

## INTERPRETATION OF HEAT FLOW CHARACTERISTICS OF KOREA

Hyoung Chan Kim<sup>1</sup> and Youngmin Lee<sup>1</sup>

<sup>1</sup>Koreaeo Institute of Geoscience and Mineral Resources

30, Gajeong-dong, Yuseong-gu, Daejeon 305-350, Korea

E-mail: khc@kigam.re.kr

### ABSTRACT

A total of 359 heat flow values have been estimated in Korea since 1970. The mean geothermal gradient of Korea is 25.1 °C/km; the mean heat flow of Korea is  $60\pm11$  mW/m<sup>2</sup>. High heat flow values appear in Asan, Boryeong, Yuseong, Jinan, Uljin, Pohang, Busan, Pocheon, Sokcho, Chungju, and Suanbo. Those high heat flow areas are in agreement with the locations of hot springs in Korea. The southeastern part of Korea shows high heat flow distribution that is likely to be associated with the faults (Yangsan fault, Milyang fault, Moryang fault, Dongrae fault and so on). Those faults probably play as a conduit for geothermal fluids.

Using a GIS software, we investigated the relationship between geological information (rock type, geological time, Moho depth) and surface heat flow. In the aspect of the lithology, there is no significant heat flow difference in different rock types. The area of sedimentary rock shows heat flow of 71 mW/m<sup>2</sup>, the sedimentary/volcanic rock area 68 mW/m<sup>2</sup>, the plutonic rock area 67 mW/m<sup>2</sup>, and the metamorphic rock area 62 mW/m<sup>2</sup>. In the geological time sequence, the Cenozoic strata contains heat flow of 78 mW/m<sup>2</sup>, the Mesozoic 68 mW/m<sup>2</sup>, the Paleozoic strata 65 mW/m<sup>2</sup>, the Proterozoic strata 67 mW/m<sup>2</sup>, and the Archean strata 62 mW/m<sup>2</sup>. In terms of Moho depth, the shallow Moho depth area tends to have higher heat flow values than the area of the thick crust.

**Keywords:** heat flow, geothermal gradient, fault, GIS, Korea

### 1. INTRODUCTION

As to the history of the geothermal study in Korea, both Chang et al. (1970) and Mizutani et al. (1970) who led the “Korea-Japan cooperation research for Columbo Plan” began to work on heat flow in Korea. In this time, 18 heat flow data were estimated mainly at mine deposit areas. Additionally, Suh(1976) estimated 17 heat flow values, which make total 35 heat flow values. Lim et al. (1989; 1996; 1997) and Yum et al. (1997) published a study on the regional pattern of heat flow in the Korea and added heat flow values. Korea Institute of Geoscience and Mineral Resources (KIGAM) has estimated 217 heat flow values from 1989 until 1997 to make total 248 values (Fig. 1-a). Also, KIGAM has estimated 111 new heat flow values since 1998. As a result, a total of 359 heat flow values have been estimated in Korea since 1970 (Fig. 1-b). Here we construct and analyze a new heat flow map of Korea using a total 359 heat flow values.

### 2. HEAT FLOW AND ITS INTERPRETATION

In the new heat flow map(Fig. 1(b)), the mean geothermal gradient of Korea is 25.1 °C/km; the mean heat flow of Korea is  $60\pm11$  mW/m<sup>2</sup>. The heat flow distribution ( $\sim90$ mW/m<sup>2</sup>) of the southeastern part of Korea has been changed significantly as compared with old heat flow map(Fig 1(a)). This high heat flow shown in the southeastern part of Korea seems to be related with Yangsan Fault which is the main fault of the southeastern part of Korea. High heat flow values appear in Asan, Boryeong, Yuseong, Jinan, Uljin, Pohang, Busan, Pocheon, Sokcho, Chungju, and Suanbo. Those areas with high heat flow values are in agreement with the locations of hot springs in Korea.

For the analysis of relationship between heat flow values and geological information, geothermal data was constructed to spatial D/B using a GIS software. The geothermal spatial D/B consists of identification number (ID), name (SN), longitude (Long.), latitude (Lat.), thermal gradient (Gr.), thermal conductivity (Cond.), heat flow (HF), and reference (Ref.). The spatial D/B is of ArcView shape format with point attribute, while the geological map is of ArcView shape format with polygon attribute. The heat flow data distribution with geological map was made to thematic map using ArcView. The Moho depth map of Korea published by Kim et al. (2003) using Bouguer gravity was constructed to spatial D/B also. Thematic map of Moho depth was also made using ArcView. Using overlay analysis with heat flow values and geological thematic map, we investigated the relationship between geological information (rock type, geological time, Moho depth) and surface heat flow (Fig. 2, 3, 4). In the aspect of the lithology, there is no significant heat flow difference

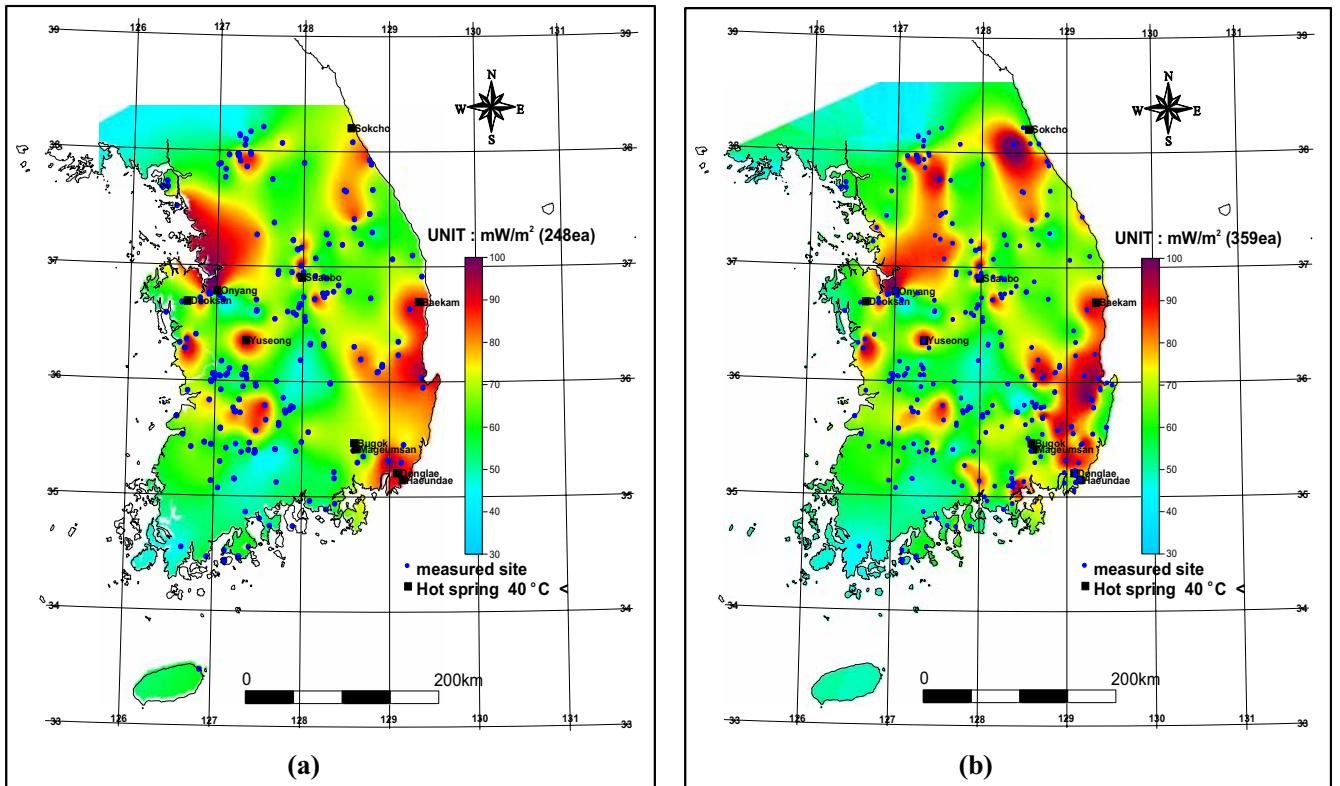
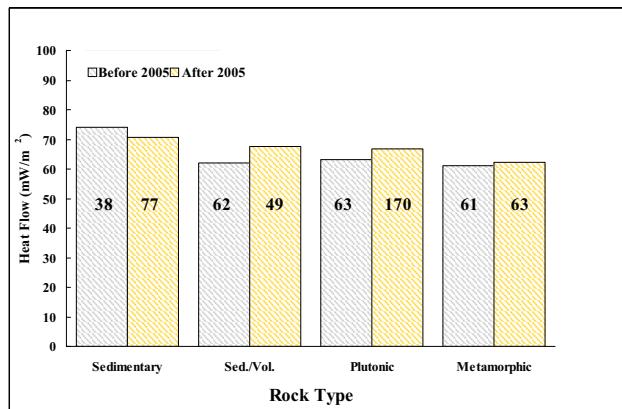




Figure 1. (a) The heat flow map of Korea before the year of 2006 using 248 heat flow data. (b) The heat flow map of Korea using 359 heat flow data in 2006.



| Geological Time | Heat Flow (mW/m²) |      | Number of data |      | Standard deviation |      |
|-----------------|-------------------|------|----------------|------|--------------------|------|
|                 | 2004              | 2005 | 2004           | 2005 | 2004               | 2005 |
| Year            | 74                | 71   | 38             | 77   | 14                 | 17   |
| Sedimentary     | 62                | 68   | 62             | 49   | 14                 | 15   |
| Sed./Vol.       | 63                | 170  | 63             | 170  | 12                 | 15   |
| Plutonic        | 61                | 62   | 61             | 63   | 15                 | 16   |
| Metamorphic     |                   |      |                |      |                    |      |

Figure 2. Relationship between heat flow and lithology

in different rock types (fig. 2). The area of sedimentary rock shows heat flow of  $71 \text{ mW/m}^2$ , the sedimentary/volcanic rock area  $68 \text{ mW/m}^2$ , the plutonic rock area  $67 \text{ mW/m}^2$ , and the metamorphic rock area  $62 \text{ mW/m}^2$ .

In the geological time sequence, the Cenozoic strata contains heat flow of  $78 \text{ mW/m}^2$ , the Mesozoic  $68 \text{ mW/m}^2$ , the Paleozoic  $65 \text{ mW/m}^2$ , the Proterozoic strata  $67 \text{ mW/m}^2$ , and the Archean strata  $62 \text{ mW/m}^2$  (Fig. 3).

Mean surface heat flow progressively increases towards younger sequence. In terms of Moho depth, the shallow Moho depth area tends to have higher heat flow values than the area of the thick crust (Fig. 4).

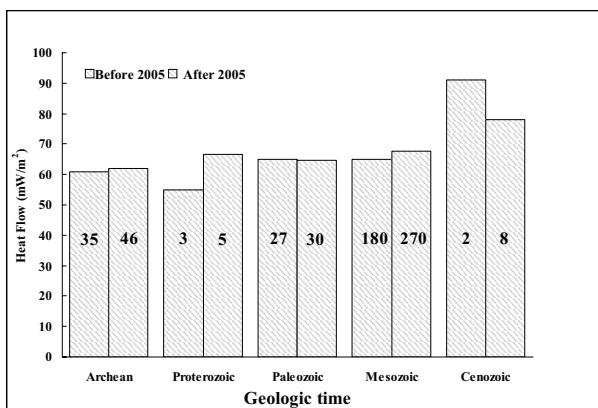



Figure 3. Relationship between heat flow and geological time.

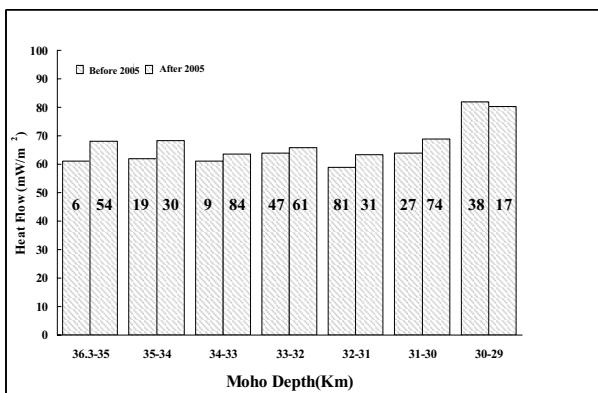



Figure 4. Relationship between heat flow and Moho depth

### 3. CONCLUSION

In Korea, the high heat flow shown in the southeastern part of Korea seems to be related with Yangsan Fault which is the main fault of the southeastern part of Korea. Heat may be transferred by water convection through the Yangsan fault. The other high heat flow values appear in Asan, Boryeong, Yuseong, Jinan, Uljin, Pohang, Busan, Pocheon, Sokcho, Chungju, and Suanbo. Those locations are hot spring areas.

On view point of geological characteristics, young strata have higher heat flow values than old strata. Sedimentary area show high heat flow. The regions of the thin crust tend to show higher heat flow values than the regions of the thick crust. In the future, more geological and geophysical information is required to analyze and interpret heat flow values in Korea.

### Acknowledgement

This research was supported by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources (KIGAM) funded by OAA2003001.

### REFERENCES

Chang, C.C, Kim, K.H. and Kong, Y.S., (1970) Heat Flow in Korea, Korea Research Institute of Geoscience and Mineral Resources. *Report of Geophysical and Geochemical Exploration*, Vol. 4, No. 1, pp. 30-37.

Kim, J.W., Cho, J.D., Kim, W.K., Min, K.D., Hwang, J.H., Lee, Y.S., Park, C.H., Kwon, J.H. and Hwang, J.S.(2003) Extraction of Moho undulation of the Korean peninsula from gravity anomalies. *Jour. Econ. Environ. Geol., Korea*, 36, 3, 213-223.

Lim, J.U., and Kim, H.C.(1997) Heat flow in South Korea. *CCOP Technical Bulletin*, 26, 85-91.

Lim, J.U., Kim, H.C., and Yum, B.W. (1989) Regional pattern of heat flow in the Korean peninsula, Ministry of Science & Technology, Republic of Korea, KR-89-(B)-12, 61.

Lim, J.U., Lee, S.G., Yum, B.W., and Kim, H.C. (1996) Investigation of geothermal resources in Korea (Geothermal Resources Maps): *KIGAM Research report*, KR-96-(C)-17, 82.

Mitutani, H., Baba, K., Kobayashi, N., Chang, C.C., Lee, C.H. and Kong, Y.S., (1970), Heat Flow in Korea. *Tectonophysics*, 10, pp. 183-203

Suh, J.H.(1976) Characteristics and exploration of geothermal deposits. *Jour. of Korean Institute of Mineral & Mining Engineers*, 13, 102-109.

Yum, B.W., Kim, H.C., Lim, J.U., Bae, D.J., and Lee, S.G. (1997) Preliminary study of the geothermal resources in the northern Jeolla-Bukdo area, Investigation of geothermal resources in Korea, *KIGAM Research report*, KR-97-(C)-4, 59.