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The modelling and simulation of fracture networks 
is a critical component of the assessment of hot 
dry rock (HDR) geothermal resources and of the 
design and creation of enhanced geothermal 
systems (EGS). The production of geothermal 
energy from an EGS depends on fluid pathways 
through the HDR and thus connectivity of 
fractures is essential. One way of assessing and 
modelling fracture connectivity is by intersection 
analysis. There is a notable lack of research in 
this area reported in the published literature 
probably because of the extreme complexity of 
three-dimensional fractures in HDR especially 
with respect to their geometrical characteristics 
i.e., shapes and orientations and spatial inter-
relationships in the fracture network.  

In this paper we present a framework for three-
dimensional intersection analysis of fracture 
networks. The framework includes several robust 
algorithms for three-dimensional geometrical 
operations on various data structure 
configurations. We present two case studies to 
demonstrate the framework.  

The first case study is a stochastic fracture 
network model generated by Monte Carlo 
sampling of marked point processes that 
incorporate the most significant fracture 
characteristics: location, orientation and shape. 
The second case study is a database of real 
measurements of fracture parameters. The 
proposed framework demonstrates the potential 
to accommodate any amount of complexity e.g., 
complicated intersections in a fracture network 
such as varying intensity, varying geometry and 
numbers of fractures. The resulting fracture 
intersection databases can be used for further 
applications such as statistical and spatial 
analysis of intersections and connectivity analysis. 
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Introduction 

Geothermal energy is expected to make up a 
substantial portion of the world renewable energy 
market. The renewed interest in geothermal 
energy over the past decade has stimulated 
research and development in areas including 
reservoir modelling, flow and heat transfer 
simulations, new equipment and new operational 
techniques (see MIT-led 2011). 

Effective heat production from an EGS requires a 
fracture network in the rock mass so the heat can 
be efficiently transferred by means of a carrier 
(water or CO2) when it passes through the system 
from the injection to the production well. Where 
there is a lack of fluid conducting natural fractures 
a stimulation operation is applied to extend the 
existing fractures or to create new fractures so as 
to enhance the performance of geothermal 
system. A non-productive fracture system (i.e., 
isolated fracture clusters) or an ill-connected 
fracture network could be improved by the 
stimulation process. One of the major challenges, 
however, is to obtain a realistic connectivity model 
between the wells. Such a model is critical to the 
assessment of the response of the system when it 
is subjected to fluid flow. The design process for a 
geothermal system is also affected considerably 
by the characteristics of the fracture system. In 
EGS, the host rock is, in general, crystalline and 
the only effective way to transfer fluid between the 
wells is through fractures. In other words, the 
production of geothermal energy from an EGS 
essentially depends on fluid pathways which are 
fractures and thus connectivity of fractures is a 
key factor. The connectivity of fractures in a 
fracture network is controlled by intersections 
between fractures and also between fractures and 
injection and production wells.  

Due to the significant depth of the EGS (up to 
5km below the surface) and the fact that only a 
few wells are drilled in an area of a few square 
kilometres, the direct observation and 
measurement of fractures is very limited if it not 
impossible. Thus, in practice, the whole fracture 
system is not observable on any meaningful scale 
and the only realistic approach is via a stochastic 
model conditioned by the available data – either 
directly (downhole logging) or indirectly (seismic 
events monitored during fracture stimulation 
process) (Xu et al, 2010). The use of marked 
point processes (MPP) has proved to be an 
effective means of developing stochastic fracture 
models (Mardia et al, 2007; Dowd et al, 2007; Xu 
and Dowd, 2010). As more conditioning data are 
used, the resulting network becomes more 
realistic. The interactions of fractures within the 
network (i.e., their intersections) define pathways 
for the transportation of fluid, which is the key 
factor in assessing the performance of geothermal 
systems. A simple but robust and practical 
framework is proposed in this paper to provide a 
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useful tool for effective and efficient fracture 
intersection analyses. 

Fracture Network Modelling 

Fracture locations are represented by points – the 
centre of 2D shapes or the centroid of 3D shapes. 
The assessment of dispersion patterns, the 
density and other characteristics can be obtained 
by analysing a real fracture data set or a 
simulated fracture network. For example, the 
traces of fractures on an outcrop can be used to 
estimate the size distribution of fractures. Fracture 
traces on outcrops or borehole imaging can be 
used to help estimate fracture density. 

Stochastic modelling of fractures is based on a 
discrete fracture network concept in which 
fractures are generated in a stochastic manner 
according to a specified underlying process. In 
combination with marked point processes 
fractures are generated as follows: 

a) Fracture locations are generated based on 
either a Poisson (homogeneous) point 
process or an inhomogeneous point process. 

b) Fracture orientations are derived by means of 
Fisher or Von-Misses distribution functions. 

c) Fracture shapes (lines in 2D) are defined and 
fracture sizes (lengths in 2D) are drawn from 
its distributions, either exponential or 
lognormal. 

d) Other features can be added as required such 
as aperture, transmissivity and surface 
roughness. 

Two examples of stochastic fracture networks are 
shown in Figure 1 for 2D and 3D cases. 

 

Figure 1: 2D and 3D Fracture Network Simulations via 
Stochastic Marked Point Processes 

Other alternatives to represent fracture shapes in 
three-dimensional cases are ellipses (disks) or 
rectangles. However, polygon representation is 
the most general and realistic and this 
representation is used in our intersection analysis. 
We consider all fractures in this research as 
arbitrary shapes with varying number of nodes 
(vertices) and with the conditions that polygons 
are planar and convex. Note that every concave 
polygon can be reconstructed by an ensemble of 
convex polygons. In addition, any curved polygon 
(non-planar) can be divided into a set of planar 
polygons. Thus the framework described here 

(Figure 2) covers any amount of complexity of 
fracture shapes. 

 

Figure 2: Framework to generate realistic fracture network by 
means of marked point process 

Locations from Poisson point processes 

An iterative process is used to generate a random 
number from a Poisson distribution with an 
intensity of . A uniformly distributed sequence of 
independent random variables is generated in the 
range of [0,1], {Vi, i=1,…,n}. The process is 
stopped when one of the following conditions is 
satisfied (Ross 2007): 

 

 

Figure 3: Demonstration of iteration number (n) for 
generating 1000 random number with Poisson distribution of 
density 25 

The process is very efficient as can be seen in 
Figure 3 where the average number of iterations 
required for each random number is the density 
parameter (i.e., 25). Once n is determined within a 
region, the points are uniformly distributed within 
the region such as: 

 

Orientations from Fisher distribution 

The orientation of a fracture plane can be 
described by its normal. In rock engineering, for a 
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fracture set, the deviation angle  of the normal of 
a fracture plane from the mean normal of the set 
is commonly described by a Fisher distribution 
with parameter  (Xu and Dowd, 2010)(Figure 4): 

 

 

Figure 4: Demonstration of the effect of the variation of  on 
Fisher function in the application for orientation angles of 
fractures 

Any three-dimensional plane can also be 
described by two angles, dip and dip-direction (or 
azimuth),  and : 

 

1- Sizes from exponential distributions 

Any polygon can be bounded inside a rectangle 
regardless of its complexity. Therefore, to 
simulate the size of a fracture polygon, we first 
generate a rectangular shape using two numbers 
drawn from an exponential distribution. Then the 
following procedure is applied to achieve the 
desired polygonal shape.  

Let l1 and l2 be two random numbers drawn from 
an exponential distribution defining the rectangle. 
Generate four points independently and randomly 
on the four sides of the rectangle from a uniform 
distribution. These four points are then connected 
(clockwise or counter-clockwise) to produce the 
final polygonal shape of the fracture. The fracture 
generated in this way is always convex and planar 
(Figure 5). Different values of l1 and l2 are used if 
anisotropy is required. 

 

Figure 5: A robust algorithm to generate polygonal shapes 
for fractures 

2- Rotation matrices 

Based on the above definition, the transformation 
matrix to the local coordinate system can be 
written as (Vince, 2005): 

 
 
 

 

Where  is the rotation angle around the X axis,   
is the rotation angle around the Y axis, and  is 
the rotation angle around the Z axis. Note that in 
practice only two rotation angles are needed so, 
for example,  can be set to zero. The rotation 
against the X axis in our defined coordinate 
system is the dip angle  (which is in the range [0, 
/2]) while the rotation against the Y axis is the 
dip direction  and is in the range [0, 2]. 

Translating the resulting polygons 

To create the final fracture model, fracture 
polygons are first generated in the local 
coordinate system. The axes are then rotated so 
that the fractures are correctly orientated. The 
transformed fractures are then translated to their 
designated locations simulated by a point 
process.  

Intersection Analysis (in 3D) 

For the polygonal representations of fractures and 
the generated fracture network, there are nine 
possible types of intersection between any two 
fractures (see Figure 6). 

 

Figure 6: Possible intersection situations between two 
polygonal fractures in realistic fracture networks 



Australian Geothermal Energy Conference 2011 

18 

The first four involve a vertex and the last one 
(Face-Face) can be seen as a special case of 
Edge-Edge intersection (No.7, Figure 6). The 
remaining four cases are of particular interest for 
assessing fracture intersections in a fracture 
network.  

We propose a computationally efficient framework 
to analyse all intersections between fractures in a 
fracture network. Efficiency in this type of analysis 
is an important issue for large fracture networks, 
which is generally the case for HDR EGS. The 
complete framework is summarised in Figure 7.  

 

Figure 7: A full robust framework for fracture-fracture 
intersection analysis 

Two core processes in the intersection analysis 
between fractures (as shown in Figure 7) are 
SegXPln (segment and plane intersection) and 
SegXSeg (segment and segment intersection). A 
sample pseudo-code for SegXPln is presented on 
Figure 8. 

 

Figure 8: Pseudo-code for Segment-Plane intersection 

The following statistics can be derived from the 
proposed intersection analysis. 

1 - Intersection Density 

One definition of fracture density in a fracture 
network is the density of the point process used. 

The density model can be parametric or non-
parametric and model parameters can be 
estimated from sample data (Xu et al, 2003). We 
propose a similar definition here for fracture 
intersection density where points (2D 
applications) or lines (3D applications) of 
intersections are used to calculate the density 
value. The two are obviously related but the 
relationship is non-linear and complex as fracture 
model parameters all play a part in determining 
the relationship. Fracture intersections define fluid 
pathways and therefore are of great importance in 
the connectivity analysis of a fracture network 
model. We propose to use the density of 
intersection as a direct measurement of the 
effectiveness of the fracture network to provide 
pathways for fluid flow. 

A 2D application example is given in Figures 9 
and 10. Figure 9 shows a sample fracture network 
(left) and the locations of fracture centres (right: 
green dots) and the locations of intersection 
points (right: red dots). In Figure 10 it can be seen 
that the resulting models are different. In some 
areas, despite a high fracture density, the fracture 
intersections are limited and therefore the 
intersection density value is low. This part of the 
fracture network is expected to be less conducive 
for fluid flow. 

 

Figure 9: (left) Fracture Network HPPP; (right) Trace 
locations (green) and intersection points (red) 

 

Figure 10: Density map of locations (left) and intersection 
points (right) 

2 – Lengths of Intersection Lines  

Fifteen simulations were generated to investigate 
the distribution of lengths of intersection lines in a 
three-dimensional fracture network. A 
homogenous marked Poisson point process was 
used for each realization. The histogram of the 
intersection lengths is shown in Figure 11 (fifteen 
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simulations on the same graph) with a smoothed 
curve fitted. It can be seen in this case that an 
exponential distribution satisfactorily models the 
distribution of lengths of intersection lines. 

 

Figure 11: Distribution of the length of intersection lines in 
three-dimensional fracture network (class=length categories) 

It is clear that long intersection lines are rare. The 
majority of intersection lines are of small length 
which demonstrates the importance of shorter 
intersection lines (not necessarily all from small 
fractures) in determining the connectivity of the 
fracture network. 

3 - Effects of Fracture Length on Percolation 
State 

It is interesting to investigate the relationship 
between percolation state and the fracture lengths 
of a 2D application. Fracture length is an 
important factor in the intersection between 
fractures in a fracture network and it affects the 
connectivity between any two points within the 
region.  

 

Figure 12: Relationship between percolation sate reached 
and the variation in the range of length of fractures 

Figure 12 shows that larger range of variation of 
fracture lengths produces few number of 
percolation clusters for the cases investigated. In 
other words the homogeneity of the fracture 
length in the fracture network affects directly the 
percolation of the network.  It was shown that the 
relationship is non-linear in this case. The 
simulation consists of 14 different ranges of length 
variations. For each variation, 50 realizations 
were generated. Clearly for the related analysis of 
connectivity evaluation of a fracture network (Xu 
et al, 2006) the fracture length will be a very 
important variable.  Further study in this topic will 
be conducted. 

Case Study - Leeds Fracture Data Set 

In this section some of analyses are applied to a 
real fracture data set: the Leeds Fracture Data 
Set (Dowd et al, 2009), which was established by 
slicing a block of granite (Figure 13). Fractures in 
the data set are represented by quadratic 
polygons. 387 fractures are used for this study.  

 

Figure 13: A 3D convex hull showing the block (left) and 387 
fractures (right) 

An intersection analysis of the fracture network of 
this block was conducted (see Figure 14) and the 
following results were obtained. 

 

Figure 14: the result of intersection analysis which 
demonstrates the largest cluster of connected fractures 
(green) 

The largest cluster (group of intersected fractures) 
in Figure 14 is shown in green. It can easily be 
seen that this cluster accounts for the percolations 
state of this block.  
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The histogram of the lengths of intersection lines 
for this block (Figure 15) is compatible with the 
results extracted from simulations (compare with 
Figure 11): the intersection lines have an 
exponential distribution. 

 

Figure 15: Distribution of the length of intersection lines in 
three-dimensional fracture network: Leeds Fracture Data Set 
(class=length categories) 

The analysis of intersection density in 3D for this 
block is shown in Figure 16 in which subplot A is a 
3D contour of the density of fracture centroid 
points while subplot B is the density of centres of 
intersection lines. It can be clearly seen that even 
for the same section the resulting density is 
different for fracture centroid points and 
intersection line centre points. 

 
Figure 16: Density map of locations (A) and intersection 
points (B) of 3D fracture network, Leeds Fracture Data Set 

As a result the right hand side of the block (Figure 
16) has considerably less conductivity despite 
having a high density of fractures. 

Conclusions 

In this research we have developed robust 
algorithms/frameworks for the intersection 
analysis of fracture networks of any degree of 
complexity. Three novel analyses were conducted 
in this study including a) intersection density as an 
effective and realistic representation of the 
conductivity within a fracture network, b) 
distribution of the length of fracture intersection 
lines in a fracture network which is shown to be 
exponential, and c) the effect of length of fractures 
on the percolation state of a 2D fracture network. 
We have shown that the number of percolation 
clusters has a non-linear relationship to the range 
of variations in the fracture length. In other words, 
fracture size and its variability are both important 
variables in percolation analysis and connectivity 
index evaluation, which in turn are important 
measures for the quantification of fluid flow 
characteristics of fracture networks. 
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