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ABSTRACT 

This paper investigates the heat extraction from an enhanced geothermal reservoir (EGR) using a closed-loop circulation through 

one fracture in the reservoir connecting one injection and one production well. Based on the fact that heat conduction is very slow, 

the one-fracture system serving as both injection and outlet is economically not viable, but represents one fracture in an array of 

such fractures. In this paper, we will employ a few simplifications to make this complex problem tractable theoretically. Heat 

exchange between the well and its surrounding formation is assumed to be radial and horizontal. Vertical heat conduction 

dominates the vicinity of an infinite fractured reservoir and flow-induced heat advection transfers injected cool water to outlet hot 

water. Mathematically, the closed-loop is divided into three portions, i.e. the injection and production wells and the fracture 

connecting them, with suitable governing equations for temperature change and connection conditions. Semi-analytical solutions in 

the Laplace space for each portion are found and the Stehfest method is used to obtain the physical values in the time domain. The 

results produce useful insights for future geothermal reservoir design. For example, the fluid viscosity does not affect greatly the 

bottom-hole temperature of the injection well and thus the outlet temperature of the EGR system. The flow rates and the well 

separation distance are two important factors for outlet temperature. Compared to fully numerical methods, this model is more 

efficient and can be used as a design and optimization tool.   
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1. INTRODUCTION 

Geothermal energy has become one the most promising alternatives for energy supplies in the future. First, it has inexhaustible 

sources from beneath of the earth, such as the heat released from the decay of radioactive elements.  In Australia, there is a great 

deal of heat storage from the hot dry rocks with a temperature of more than 200 oC at a depth of 5 kms and less (Budd et al. 2008). 

In addition, compared with the conventional energy resources, such as coal, the geothermal energy has some advantages. For 

example it is a renewable and clean energy resource. The closed-loop EGR system does not give out any emissions or wastes. 

Therefore, it is of great importance to study the thermal behavior of an EGR system both experimentally and theoretically for 

geothermal industrial design, optimization and production assessment. 

For an EGR circulation system, we consider three main portions in our analysis. In the injection well, the cold fluid flows 

downwards and absorbs heat from the surrounding formation at the same time. In the fractured reservoir, the fluid flows towards 

the production well, and this portion involves the main heat extraction from the reservoir. Then the hot fluid is circulated to the 

surface through the production well. There have been many studies for each individual portion of this system. For example, as for 

the fluid flow in the wellbore, Ramey (1962) proposed the fundamental equations for the heat exchange between the fluid flow and 

the surrounding formation. Later Raymond (1969), Holmes and Swift (1970), Keller et al. (1973), Sump and Williams (1973), 

Wooley (1980), Fomin et al. (2005), and Wu et al. (2013a) studied similar problems  using several different solution approaches, 

namely finite difference methods and analytical or semi-analytical approaches. For the purpose of simplification, in our work 

presented below, the effect of the temperature and pressure on the material properties such as the viscosity and mass density are not 

taken into account.  

There are also a great number of studies on the heat extraction from a fracture-like reservoir. For the simple cases where the fluid 

flow is one-dimensional (for example, radial fluid flow) or the fluid velocity is uniform (for example, flow in the straight crack), the 

analytical solution is easy to obtain (Lauwerier, 1955; Gringarten, et al. 1975; Cheng et al. 2001; Yang and Yeh 2009). When 

considering more complex cases, for example an EGR configured with one injection well and one production well, the analytical 

solutions are difficult to obtain because the problem is 2D or 3D. Gringarten and Sauty (1975) applied successfully the streamline 

concept to the heat extraction from aquifers with uniform regional flow. By doing this, the fluid flow along a specific streamline 

can be studied independently, thus reducing the number of dimension by one and simplifying the problem. Following Gringarten 

and Sauty’s idea, Rodemann (1982), Heuer et al. (1991), Schulz (1997), Ogino et al. (1999) and Wu et al. (2013b) utilized the 

approach of velocity potential and streamline functions (DaCosta and Bennett, 1960; Grove et al. 1970) to study a circular finite or 

infinite reservoir with dipole or multiple injection and production wells. 

Clearly, the well-based solution itself cannot be applied to a closed-loop geothermal system, as the connection conditions are not 

considered. As for the closed-loop circulation for an EGR with dipole wells, the non-symmetric boundary conditions for injection 

and production wells add more complexities to obtaining an analytical solution for the temperature evolution. Although numerical 

methods such as finite element (Kolditz 1995) and boundary element methods (Ghassemi et al. 2003) are able to solve a variety of 

problems with any boundary and initial conditions, they demand a high computational cost and thus are less suitable for 

optimization problems.     

The aim of this paper is to obtain semi-analytical solutions for the closed-loop EGR in an effective manner as an aid in predicting 

the output power of the EGR for future design and optimization. As the reservoir extent is much greater than the well separation, it 

is treated as infinite. Heat exchange between fluid and rock along the wells and the fractured reservoir is considered using different 

models to capture the main heat sources. Flow-induced heat advection in the fractured reservoir is taken into account. 
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This paper is organized as follows: in Section 2 and 3, the problem to be studied is mathematically formulated including the closed-

loop EGR system description, governing equations, boundary and initial conditions. Their dimensionless forms and a few 

controlling parameters are derived in Section 4. This is followed by the solution methods in Section 5 and numerical results in 

Section 6. In the end, some conclusions are presented in Section 7, which are useful for future engineering design of an EGR 

system.  

2. PROBLEM DESCRIPTION AND ASSUMPTIONS 

The closed-loop EGR system studied is shown Figure 1(a). The closed-loop circulation system contains two vertical wells, i.e. one 

for injection (blue) and the other for production (red), which are connected by an infinite horizontal fracture with a constant 

aperture. The initial temperature of the system is a function of depth, i.e. T0= A0z+ B0, where A0 is the geothermal gradient and B0 is 

the surface ground temperature. It is assumed that initially the fluid and the rock have reached a thermal balance. At time t>0, a 

Newtonian fluid with a constant temperature Tin is injected into the system at a constant volumetric rate Q1 and at the same time a 

fluid with a flow rate Q2 is pumped out from the production well. 

The geometrical sizes of the wellbore shown in Figure 1(b) and the reservoir are defined as follows: both the wells have the same 

depth H, the inner radii of the injection and production wells are rt1 (diameter D1=2rt1) and r2 (diameter D2=2rt2), respectively. The 

aperture of the fracture reservoir is ω. The horizontal distance between the two wells is 2L (generally several hundred meters for a 

commercial EGR). The origin of the general coordinate system is located at the middle point of the line connecting the ground 

points of the two wells and the vertical axis points downwards. 

 

Figure 1: (a) circulation model for a closed-loop EGR and (b) injection well system (for the production well system, the inner 

radius of the tubing should be replaced with rt2 and the fluid flow is upwards). 

Some assumptions are made in order to make the problem tractable:  

(a) the fluid is single phase, incompressible and Newtonian, and the rock is impermeable. The material properties of the fluid and 

the rock are constants independent of temperature;  

(b) the fluid flow in the fractured reservoir is assumed to reach a steady-state in a short time compared with the long operation life 

of the reservoir;  

(c) the heat flow around the well follows the plane-strain assumption and the heat flow close to the fracture reservoir is modelled 

using a one-dimensional vertical diffusion equation. 

According to JiJi (2009, page 242-246), for a semi-infinite domain with a homogenous initial temperature and one time-dependent 

surface heat flux q0(t) imposed at the boundary at t>0, the penetration depth of the thermal layer can be obtained by using a heat 

balance integral method  
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where t is the time and κr=λr/(ρrcr) is the thermal diffusivity with λr, ρr and cr being the thermal conductivity, mass density and 
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each well. In addition, as the plane-strain assumption is adopted, the temperature fields can be described by a radial diffusion 

equation.  

3. GOVERNING EQUATIONS 

Based on the above assumptions, the governing equations can be written in the corresponding local coordinate system (LCS) for the 

injection well, fracture reservoir and production well. 

 (a) Heat exchange along the wellbore 

As the heat flow is assume to be axis-symmetric and horizontal in the region near the wellbore, the energy equations for the fluid 

flow in the wellbore are written as follows, according to their local cylindrical coordinate system (LCCS) 
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where cf is the specific heat capacity of the fluid, Aℓ, hℓ, Tfℓ and Tbℓ (ℓ=1 for injection and ℓ=2 for production) are the areas of the 

wellbore cross section, overall heat transfer coefficients (HTCs), fluid temperature and the temperature at the wellbore wall, 

respectively. It should be noted that for the injection well, the origin of the LCCS is at (-L,0,0) with the radial spatial variable r, 

while for the production well the origin of  the LCCS is at (L,0,0) with the radial spatial variable r* (z positive downwards). The 

overall HTCs can be calculated based on Willhite’s equation (1967) 
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where the geometrical variables can be found in Figure 1(b). k denotes the thermal conductivity of the corresponding material 

shown in the subscript. If the effects of the annulus, casing and cements are not taken into account, the first two terms on the right 

side of Eq.(3) are used to calculate Uℓ. The variable hℓ is the HTC for the fluid flow in the tubing and is obtained by using the 

relationship Nu=hλf/D, where Nu denotes the Nusselt number, λf is the thermal conductivity the fluid and D the hydraulic diameter. 

For fully developed laminar flow in a pipe with circular cross section, the Nusselt number Nu =3.66, while for transitional and 

turbulent flows, the Nusselt number is obtained by using the well-known Gnielinski correlation (Gnielinski, 1976) 
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when 0.5<Prf<2000 and 3000<Reℓ<5×106. 

 (b) Heat conduction in the rock formation surrounding the wellbore 

As the radial and horizontal heat conduction dominates the thermal diffusion process around the wellbore, the equations are written 

as in their corresponding LCCS 
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where Tr1 and Tr2 denote the temperature of the formation around the injection well and production well, respectively. 

(c) Heat conduction for the rock formation between but far from the wellbores 

Based on the assumptions, the one-dimensional heat conduction (in the z direction) dominates the thermal diffusion in the region 

near the fracture and thus is  
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It should be noted that although the horizontal heat conduction is neglected in the above process, the formation temperature Tr
ℓ is 

still a function of x and y. 

(d) Heat balance at the fractured reservoir 
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As for the fluid flow in the fracture, the temperature continuity is assumed and the heat balance equation is simplified based on the 

fact that the conduction in the fluid is trivial and that the convection dominates the heat flow (Cheng et al., 2001) 
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where   and   are the gradient and divergence operator, respectively. qf denotes the discharge vector and can be described by the 

following equations of Darcy law and mass balance for an incompressible Newtonian fluid in the fracture 
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where ϕ f denotes the velocity potential for the fluid which is assumed to be steady state and obeys the potential flow theory, δ 

denotes the Dirac delta function, Q1 is the injection rate  and Q2 the production rate. 

(e) Boundary, connection and initial conditions 

The injection rate Q1 and production rate Q2 are prescribed. The injection temperature is 
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The bottomhole temperature (BHT) of the injection well is assumed to be equal to the fluid temperature flowing into the fracture at 

that point and the BHT of the production well is assumed to be equal to the fluid temperature flowing out of the fracture, i.e. 
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The initial temperature of the whole system is a function of depth 
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4. DIMNSIONALESS FORMULATION 

The governing equations, boundary and initial conditions are simplified with the following transformation 
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where ℓ =1 for injection and ℓ =2 for production well. 

Heat balance along the wellbore 
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Heat conduction in the local region around the wellbore 
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Vertical conduction between the wellbore and close to the fracture 
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Temperature and heat flux at the fractured reservoir 
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Fluid flow in the reservoir 
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5. SOLUTIONS 

As mentioned in the previous sections, the whole closed-loop circulation is divided into three portions: the flow in the injection 

well, the flow in the fracture reservoir and the flow in the production well. The output temperature in the previous part is regarded 

as the input condition for the next one. This greatly simplifies the original problem. By using the Laplace transformation, the 

analytical solutions for the three stages are obtained. In the following equations, the symbol ^ denotes the variables which are 

Laplace transformed and s is the Laplace symbol.  

Injection well  

Base on Eqns. (14), (15) and (19), the solutions are obtained to be 
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where W(s) is the Laplace transform of the injection temperature. K0 and K1 are the modified Bessel functions of the second kind.  

The Laplace transformation of the BHT of the injection well is 
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Fracture reservoir 

For the purpose of simplicity, assume Q1=Q2=Q, i.e. Ω1= Ω2=1. By using the same approach of velocity potential and streamline 

functions as Schulz (1997) and Wu et al. (2013), the second equation of  (17) is transformed into 
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where the components of the discharge vectors qX and qY are 
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From Eq.(23), X and Y are expressed as in terms of η and ς  
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As the fluid flow is symmetric with respective to x axis and the half plane above x axis is chosen, then 
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which is  also simplified  
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Equation (16) is solved to be 
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where F1, F2, F3 and F4 are unknown functions of Φ, Ψ and s. By using the boundary conditions at Z=0, Z=1 and Z→ infinity, we 

obtain F2=- F1, F4=[exp(2/c√s)-1] F1 and F3=0.  Therefore, 
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Substitution of the above equation into Eq. (22) leads to one ordinary differential equation (ODE) whose solution is found to be 
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where F5 is an unknown function of Ψ and s. By using the boundary condition at the injection point of the fracture, F5 is found to be 
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Therefore, the solutions for the temperatures of the rock formation and the fluid in the fracture are 
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From Eqns (22), (23) and (26) the integral in the above equation is expressed as 
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where 0- and 0+ corresponds to the streamlines along positive and negative axis, respectively. The value of g(η,ς) can be obtained 

based on the formula (2.445) and (2.446) in the book by Gradshteyn and Ryzhik (2007). Here only the results are given  
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Based on Eqns. (14) and (15), the solutions for the temperature of the fluid and rock formation wall are obtained 
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where G(s) is the Laplace transformation of BHT of the production well, which is obtained from Eq. (31). 

6. RESULTS 

As used in previous studies, the Stehfest method (1970) is utilized to obtain the values of the solutions in the time space. In this 

section, the attention is paid to the effect of the fluid viscosity, flow rates and well distance on the temperature evolution in the fluid 

and the rock formation. Water and granite are chosen as the fluid and reservoir rock, respectively, for the following calculations. 

The parameters used for the examples are listed in the Table 1 unless otherwise specified. 

Parameter Value Parameter Value 

Inner radius, injection tubing rt1 (m) 0.1 Rock thermal conductivity (W/(m•K) 2.4 

Inner radius, production tubing rt1 (m) 0.1 Rock specific heat (J/(Kg•K) 790 

Outer radius, tubing rto (m) 0.12 Rock density (Kg/(m3) 2700 

Well distance 2L (m) 500 Fluid thermal conductivity (W/(m•K) 0.6 

Well depth H0 (m) 4500 Fluid specific heat (J/(Kg•K) 4200 

Fracture aperture (m) 0.001 Fluid density (Kg/(m3) 1000 

Initial pressure (MPa) 75 Fluid viscosity (Pa•s) 5×10-4 

Geothermal gradient A0 (K/m) 0.04 Injection rate Q1 (m
3/s) 0.020 

Surface temperature B0 (
oC) 27 Production rate Q2 (m

3/s) 0.020 

Table 1: physical parameters for the present calculation. 

Q1 (m
3/s) μ (Pa•s) v1 (m/s) Re1 h1 (W/m2/K) U1 (W/m2/K) Nu1 α1 B1 χ1 

0.005 5×10-4 0.159 6.37×104 100 80.6 301 10.90 4.18 3.180 

0.020 5×10-4 0.637 2.55×105 335 249 1010 8.39 14.0 0.795 

0.030 5×10-4 0.955 3.82×105 478 340 1.30 7.62 19.9 0.530 

0.050 5×10-4 1.590 6.37×105 749 490 2250 6.60 31.2 0.318 

0.020 10-4 0.637 1.27×106 461 329 1380 11.1 19.2 0.795 

0.020 10-3 0.637 1.27×105 262 199 785 6.70 10.9 0.795 

Table 2: dimensionless parameters under different flow rates and fluid viscosity. 

(a) Thermal responses in the injection well 

Figure 2 displays the fluid temperature variations with time along the injection well when the flow rate is Q1=Q2=0.02m3/s. The 

injection temperature Tin= 20 oC and the surface temperature B0=27 oC corresponding to a minimum dimensionless value Θin =-

0.038 and Θ0=0 in terms of the depth as Z. The left-most point and the one where Θf1=0 on the x-axis in the figure correspond to 

the injection temperature and the surface temperature, respectively. It can be seen that the fluid temperature along the well 

decreases rapidly during the first day and approaches the injection temperature after 10 days. After around three months, the fluid 

temperature at any point along the well is very close to the injection temperature. This means that the injection temperature is the 

same as the BHT of the injection well, which is taken as the inlet temperature for the fractured reservoir. In this case, the fluid 

velocity is v1=0.64 m/s and it takes about 1.95 hours for the fluid to reach the bottom of the well. Although the fluid absorbs heat 

from the surrounding formation when flowing downwards, the rock around the wellbore is continually cooled and eventually the 

amount of heat absorbed by the fluid becomes negligible.  

The effect of the viscosity on the BHT of the injection well is shown in Figure 3. The water viscosity ranges from about 2.8×10-4 

Pa•s to 1.3×10-3 Pa•s when the temperature changes from 100 oC to 10 oC, which can be found in the website link 

(http://en.wikipedia.org/wiki/viscosity). Here μ =10-4, 5×10-4 and 10-3 Pa•s are chosen for the water. From Figure 3 the BHT 

follows exactly the same curve under these three cases. This means that the more/less heat absorbed/released by varying the fluid 

viscosity and thus by changing the heat transfer coefficients (as shown in Table 2) has little effect on the fluid temperature 

variations.  

http://en.wikipedia.org/wiki/viscosity
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In Figure 4, the effect of the injection rates on the BHT of the injection well is displayed. The BHT differences under small and 

large flow rates is obvious, but becomes smaller and smaller with time increasing. When the flow rate is larger than 0.015 m3/s, the 

BHTs follow almost the same trend when the time is long enough. The larger flow rates, the shorter time for the BHT of the 

injection well to approach the injection fluid temperature. 

 

Figure 2: Fluid temperature varying with time along the injection well when Q1=Q2=0.02 m3, μ=5×10-4 Pa•s and 2L=500 m. 

 

Figure 3: Dimensionless BHT of the injection well as a function of fluid viscosity when Q1=Q2=0.02 m3 and 2L=500 m.  
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Figure 4: Dimensionless BHT of the injection well under different flow rates when μ=5×10-4 Pa•s and 2L=500 m. 

 

Figure 5: Dimensionless temperature evolution along the line connecting the dipole wells when Q1=Q2=0.02 m3, μ=5×10-4 Pa•s and 

2L=500 m. The blue circle denotes the injection well and the red one denotes the production well. 
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Figure 6: Dimensionless fluid temperature varying with time around the injection well when Q1=Q2=0.02 m3, μ=5×10-4 Pa•s and 

2L=500 m. The blue circle denotes the injection and the red one production well. 

(b) Thermal responses related to the fracture 

As the streamlines starting from the injection well run into the production well or approach infinity, the temperature field for the 

fluid can be obtained by considering each point along the streamline. The streamline trajectory can affect the temperature due to the 

different exposed time to the hot rocks, and therefore, the BHT in the vicinity of the production well depends on the orientation of 

the fluid velocity vector approaching the production well. In the current calculation, the BHT of the production well is assumed to 

be equal to the average temperature of all the points on a small circle centered at the production well, which is taken as the starting 

temperature for the production well part of the calculation. 

Figure 5 shows the temperature evolution along a typical streamline which directly connects the injection and production wells. 

After small time t=1 day, there is a steep change of temperature near the injection well because of the cold water flowing into the 

fracture. With increasing time, the BHT of the injection well decreases and the cooling effect penetrates further toward the 

production well until the fluid reaching the production well has a temperature less than the initial reservoir temperature, i.e. thermal 

breakthrough occurs. After 30 years, the end point on this streamline produces the lowest temperature of all streamlines near the 

production well.  

In the same way, the temperatures for the points on other streamlines are obtained. Of course, it will take a longer time for the fluid 

to reach the production well and the fluid temperature is higher, even as much as the rock temperature. It should be noted that the 

streamline starting in the negative x-axis direction will never reach the production well due to axisymmetry, and thus does not have 

any effect on the BHT of the production well. The temperature contours at time=1, 10 and 30 years for the fluid are shown in 

Figure 6. It can be seen clearly that with increasing time, the cooling effect penetrates farther away from the injection well.  

Figure 7 also shows the thermal responses of the BHT of the production well or the outlet of the fractured reservoir for different 

flow rates. 

 

Figure 7: Dimensionless BHT of the production well under different flow rates when μ=5×10-4 Pa•s and 2L=500 m. 
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Figure 8: Dimensionless output temperature of the EGR system under different flow rates when μ=5×10-4 Pa•s and 2L=500 m. 

 

 

Figure 9: Dimensionless output temperature of the EGR system vs. Well distance when Q1=Q2=0.02 m3 and μ=5×10-4 Pa•s. 
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final output temperature show similar trends after several years, for the same reason that the BHT in the injection well eventually is 

equal to the surface injection temperature. At early time, their difference is still obvious. This means that the previous models, 

which assume the BHT of the production well to be the output temperature of the EGR system, are correct only for long production 

time conditions.  

Another important factor which may affect the EGR productivity is the well separation. Figure 9 plots the output temperatures of 

the EGR vs. well distances. It is easy to understand that with other conditions remaining the same, a larger well separation increases 

the heat exchange time between the fluid in fracture and the surrounding high temperature rock, and thus produces a higher output 

temperature. 
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Generally the output power of an EGR is expressed as in terms of P= ρfcfQ(Tout-Tin). From Figure 8 we know that using higher flow 

rates produces lower output temperatures sooner. This indicates that larger flow rates do not necessarily produce higher output 

power. Therefore, there exist optimal values for these factors which maximize the output power of the EGR.  

7. CONCLUSION 

The closed-loop circulation in an EGR system is studied in this paper. After using some assumptions, the whole circulation is 

divided into three portions which can be solved independently based on the input conditions. A few conclusions can be made based 

on these numerical results: 

(a) The great advantage of the present model is that the analytical solutions are obtained in the Laplace space and the model 

can be run in only a few seconds using a notebook computer. It is more efficient in time  compared with other numerical 

methods such as FEM and BEM and this allows for numerous optimization runs; 

(b) The assumptions used in this paper do not impact on the use  or accuracy of the numerical results . The results can 

provide a basis for the EGR optimization and design; 

(c) As the fluid viscosity does not affect greatly the BHT of the injection well, assuming the viscosity is constant does not 

significantly affect this calculation.  

(d) The flow rates play an important role in the heat exchange in the wells and the fracture reservoir. The effect of rate vary 

with  the well distance. An optimal choice of these factors requires more study; 

(e) In addition, the validation against some field data of the present model is needed. 
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