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ABSTRACT

This paper investigates the heat extraction from an enhanced geothermal reservoir (EGR) using a closed-loop circulation through
one fracture in the reservoir connecting one injection and one production well. Based on the fact that heat conduction is very slow,
the one-fracture system serving as both injection and outlet is economically not viable, but represents one fracture in an array of
such fractures. In this paper, we will employ a few simplifications to make this complex problem tractable theoretically. Heat
exchange between the well and its surrounding formation is assumed to be radial and horizontal. Vertical heat conduction
dominates the vicinity of an infinite fractured reservoir and flow-induced heat advection transfers injected cool water to outlet hot
water. Mathematically, the closed-loop is divided into three portions, i.e. the injection and production wells and the fracture
connecting them, with suitable governing equations for temperature change and connection conditions. Semi-analytical solutions in
the Laplace space for each portion are found and the Stehfest method is used to obtain the physical values in the time domain. The
results produce useful insights for future geothermal reservoir design. For example, the fluid viscosity does not affect greatly the
bottom-hole temperature of the injection well and thus the outlet temperature of the EGR system. The flow rates and the well
separation distance are two important factors for outlet temperature. Compared to fully numerical methods, this model is more
efficient and can be used as a design and optimization tool.
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1. INTRODUCTION

Geothermal energy has become one the most promising alternatives for energy supplies in the future. First, it has inexhaustible
sources from beneath of the earth, such as the heat released from the decay of radioactive elements. In Australia, there is a great
deal of heat storage from the hot dry rocks with a temperature of more than 200 °C at a depth of 5 kms and less (Budd et al. 2008).
In addition, compared with the conventional energy resources, such as coal, the geothermal energy has some advantages. For
example it is a renewable and clean energy resource. The closed-loop EGR system does not give out any emissions or wastes.
Therefore, it is of great importance to study the thermal behavior of an EGR system both experimentally and theoretically for
geothermal industrial design, optimization and production assessment.

For an EGR circulation system, we consider three main portions in our analysis. In the injection well, the cold fluid flows
downwards and absorbs heat from the surrounding formation at the same time. In the fractured reservoir, the fluid flows towards
the production well, and this portion involves the main heat extraction from the reservoir. Then the hot fluid is circulated to the
surface through the production well. There have been many studies for each individual portion of this system. For example, as for
the fluid flow in the wellbore, Ramey (1962) proposed the fundamental equations for the heat exchange between the fluid flow and
the surrounding formation. Later Raymond (1969), Holmes and Swift (1970), Keller et al. (1973), Sump and Williams (1973),
Wooley (1980), Fomin et al. (2005), and Wu et al. (2013a) studied similar problems using several different solution approaches,
namely finite difference methods and analytical or semi-analytical approaches. For the purpose of simplification, in our work
presented below, the effect of the temperature and pressure on the material properties such as the viscosity and mass density are not
taken into account.

There are also a great number of studies on the heat extraction from a fracture-like reservoir. For the simple cases where the fluid
flow is one-dimensional (for example, radial fluid flow) or the fluid velocity is uniform (for example, flow in the straight crack), the
analytical solution is easy to obtain (Lauwerier, 1955; Gringarten, et al. 1975; Cheng et al. 2001; Yang and Yeh 2009). When
considering more complex cases, for example an EGR configured with one injection well and one production well, the analytical
solutions are difficult to obtain because the problem is 2D or 3D. Gringarten and Sauty (1975) applied successfully the streamline
concept to the heat extraction from aquifers with uniform regional flow. By doing this, the fluid flow along a specific streamline
can be studied independently, thus reducing the number of dimension by one and simplifying the problem. Following Gringarten
and Sauty’s idea, Rodemann (1982), Heuer et al. (1991), Schulz (1997), Ogino et al. (1999) and Wu et al. (2013b) utilized the
approach of velocity potential and streamline functions (DaCosta and Bennett, 1960; Grove et al. 1970) to study a circular finite or
infinite reservoir with dipole or multiple injection and production wells.

Clearly, the well-based solution itself cannot be applied to a closed-loop geothermal system, as the connection conditions are not
considered. As for the closed-loop circulation for an EGR with dipole wells, the non-symmetric boundary conditions for injection
and production wells add more complexities to obtaining an analytical solution for the temperature evolution. Although numerical
methods such as finite element (Kolditz 1995) and boundary element methods (Ghassemi et al. 2003) are able to solve a variety of
problems with any boundary and initial conditions, they demand a high computational cost and thus are less suitable for
optimization problems.

The aim of this paper is to obtain semi-analytical solutions for the closed-loop EGR in an effective manner as an aid in predicting
the output power of the EGR for future design and optimization. As the reservoir extent is much greater than the well separation, it
is treated as infinite. Heat exchange between fluid and rock along the wells and the fractured reservoir is considered using different
models to capture the main heat sources. Flow-induced heat advection in the fractured reservoir is taken into account.
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This paper is organized as follows: in Section 2 and 3, the problem to be studied is mathematically formulated including the closed-
loop EGR system description, governing equations, boundary and initial conditions. Their dimensionless forms and a few
controlling parameters are derived in Section 4. This is followed by the solution methods in Section 5 and numerical results in
Section 6. In the end, some conclusions are presented in Section 7, which are useful for future engineering design of an EGR
system.

2. PROBLEM DESCRIPTION AND ASSUMPTIONS

The closed-loop EGR system studied is shown Figure 1(a). The closed-loop circulation system contains two vertical wells, i.e. one
for injection (blue) and the other for production (red), which are connected by an infinite horizontal fracture with a constant
aperture. The initial temperature of the system is a function of depth, i.e. To= Agz+ Bg, where Ay is the geothermal gradient and By is
the surface ground temperature. It is assumed that initially the fluid and the rock have reached a thermal balance. At time t>0, a
Newtonian fluid with a constant temperature T;, is injected into the system at a constant volumetric rate Q; and at the same time a
fluid with a flow rate Q, is pumped out from the production well.

The geometrical sizes of the wellbore shown in Figure 1(b) and the reservoir are defined as follows: both the wells have the same
depth H, the inner radii of the injection and production wells are r, (diameter D;=2r) and r, (diameter D,=2ry,), respectively. The
aperture of the fracture reservoir is w. The horizontal distance between the two wells is 2L (generally several hundred meters for a
commercial EGR). The origin of the general coordinate system is located at the middle point of the line connecting the ground
points of the two wells and the vertical axis points downwards.
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Figure 1: (a) circulation model for a closed-loop EGR and (b) injection well system (for the production well system, the inner
radius of the tubing should be replaced with ry, and the fluid flow is upwards).

Some assumptions are made in order to make the problem tractable:

(a) the fluid is single phase, incompressible and Newtonian, and the rock is impermeable. The material properties of the fluid and
the rock are constants independent of temperature;

(b) the fluid flow in the fractured reservoir is assumed to reach a steady-state in a short time compared with the long operation life
of the reservoir;

(c) the heat flow around the well follows the plane-strain assumption and the heat flow close to the fracture reservoir is modelled
using a one-dimensional vertical diffusion equation.

According to JiJi (2009, page 242-246), for a semi-infinite domain with a homogenous initial temperature and one time-dependent
surface heat flux qo(t) imposed at the boundary at t>0, the penetration depth of the thermal layer can be obtained by using a heat
balance integral method

6Kr . /2
3(@) :[% - [ (t)dt} L)

where t is the time and x.=4,/(p,C;) is the thermal diffusivity with 1., p, and c, being the thermal conductivity, mass density and
specific heat capacity, respectively, of the media.

Take granite for example. When the surface heat flux is a constant, 4=2.4W/(m.K), p,=2700Kg/m® and ¢,=790 J/(Kg.K),
xr=1.125><10'6m2/s. This means that after 20 years, the thermal layer is about 65.25 m, which is much smaller than the well distance
(generally larger than 500 m). This indicates that the well interaction cannot affect significantly the thermal diffusion mode around
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each well. In addition, as the plane-strain assumption is adopted, the temperature fields can be described by a radial diffusion
equation.

3. GOVERNING EQUATIONS

Based on the above assumptions, the governing equations can be written in the corresponding local coordinate system (LCS) for the
injection well, fracture reservoir and production well.

(a) Heat exchange along the wellbore

As the heat flow is assume to be axis-symmetric and horizontal in the region near the wellbore, the energy equations for the fluid
flow in the wellbore are written as follows, according to their local cylindrical coordinate system (LCCS)

o,
P+ C AM L 270U, (T, —Ty) == € A , (Injection well)

hl(Tbl -

a;fl , at r=r, (injection well) @)

o,
PrC AV, — P 21271, (T, —T,) = 2iC AZ 2, (Production well)

hy(To, —Tro) =4 aT'f, at r" =r, (production well)

where ¢ is the specific heat capacity of the fluid, A, h,, T, and T,, (¢=1 for injection and £=2 for production) are the areas of the
wellbore cross section, overall heat transfer coefficients (HTCs), fluid temperature and the temperature at the wellbore wall,
respectively. It should be noted that for the injection well, the origin of the LCCS is at (-L,0,0) with the radial spatial variable r,
while for the production well the origin of the LCCS is at (L,0,0) with the radial spatial variable r* (z positive downwards). The
overall HTCs can be calculated based on Willhite’s equation (1967)

1 _i_'_ rto In(rto/rti) + rio In(rins./rio) rto + rto In(rco/rci) + rto In(rh/rco) , (f 21’2) (3)

Uf‘ rt/hf" ktub, I(ins |ns (h + h ) kcas, kcem.

where the geometrical variables can be found in Figure 1(b). k denotes the thermal conductivity of the corresponding material
shown in the subscript. If the effects of the annulus, casing and cements are not taken into account, the first two terms on the right
side of Eq.(3) are used to calculate U;. The variable h, is the HTC for the fluid flow in the tubing and is obtained by using the
relationship N,=h4/D, where N, denotes the Nusselt number, A is the thermal conductivity the fluid and D the hydraulic diameter.
For fully developed laminar flow in a pipe with circular cross section, the Nusselt number N, =3.66, while for transitional and
turbulent flows, the Nusselt number is obtained by using the well-known Gnielinski correlation (Gnielinski, 1976)

_ (£/8)(Re,~1000)Pr, ( Pr, o _ . o
‘T1:127 \/%(Prf’e’—l)(Prrj , £=[0.79In(Re,)-1.64]

when 0.5<Pr<2000 and 3000<Re,<5x10°.

(b) Heat conduction in the rock formation surrounding the wellbore

As the radial and horizontal heat conduction dominates the thermal diffusion process around the wellbore, the equations are written
as in their corresponding LCCS

*

=K -~
ot "ror or

or, —ict 10 aTrl
ot "ror ar

j, (injection well); dF: i* 0 (r* Ty

j, (production well) (5)

where T,; and T,, denote the temperature of the formation around the injection well and production well, respectively.

(c) Heat conduction for the rock formation between but far from the wellbores

Based on the assumptions, the one-dimensional heat conduction (in the z direction) dominates the thermal diffusion in the region
near the fracture and thus is

14 0
a;tr =K aZT’ (¢=1for thetop layer and ¢ =2for the bottom layer). (6)

It should be noted that although the horizontal heat conduction is neglected in the above process, the formation temperature T,' is
still a function of x and y.

(d) Heat balance at the fractured reservoir
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As for the fluid flow in the fracture, the temperature continuity is assumed and the heat balance equation is simplified based on the
fact that the conduction in the fluid is trivial and that the convection dominates the heat flow (Cheng et al., 2001)

T'=T?, onz=H,
o _ai’
oL o1

U]

pfchfLVTer/L{ j:O, on z=H,

where V and V[] are the gradient and divergence operator, respectively. g; denotes the discharge vector and can be described by the
following equations of Darcy law and mass balance for an incompressible Newtonian fluid in the fracture

q; =—Vér, VIg; :Q15(X+L' y’H)_QZ§(X_L’ y'H)’ ®)

where ¢ denotes the velocity potential for the fluid which is assumed to be steady state and obeys the potential flow theory,
denotes the Dirac delta function, Q; is the injection rate and Q, the production rate.

(e) Boundary, connection and initial conditions
The injection rate Q, and production rate Q, are prescribed. The injection temperature is

T,,=T,, at(-L,0,0). 9)

The bottomhole temperature (BHT) of the injection well is assumed to be equal to the fluid temperature flowing into the fracture at
that point and the BHT of the production well is assumed to be equal to the fluid temperature flowing out of the fracture, i.e.

T,,=T,, a(-L,0H), T,,=T,, at(L0H). (10)
The ground temperature at the surface is a constant
T'=B,, onz=0. (11)
The initial temperature of the whole system is a function of depth
T,=Az+B,. (12)

4. DIMNSIONALESS FORMULATION
The governing equations, boundary and initial conditions are simplified with the following transformation

T, —B - L -
= fr 0'®”:Tr/, BO!®in:Tm BOI(Df:¢f %,Q,=g,
AH AH AH Q Q )
Q =Lty Rel, z=2 B =M K )Xy Y 72
Q fn H A ln L L L
4= AL 4= Hx, o _2zHrY, _2zHrY, ool
r A/ 1 ¢ Il [}
PuCuQH, LV, PiCAY,  pciQ, Iy
where ¢ =1 for injection and ¢ =2 for production well.
Heat balance along the wellbore
00, 00
= (0, -0,,), (injection well)
o, 0oL
o0, S
Bl(®bl—®f1):6—R, at R=1, (injection well) (14)
o0 o0 .
% 8;2 - az” =—a,(0,,—-0,,), (production well)
a®r2 1
B,(®,,-0,)= R at R=¢&. (production well)
Heat conduction in the local region around the wellbore
6®”=16(Ra®rlj: (injection well); O, =16[Ra®f2) (production well). (15)
or ROR °R or ROR °R

Vertical conduction between the wellbore and close to the fracture
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0,50
=C 2
or oz

c= % (¢ =1for top layer and ¢ = 2for bottom layer). (16)

Temperature and heat flux at the fractured reservoir

1o, C G O
0:=07?, Q) r_2=r|=0,0n Z=1 A7)
r r Qf[V f+Z[ az az ]
Fluid flow in the reservoir
Q; =-Vd,, VIQ, :Qﬁ(x +2LY,1)—QZ5(X —LY,l). (18)

Initial and boundary conditions
0, =0,, at(-10,0),

0., =0,, at(-101), ©,,=0,, at(10,1), (19)
@ =0, onZ=0,
®,=Z, onzt=0.

5. SOLUTIONS

As mentioned in the previous sections, the whole closed-loop circulation is divided into three portions: the flow in the injection
well, the flow in the fracture reservoir and the flow in the production well. The output temperature in the previous part is regarded
as the input condition for the next one. This greatly simplifies the original problem. By using the Laplace transformation, the
analytical solutions for the three stages are obtained. In the following equations, the symbol ~ denotes the variables which are
Laplace transformed and s is the Laplace symbol.

Injection well
Base on Eqns. (14), (15) and (19), the solutions are obtained to be

» _JWEsa+A] A2 1 z o JWEspra) A 1 z
o _[wesara) 4 1],z K5 g
®fl_{SAlﬂ1e A A1+§, Al_T+KO(\/§), ﬁ’l_;ﬁsAl+EKl(\/§)\/§,

where W(s) is the Laplace transform of the injection temperature. Ky and K; are the modified Bessel functions of the second kind.
The Laplace transformation of the BHT of the injection well is

A

() — AN AL 1)
Oy =H(S) _(W(s)+ sﬂJe S + <

Fracture reservoir

For the purpose of simplicity, assume Q;=Q,=Q, i.e. Q;= Q,=1. By using the same approach of velocity potential and streamline
functions as Schulz (1997) and Wu et al. (2013), the second equation of (17) is transformed into

00, 00, 06}
+y -
oD ol o7

_V2

]:0’ V? =g} +qi, on Z=1 @2

where the components of the discharge vectors gy and gy are

o o L (XYL
Y TR ey | T e (23)
ov VY 2Y
qyz—a—Y, —=g=—ar0tanm

From Eq.(23), X and Y are expressed as in terms of  and ¢

+ 2
_ cot gz— cos h ZNCO't gjl) , X =—(1+Y cot¢)tanhz. (24)
(cot” gsinh“n+cosh?y)

As the fluid flow is symmetric with respective to x axis and the half plane above x axis is chosen, then
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, 2
=cotg2+cesh:7 cot gjl), X =—(1+Y cotg)tanhz, (25)
(cot® gsinh“np+cosh®y)

which is also simplified

yo__Sing oy sinhn 7 whenge[—z,O‘},
cosg+coshn cosg+coshn 2 (26)
y=—__Me , X:——S'nh” , Whenge[o 1.
cos¢—coshn coshr—cos¢ 2
Equation (16) is solved to be
e =Izlexp(Jg/cZ)+erxp(—\/g/cz)+%, @f=F3exp(J§/cZ)+F4exp(—\/§/cz)+%, (27)

where Fy, F, Fzand F, are unknown functions of @, ¥ and s. By using the boundary conditions at Z=0, Z=1 and Z— infinity, we
obtain F,=- Fy, F4—[exp(2/cx/s) 1] F; and F3=0. Therefore

e = Fl[exp(\/g/cz)—exp(—\/g/cz)}ré, @ = Fl[exp(zx/g/c)—1]exp(—\/§/cz)+%. (28)

Substitution of the above equation into Eq. (22) leads to one ordinary differential equation (ODE) whose solution is found to be

B ! (29)
F=Fexp| ——<&¥S/C (1 ge]
! 5exp[ 1—exp(—2\/§/c)£V2 §]

where Fsis an unknown function of ¥ and s. By using the boundary condition at the injection point of the fracture, Fsis found to be

E_ H(s) . (30)
exp(JE/c)—exp(—JE/c)

Therefore, the solutions for the temperatures of the rock formation and the fluid in the fracture are

& —og| 2251 xp(\fs/2)-exp(~5/0Z) sh(5) -1 2
' 1—exp(—2J§/c)¢V exp(f/c) exp( J_/c) s s
@31)
2y¥slc Fa sH(s)-1 Z
e =e —_dé& |exp| —/s/c(Z -1 z
F=exp 1exp(zf/c)lv & Jexp| —5/e(z - [P+
. 27\0s/c F 1 sH(s) 1
O, = - — +=.
A A exp( Z\f/c)z[V s
From Eqns (22), (23) and (26) the integral in the above equation is expressed as
1 w%dg, when ge[—f,o},
(6) = Ji dem ¢ [cosh &+cosg] 2 (32)
an.g V2 1pe 1

— = _dé, whence 0*,2}
¢ [cosh & —cosg : ° [ 2

where 0" and 0" corresponds to the streamlines along positive and negative axis, respectively. The value of g(#,¢) can be obtained
based on the formula (2.445) and (2.446) in the book by Gradshteyn and Ryzhik (2007). Here only the results are given

! {1— sinh —Zcotg{arctan (tan g} arctan (tanh T tan ZJH when |cos¢ =1,

csin¢|” (coshnm+cosg) (33)
a(n.6) = L i

N I LU 14— 05¢ , when|cos¢|=1.

3c coshrp+cosg|  coshn+cosg

Production well
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Based on Eqgns. (14) and (15), the solutions for the temperature of the fluid and rock formation wall are obtained

@rz {[G(S)Sﬂz = ﬂZ]eﬂZ(Z l}Ko(\/ng)—ir

A5, P,
A — [G(S)Sﬂ2_A2_ﬂ2] -%(1_2) 1 z
Oy, —{ AR, € +% Ko(\/§)+§a (34)
SAzﬂz ﬂz s’
K ()5

+K (\/_g> = 7,57, + (\/_5)«/_

A, =
2 BZ
where G(s) is the Laplace transformation of BHT of the production well, which is obtained from Eq. (31).

6. RESULTS

As used in previous studies, the Stehfest method (1970) is utilized to obtain the values of the solutions in the time space. In this
section, the attention is paid to the effect of the fluid viscosity, flow rates and well distance on the temperature evolution in the fluid
and the rock formation. Water and granite are chosen as the fluid and reservoir rock, respectively, for the following calculations.
The parameters used for the examples are listed in the Table 1 unless otherwise specified.

Parameter Value Parameter Value
Inner radius, injection tubing ry; (m) 0.1 Rock thermal conductivity (W/(m*K) 2.4
Inner radius, production tubing ry; (m) 0.1 Rock specific heat (J/(Kg*K) 790
Outer radius, tubing ry, (m) 0.12 Rock density (Kg/(m°) 2700
Well distance 2L (m) 500 Fluid thermal conductivity (W/(m*K) 0.6
Well depth Hy (m) 4500 Fluid specific heat (J/(Kg*K) 4200
Fracture aperture (m) 0.001 Fluid density (Kg/(m®) 1000
Initial pressure (MPa) 75 Fluid viscosity (Pass) 5x10™
Geothermal gradient A, (K/m) 0.04 Injection rate Q; (m%s) 0.020
Surface temperature B, (°C) 27 Production rate Q, (m®/s) 0.020

Table 1: physical parameters for the present calculation.

Q1 (M3fs) | u (Pass) | vy (m/s) Re; hy (W/m¥K) | U (W/m¥K) | Nu; o B 1
0.005 5x107% | 0.159 | 6.37x10% 100 80.6 301 | 10.90 | 4.18 | 3.180
0.020 5x10% | 0.637 | 2.55x10° 335 249 1010 | 839 | 140 | 0.795
0.030 5x10% | 0.955 | 3.82x10° 478 340 130 | 7.62 | 199 | 0530
0.050 5x107% | 1.590 | 6.37x10° 749 490 2250 | 6.60 | 31.2 | 0.318
0.020 107 0.637 | 1.27x10° 461 329 1380 | 111 | 19.2 | 0.795
0.020 107 0.637 | 1.27x10° 262 199 785 | 6.70 | 109 [ 0.795

Table 2: dimensionless parameters under different flow rates and fluid viscosity.

(a) Thermal responses in the injection well

Figure 2 displays the fluid temperature variations with time along the injection well when the flow rate is Q;=Q,=0.02m%s. The
injection temperature T;;= 20 °C and the surface temperature By=27 °C corresponding to a minimum dimensionless value ®;, =-
0.038 and ®,=0 in terms of the depth as Z. The left-most point and the one where ®;=0 on the x-axis in the figure correspond to
the injection temperature and the surface temperature, respectively. It can be seen that the fluid temperature along the well
decreases rapidly during the first day and approaches the injection temperature after 10 days. After around three months, the fluid
temperature at any point along the well is very close to the injection temperature. This means that the injection temperature is the
same as the BHT of the injection well, which is taken as the inlet temperature for the fractured reservoir. In this case, the fluid
velocity is v;=0.64 m/s and it takes about 1.95 hours for the fluid to reach the bottom of the well. Although the fluid absorbs heat
from the surrounding formation when flowing downwards, the rock around the wellbore is continually cooled and eventually the
amount of heat absorbed by the fluid becomes negligible.

The effect of the viscosity on the BHT of the injection well is shown in Figure 3. The water viscosity ranges from about 2.8x10™
Pass to 1.3x10° Paes when the temperature changes from 100 °C to 10 °C, which can be found in the website link
(http://en.wikipedia.org/wiki/viscosity). Here p :10'4, 5x10™ and 10 Paes are chosen for the water. From Figure 3 the BHT
follows exactly the same curve under these three cases. This means that the more/less heat absorbed/released by varying the fluid
viscosity and thus by changing the heat transfer coefficients (as shown in Table 2) has little effect on the fluid temperature
variations.
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In Figure 4, the effect of the injection rates on the BHT of the injection well is displayed. The BHT differences under small and
large flow rates is obvious, but becomes smaller and smaller with time increasing. When the flow rate is larger than 0.015 m¥/s, the
BHTs follow almost the same trend when the time is long enough. The larger flow rates, the shorter time for the BHT of the
injection well to approach the injection fluid temperature.

1.0
time=1 day
—————— time=10 days
—~ o time=100 days
E"O-S = = = . =—.=  {ime=1 vyears
~ - — time=10 years
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©
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S
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B
tOZ
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0.0 Juid T T T T
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Fluid temperature ®¢1

Figure 2: Fluid temperature varying with time along the injection well when Q;=Q,=0.02 m®, p=5x10"* Pass and 2L=500 m.
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Figure 3: Dimensionless BHT of the injection well as a function of fluid viscosity when Q,=Q,=0.02 m?® and 2L=500 m.
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Figure 4: Dimensionless BHT of the injection well under different flow rates when x=5x10"* Pass and 2L.=500 m.
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Figure 5: Dimensionless temperature evolution along the line connecting the dipole wells when Q;=Q,=0.02 m?, 4=5x10"* Pass and
2L=500 m. The blue circle denotes the injection well and the red one denotes the production well.
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Figure 6: Dimensionless fluid temperature varying with time around the injection well when Q;=Q,=0.02 m®, p=5x10"* Pass and
2L=500 m. The blue circle denotes the injection and the red one production well.

(b) Thermal responses related to the fracture

As the streamlines starting from the injection well run into the production well or approach infinity, the temperature field for the
fluid can be obtained by considering each point along the streamline. The streamline trajectory can affect the temperature due to the
different exposed time to the hot rocks, and therefore, the BHT in the vicinity of the production well depends on the orientation of
the fluid velocity vector approaching the production well. In the current calculation, the BHT of the production well is assumed to
be equal to the average temperature of all the points on a small circle centered at the production well, which is taken as the starting
temperature for the production well part of the calculation.

Figure 5 shows the temperature evolution along a typical streamline which directly connects the injection and production wells.
After small time t=1 day, there is a steep change of temperature near the injection well because of the cold water flowing into the
fracture. With increasing time, the BHT of the injection well decreases and the cooling effect penetrates further toward the
production well until the fluid reaching the production well has a temperature less than the initial reservoir temperature, i.e. thermal
breakthrough occurs. After 30 years, the end point on this streamline produces the lowest temperature of all streamlines near the
production well.

In the same way, the temperatures for the points on other streamlines are obtained. Of course, it will take a longer time for the fluid
to reach the production well and the fluid temperature is higher, even as much as the rock temperature. It should be noted that the
streamline starting in the negative x-axis direction will never reach the production well due to axisymmetry, and thus does not have
any effect on the BHT of the production well. The temperature contours at time=1, 10 and 30 years for the fluid are shown in
Figure 6. It can be seen clearly that with increasing time, the cooling effect penetrates farther away from the injection well.

Figure 7 also shows the thermal responses of the BHT of the production well or the outlet of the fractured reservoir for different
flow rates.
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Figure 8: Dimensionless output temperature of the EGR system under different flow rates when x=5x10"* Pass and 2L.=500 m.
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Figure 9: Dimensionless output temperature of the EGR system vs. Well distance when Q,=Q,=0.02 m* and x=5x10"* Pass.
(c) Thermal responses in the production well

One of the most important results is the final output temperature of the EGR. Although the water releases heat into the surrounding
formation along the production well, the advection dominates the heat diffusion process and increases the fluid temperature in the
upper part of the well. This can explains why the output temperature increases during the initial stage as shown Figure 8. With
increasing time, the BHT decreases to be lower than the temperature at the upper part of the well, the output temperature will
decrease after it reaches a maximum as shown in Figure 8. The time duration for the output temperature to reach its maximum is
very short and is determined by the flow rate. By comparing Figures 7 and 8 we find that the BHT of the production well and the
final output temperature show similar trends after several years, for the same reason that the BHT in the injection well eventually is
equal to the surface injection temperature. At early time, their difference is still obvious. This means that the previous models,
which assume the BHT of the production well to be the output temperature of the EGR system, are correct only for long production
time conditions.

Another important factor which may affect the EGR productivity is the well separation. Figure 9 plots the output temperatures of
the EGR vs. well distances. It is easy to understand that with other conditions remaining the same, a larger well separation increases
the heat exchange time between the fluid in fracture and the surrounding high temperature rock, and thus produces a higher output
temperature.

(d) Maximization of the output power of the EGR
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Generally the output power of an EGR is expressed as in terms of P= p:«¢{Q(T,u-Tin). From Figure 8 we know that using higher flow
rates produces lower output temperatures sooner. This indicates that larger flow rates do not necessarily produce higher output
power. Therefore, there exist optimal values for these factors which maximize the output power of the EGR.

7. CONCLUSION

The closed-loop circulation in an EGR system is studied in this paper. After using some assumptions, the whole circulation is
divided into three portions which can be solved independently based on the input conditions. A few conclusions can be made based
on these numerical results:

(a) The great advantage of the present model is that the analytical solutions are obtained in the Laplace space and the model
can be run in only a few seconds using a notebook computer. It is more efficient in time compared with other numerical
methods such as FEM and BEM and this allows for numerous optimization runs;

(b) The assumptions used in this paper do not impact on the use or accuracy of the numerical results . The results can
provide a basis for the EGR optimization and design;

(c) As the fluid viscosity does not affect greatly the BHT of the injection well, assuming the viscosity is constant does not
significantly affect this calculation.

(d) The flow rates play an important role in the heat exchange in the wells and the fracture reservoir. The effect of rate vary
with the well distance. An optimal choice of these factors requires more study;

(e) Inaddition, the validation against some field data of the present model is needed.
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