing WKP) and appendix B (new WKP).

V. CRASH PROGRAMME PHASE II

In addition to the preparation, adoption and new WKP auction, to accelerate the development of geothermal energy also accelerated program of 10,000 MW phase II project, which is based on Presidential Decree No. 4 of 2010. Presidential Regulation provides the basis for the accelerated development of power plants that use renewable energy, coal and gas until 2014. Geothermal energy as one of the categories included in the 3977 MW of renewable energy has a role in the acceleration power projects. Geothermal development plan to speed up the

construction of 10,000 MW power plant Phase II as set out in the Minister of Energy and Mineral Resources No. 01 of 2012 are presented in Appendix C.

VI. CONCLUSIONS

Some conclusions of this paper are given as follows:

- Indonesia has geothermal resources are large (28,635 MWe), but their utilization for electricity generation is still very small (1,341 MWe or 4.6 % from total resources).
- The Indonesian government policy in accelerating the development of geothermal energy other than through the preparation, adoption and new auctions WKP, also one of them with the Program to Accelerate Development of 10,000 MW Power Plant Phase II where geothermal energy can contribute about 4,925 MWe.

VII. ACKNOWLEDGEMENTS

The authors wish to express thanks to Geological Agency to publish this paper.

VIII. REFERENCES

- Darman H. and Hasan Sidi F., 2000. An outline of The Geology of Indonesia. Published by Indonesian Association of Geologists.
- Geological Agency, 2010, Potential and Development of Geothermal Resources Indonesia.
- Geological Agency, 2010, Preparation of Balance Sheet Indonesia Geothermal Resources.
- Law of the Republic of Indonesia Number 27 Year 2003 on Geothermal.
- National Standardization Agency, 1999. Classifications Potential of Geothermal Power in Indonesia (SNI 13-5012-1998).

Appendix A: List of Existing WKP (Pre the Law No. 27/ 2003)

NO.	NAME OF WKP	GEOTHERMAL PERMIT HOLDERS (IUP)	FIELD	DEVELOPER/ COMPANY	POTENCY (MWe)	INSTALLED (MWe)
1	Sibayak-Sinabung	PT. PGE	Sibayak	PT. PGE	124	12
2	Cibeureum - Parabakti (Gn. Salak)	PT. PGE	Gn. Salak	JOC - CGS, Ltd	952	377
3	Pengalengan (Wayang Windu)	PT. PGE	Wayang Windu	JOC - Star Energy Geothermal Wayang Windu	400	227
			Patuha	PT. Geo Dipa Energi	706	-
4	Kamojang-Darejat	PT. PGE	Kamojang	PT. PGE	855	200
			Darejat	JOC - CGI, Ltd	610	270
5	Dieng	PT. PGE	Dieng	PT. Geo Dipa Energi	780	60
6	Lahendong-Tomposo	PT. PGE	Lahendong	PT. PGE	358	80
7	Sibual-Buall	PT. PGE	Sarula	JOC - SOL	1146	-
8	Hululale - Tambang Sawah	PT. PGE	Hulu Lais	PT. PGE	873	-
9	Lumut Balai	PT. PGE	Lumut Balai	PT. PGE	1066	-
10	Sungai Penuh	PT. PGE	Sungai Penuh	PT. PGE	208	-
11	Ulubelu	PT. PGE	Ulubelu	PT. PGE	556	110
12	Karaha-Cakrabuana	PT. PGE	Karaha Badas	PT. PGE	725	-
13	Buyan Bratan (Bedugul)	PT. PGE	Bedugul	JOC - Ball Energy, Ltd	276	-
14	Ulumbu	PT. PLN (Persero)	Ulumbu	PT. PLN (Persero)	199	5
15	Tulehu	PT. PLN (Persero)	Tulehu	PT. PLN (Persero)	100	-
16	Cibunil	KJK Teknosa	Cibunil	KJK Teknosa	140	-
17	Iyang-Argopuro	PT. PGE	Iyang Argopuro	PT. PGE	295	-
18	Kotamobagu	PT. PGE	Kotamobagu	PT. PGE	410	-
19	Clater	PT. Wahana Sembada Sakti	Clater	PT. Wahana Sembada Sakti	90	-
Total					10,869	1,341

Appendix B: List of New WKP (Based on the Law No. 27/ 2003)

No	Nama WKP	Provinsi	Potensi (MWe)	Pemegang IUP	No	Nama WKP	Provinsi	Potensi (MWe)	Pemegang IUP
1	Jabol	NAD	50	Sabang Geothermal Energy	21	Gunung Cremal	Jawa Barat	160	
2	Seulawah Agam	NAD	180		22	Ungaran	Jawa Tengah	100	Girl Indah Sejahtera
3	Sorik Marapi-Roburan-Sampuraga	Sumatera Utara	200	Sorik Marapi Geothermal Power	23	Baturaden	Jawa Tengah	175	PT. Sejahtera Alam Energy
4	Sipcholon Ria	Sumatera Utara	75		24	Gucl	Jawa Tengah	70	PT. Spring Energi Sentosa
5	Simbolon-Samoelr	Sumatera Utara	195		25	Candi Umbul Telomoyo	Jawa Tengah	72	
6	Gunung Talang	Sumatera Barat	38		26	G.Lawu	Jawa Tengah-Jawa Timur	195	
7	Bukit KII	Sumatera Barat	63		27	Ngebel - Wiles	Jawa Timur	120	PT. Bakti Darmakarya Energi
8	Lid Pinangewan Muaraaboh	Sumatera Barat	400	Supreme Energy	28	Blawan - Ijen	Jawa Timur	270	Medco Cahaya Geothermal
9	Bonjol	Sumatera Barat	200		29	Hulu - Daha	Nusa Tenggara Barat	65	Pacific Geo Energy
10	Rantau Dedap	Sumatera Selatan	105	Supreme energy	30	Sembalun	Nusa Tenggara Barat	100	
11	Kepahiang	Bengkulu	180		31	Sokoria	Nusa Tenggara Timur	30	Sokoria Geothermal Indonesia
12	Gunung Rajabasa	Lampung	91	Supreme Energy	32	Atadel	Nusa Tenggara Timur	40	Westindo Utama Karya
13	Suhi Sekincuan	Lampung	230	Chevron Geothermal Suhi Sekincuan	33	Mataloko	Nusa Tenggara Timur	63	
14	Danau Ransu	Lampung	210		34	Ileangs	Nusa Tenggara Timur	40	
15	Wal Ratai	Lampung	185		35	Marana	Sulawesi Tengah	38	
16	Kaldera Danau Banten	Banten	115	PT. Sintesa Banten Geothermal	36	Bora-Pulu	Sulawesi Tengah	123	
17	Gunung Endut	Banten	80		37	Suwawa	Gorontalo	110	
18	Tengkuban Parahu	Jawa Barat	100	Tengkuban Parahu Geothermal	38	Jalilolo	Maluku Utara	75	Star Energy Geothermal Halmahera
19	Tampomas	Jawa Barat	50	Wika Jabar Power	39	Songa Wayaua	Maluku Utara	140	
20	Cilelok - Cleukarame	Jawa Barat	30	Jabar Rekind Geothermal	Total potensi: 4.758 MWe				

**Appendix C: List of geothermal fields for acceleration of geothermal development projects 10,000 MWe phase II
(Based on Ministerial Regulation of Energy and Mineral Resources No. 01/ 2012)**

No.	Filed	Province	Estimated Capacity	No.	Filed	Province	Estimated Capacity		
1	PLTP Sungai Penuh	Sumatera Utara	2x55	110	27	PLTP Riau I	Nanggroe Aceh Darussalam	3x5	15
2	PLTP Huludai	Sumatera Utara	2x55	110	28	PLTP Sarolang 1	Sumatera Utara	3x 110	330
3	PLTP Krembung 1 dan 2	Sumatera Utara	2x50	100	29	PLTP Sarolang 2	Sumatera Utara	2x55	110
4	PLTP Krembung 3 dan 4	Sumatera Utara	2x50	100	30	PLTP Untuk Telukworo	Jawa Tengah	1x55	55
5	PLTP Perjaluan	Nusa Tenggara Barat	2x50	100	31	PLTP Ngarai Samosir	Sumatera Utara	3x55	165
6	PLTP Tidore	Maluku	2x12	24	32	PLTP Sidoarjo Ria-Ria	Sumatera Utara	1x55	55
7	PLTP Tambakutan-Perjatu I	Jawa Barat	1x55	110	33	PLTP Serik Marapi	Sumatera Utara	1x27 (Term. 2)	142
8	PLTP Nam Pang 3 dan 4	Jawa Barat	1x301 x60	90	34	PLTP Muara Jatoh	Sumatera Barat	2x 110	220
9	PLTP Ben	Jawa Timur	2x55	110	35	PLTP Bondi	Sumatera Barat	3x55	165
10	PLTP Iwana Arjosuko	Jawa Timur	1x55	55	36	PLTP Lumut Balai	Sumatera Selatan	4x55	220
11	PLTP Wiri Ngawi	Jawa Timur	3x55	165	37	PLTP Rantau Dader	Sumatera Selatan	2x110	220
12	PLTP Gunung Gedut	Barat	1x55	55	38	PLTP Radean	Jawa Timur	1x10	10
13	PLTP Rawa Dago	Barat	1x110	110	39	PLTP Ujunggeh 3 dan 4	Jawa Timur	2x55	110
14	PLTP Cikuri	Jawa Barat	1x 10	10	40	PLTP Sukuh Srikau	Jawa Timur	4x55	220
15	PLTP Cikiduk-Cikharum	Jawa Barat	1x50	50	41	PLTP Wiri Remai	Jawa Timur	1x55	55
16	PLTP Karaha Bodas	Jawa Barat	1x301 x60	140	42	PLTP Danau Ranau	Campung	2x55	110
17	PLTP Pemba	Jawa Barat	3x50	150	43	PLTP Lahandau 3 dan 6	Sumatera Utara	2x10	50
18	PLTP Tamponas	Jawa Barat	1x45	45	44	PLTP Bora	Sumatera Tengah	1x5	5
19	PLTP Tambakutan-Perjatu II	Jawa Barat	2x50	100	45	PLTP Marana Masang	Sumatera Tengah	2x10	20
20	PLTP Wairima Windu Unit 3 dan 4	Jawa Barat	2x110	220	46	PLTP Hiu	Nusa Tenggara Barat	2x10	20
21	PLTP Gunung Cremai	Jawa Barat	1x 55	110	47	PLTP Anjai	Nusa Tenggara Timur	2x15	30
22	PLTP Baturaden	Jawa Tengah	2x10	200	48	PLTP Sokoria	Nusa Tenggara Timur	3x5	15
23	PLTP Dieng	Jawa Tengah	1x551 x60	115	49	PLTP Maridika	Nusa Tenggara Timur	1x5	5
24	PLTP Guci	Jawa Tengah	1x55	55	50	PLTP Iaide	Maluku Utara	2x5	10
25	PLTP Ungeram	Jawa Tengah	1x55	55	51	PLTP Songa Wawane	Maluku Utara	1x5	5
26	PLTP Setiawati Ajam	Nanggroe Aceh Darussalam	1x55	55					
						Total installed:	4,925 MW		