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The modelling and simulation of fracture networks
is a critical component of the assessment of hot
dry rock (HDR) geothermal resources and of the
design and creation of enhanced geothermal
systems (EGS). The production of geothermal
energy from an EGS depends on fluid pathways
through the HDR and thus connectivity of
fractures is essential. One way of assessing and
modelling fracture connectivity is by intersection
analysis. There is a notable lack of research in
this area reported in the published literature
probably because of the extreme complexity of
three-dimensional fractures in HDR especially
with respect to their geometrical characteristics
i.e., shapes and orientations and spatial inter-
relationships in the fracture network.

In this paper we present a framework for three-
dimensional intersection analysis of fracture
networks. The framework includes several robust
algorithms for three-dimensional geometrical
operations on various data structure
configurations. We present two case studies to
demonstrate the framework.

The first case study is a stochastic fracture
network model generated by Monte Carlo
sampling of marked point processes that
incorporate  the most significant fracture
characteristics: location, orientation and shape.
The second case study is a database of real
measurements of fracture parameters. The
proposed framework demonstrates the potential
to accommodate any amount of complexity e.g.,
complicated intersections in a fracture network
such as varying intensity, varying geometry and
numbers of fractures. The resulting fracture
intersection databases can be used for further
applications such as statistical and spatial
analysis of intersections and connectivity analysis.
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Introduction

Geothermal energy is expected to make up a
substantial portion of the world renewable energy
market. The renewed interest in geothermal
energy over the past decade has stimulated
research and development in areas including
reservoir modelling, flow and heat transfer
simulations, new equipment and new operational
techniques (see MIT-led 2011).
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Effective heat production from an EGS requires a
fracture network in the rock mass so the heat can
be efficiently transferred by means of a carrier
(water or CO,) when it passes through the system
from the injection to the production well. Where
there is a lack of fluid conducting natural fractures
a stimulation operation is applied to extend the
existing fractures or to create new fractures so as
to enhance the performance of geothermal
system. A non-productive fracture system (i.e.,
isolated fracture clusters) or an ill-connected
fracture network could be improved by the
stimulation process. One of the major challenges,
however, is to obtain a realistic connectivity model
between the wells. Such a model is critical to the
assessment of the response of the system when it
is subjected to fluid flow. The design process for a
geothermal system is also affected considerably
by the characteristics of the fracture system. In
EGS, the host rock is, in general, crystalline and
the only effective way to transfer fluid between the
wells is through fractures. In other words, the
production of geothermal energy from an EGS
essentially depends on fluid pathways which are
fractures and thus connectivity of fractures is a
key factor. The connectivity of fractures in a
fracture network is controlled by intersections
between fractures and also between fractures and
injection and production wells.

Due to the significant depth of the EGS (up to
5km below the surface) and the fact that only a
few wells are drilled in an area of a few square
kilometres, the direct observation and
measurement of fractures is very limited if it not
impossible. Thus, in practice, the whole fracture
system is not observable on any meaningful scale
and the only realistic approach is via a stochastic
model conditioned by the available data — either
directly (downhole logging) or indirectly (seismic
events monitored during fracture stimulation
process) (Xu et al, 2010). The use of marked
point processes (MPP) has proved to be an
effective means of developing stochastic fracture
models (Mardia et al, 2007; Dowd et al, 2007; Xu
and Dowd, 2010). As more conditioning data are
used, the resulting network becomes more
realistic. The interactions of fractures within the
network (i.e., their intersections) define pathways
for the transportation of fluid, which is the key
factor in assessing the performance of geothermal
systems. A simple but robust and practical
framework is proposed in this paper to provide a
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useful tool for effective and efficient fracture
intersection analyses.

Fracture Network Modelling

Fracture locations are represented by points — the
centre of 2D shapes or the centroid of 3D shapes.
The assessment of dispersion patterns, the
density and other characteristics can be obtained
by analysing a real fracture data set or a
simulated fracture network. For example, the
traces of fractures on an outcrop can be used to
estimate the size distribution of fractures. Fracture
traces on outcrops or borehole imaging can be
used to help estimate fracture density.

Stochastic modelling of fractures is based on a
discrete fracture network concept in which
fractures are generated in a stochastic manner
according to a specified underlying process. In
combination with marked point processes
fractures are generated as follows:

a) Fracture locations are generated based on
either a Poisson (homogeneous) point

process or an inhomogeneous point process.

b) Fracture orientations are derived by means of

Fisher or Von-Misses distribution functions.

¢) Fracture shapes (lines in 2D) are defined and
fracture sizes (lengths in 2D) are drawn from
its distributions, either exponential or

lognormal.

d) Other features can be added as required such
as aperture, transmissivity and surface

roughness.

Two examples of stochastic fracture networks are
shown in Figure 1 for 2D and 3D cases.
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Figure 1: 2D and 3D Fracture Network Simulations via
Stochastic Marked Point Processes

Other alternatives to represent fracture shapes in
three-dimensional cases are ellipses (disks) or
rectangles. However, polygon representation is
the most general and realistic and this
representation is used in our intersection analysis.
We consider all fractures in this research as
arbitrary shapes with varying number of nodes
(vertices) and with the conditions that polygons
are planar and convex. Note that every concave
polygon can be reconstructed by an ensemble of
convex polygons. In addition, any curved polygon
(non-planar) can be divided into a set of planar
polygons. Thus the framework described here
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(Figure 2) covers any amount of complexity of
fracture shapes.
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Figure 2: Framework to generate realistic fracture network by
means of marked point process

Locations from Poisson point processes

An iterative process is used to generate a random
number from a Poisson distribution with an
intensity of A. A uniformly distributed sequence of
independent random variables is generated in the
range of [0,1], {Vi, i=1,...,n}. The process is
stopped when one of the following conditions is
satisfied (Ross 2007):
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Figure 3: Demonstration of iteration number (n) for
generating 1000 random number with Poisson distribution of
density 25

The process is very efficient as can be seen in
Figure 3 where the average number of iterations
required for each random number is the density
parameter (i.e., 25). Once n is determined within a
region, the points are uniformly distributed within
the region such as:
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Orientations from Fisher distribution

The orientation of a fracture plane can be
described by its normal. In rock engineering, for a



fracture set, the deviation angle 6 of the normal of
a fracture plane from the mean normal of the set
is commonly described by a Fisher distribution
with parameter x (Xu and Dowd, 2010)(Figure 4):
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Figure 4: Demonstration of the effect of the variation of « on
Fisher function in the application for orientation angles of
fractures

Any three-dimensional plane can also be
described by two angles, dip and dip-direction (or

azimuth), o and p:
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Any polygon can be bounded inside a rectangle
regardless of its complexity. Therefore, to
simulate the size of a fracture polygon, we first
generate a rectangular shape using two numbers
drawn from an exponential distribution. Then the
following procedure is applied to achieve the
desired polygonal shape.

Let I, and I, be two random numbers drawn from
an exponential distribution defining the rectangle.
Generate four points independently and randomly
on the four sides of the rectangle from a uniform
distribution. These four points are then connected
(clockwise or counter-clockwise) to produce the
final polygonal shape of the fracture. The fracture
generated in this way is always convex and planar
(Figure 5). Different values of I; and |, are used if
anisotropy is required.
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Figure 5: A robust algorithm to generate polygonal shapes
for fractures

2- Rotation matrices

Based on the above definition, the transformation
matrix to the local coordinate system can be
written as (Vince, 2005):
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Where ¢ is the rotation angle around the X axis, ®
is the rotation angle around the Y axis, and v is
the rotation angle around the Z axis. Note that in
practice only two rotation angles are needed so,
for example, y can be set to zero. The rotation
against the X axis in our defined coordinate
system is the dip angle B (which is in the range [O,
n/2]) while the rotation against the Y axis is the
dip direction o and is in the range [0, 2x].

Translating the resulting polygons

To create the final fracture model, fracture
polygons are first generated in the local
coordinate system. The axes are then rotated so
that the fractures are correctly orientated. The
transformed fractures are then translated to their
designated locations simulated by a point
process.

Intersection Analysis (in 3D)

For the polygonal representations of fractures and
the generated fracture network, there are nine
possible types of intersection between any two
fractures (see Figure 6).
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Figure 6: Possible intersection situations between two
polygonal fractures in realistic fracture networks
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The first four involve a vertex and the last one
(Face-Face) can be seen as a special case of
Edge-Edge intersection (No.7, Figure 6). The
remaining four cases are of particular interest for
assessing fracture intersections in a fracture
network.

We propose a computationally efficient framework
to analyse all intersections between fractures in a
fracture network. Efficiency in this type of analysis
is an important issue for large fracture networks,
which is generally the case for HDR EGS. The
complete framework is summarised in Figure 7.
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Figure 7: A full robust framework for fracture-fracture
intersection analysis

Two core processes in the intersection analysis
between fractures (as shown in Figure 7) are
SegXPIn (segment and plane intersection) and
SegXSeg (segment and segment intersection). A
sample pseudo-code for SegXPIn is presented on
Figure 8.

DEF SegXPln(seg, pln):
n pln unit normal
u = (dx,dy,dz)[seg]
b = (dx,dy,dz)[segs,plns]
IF iszero(n.u) THEN
IF iszero(n.b) THEN
RETURN segment is on plane
ELSE
RETURN no 1intersection
ENDIF

ENDIF
s = (n.-b)/(n.u)
IF ©<=s<=1 THEN
RETURN sege+s*u #intersections
ELSE
RETURN no intersection
ENDIF

ENDDEF
Figure 8: Pseudo-code for Segment-Plane intersection

The following statistics can be derived from the
proposed intersection analysis.

1 - Intersection Density

One definition of fracture density in a fracture
network is the density of the point process used.
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The density model can be parametric or non-
parametric and model parameters can be
estimated from sample data (Xu et al, 2003). We
propose a similar definition here for fracture
intersection  density  where  points (2D
applications) or lines (3D applications) of
intersections are used to calculate the density
value. The two are obviously related but the
relationship is non-linear and complex as fracture
model parameters all play a part in determining
the relationship. Fracture intersections define fluid
pathways and therefore are of great importance in
the connectivity analysis of a fracture network
model. We propose to use the density of
intersection as a direct measurement of the
effectiveness of the fracture network to provide
pathways for fluid flow.

A 2D application example is given in Figures 9
and 10. Figure 9 shows a sample fracture network
(left) and the locations of fracture centres (right:
green dots) and the locations of intersection
points (right: red dots). In Figure 10 it can be seen
that the resulting models are different. In some
areas, despite a high fracture density, the fracture
intersections are limited and therefore the
intersection density value is low. This part of the
fracture network is expected to be less conducive
for fluid flow.
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Figure 9: (left) Fracture Network HPPP; (right) Trace
locations (green) and intersection points (red)
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Figure 10: Density map of locations (left) and intersection
points (right)

2 — Lengths of Intersection Lines

Fifteen simulations were generated to investigate
the distribution of lengths of intersection lines in a
three-dimensional fracture network. A
homogenous marked Poisson point process was
used for each realization. The histogram of the
intersection lengths is shown in Figure 11 (fifteen



simulations on the same graph) with a smoothed
curve fitted. It can be seen in this case that an
exponential distribution satisfactorily models the
distribution of lengths of intersection lines.
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Figure 11: Distribution of the length of intersection lines in

three-dimensional fracture network (class=length categories)

It is clear that long intersection lines are rare. The
majority of intersection lines are of small length
which demonstrates the importance of shorter
intersection lines (not necessarily all from small
fractures) in determining the connectivity of the
fracture network.

3 - Effects of Fracture Length on Percolation
State

It is interesting to investigate the relationship
between percolation state and the fracture lengths
of a 2D application. Fracture length is an
important factor in the intersection between
fractures in a fracture network and it affects the
connectivity between any two points within the
region.
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0.050 0.950 0.900 20 0.250 0.700 0.450 41
0.079 0.914 0.836 15 0.279% 0.664 0.386 44
0.107 0.879 0.771 19 0.307 0.629 0.321 48
0.136 0.843 0.707 22 0.336 0.593 0.257 47
0.164 0.807 0.643 26 0.364 0.557 0.193 49
0.193 0.771 0.579 36 0.393 0.521 0.129 50
0.221 0.736 0.514 33 0.421 0.486 0.064 49

Figure 12: Relationship between percolation sate reached
and the variation in the range of length of fractures
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Figure 12 shows that larger range of variation of
fracture lengths produces few number of
percolation clusters for the cases investigated. In
other words the homogeneity of the fracture
length in the fracture network affects directly the
percolation of the network. It was shown that the
relationship is non-linear in this case. The
simulation consists of 14 different ranges of length
variations. For each variation, 50 realizations
were generated. Clearly for the related analysis of
connectivity evaluation of a fracture network (Xu
et al, 2006) the fracture length will be a very
important variable. Further study in this topic will
be conducted.

Case Study - Leeds Fracture Data Set

In this section some of analyses are applied to a
real fracture data set: the Leeds Fracture Data
Set (Dowd et al, 2009), which was established by
slicing a block of granite (Figure 13). Fractures in
the data set are represented by quadratic
polygons. 387 fractures are used for this study.

A

Figure 13: A 3D convex hull showing the block (left) and 387
fractures (right)

An intersection analysis of the fracture network of
this block was conducted (see Figure 14) and the
following results were obtained.

Figure 14: the result of intersection analysis which
demonstrates the largest cluster of connected fractures
(green)

The largest cluster (group of intersected fractures)
in Figure 14 is shown in green. It can easily be
seen that this cluster accounts for the percolations
state of this block.
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The histogram of the lengths of intersection lines
for this block (Figure 15) is compatible with the
results extracted from simulations (compare with
Figure 11): the intersection lines have an
exponential distribution.

i Histogram of the Length of 3D Intersections
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Figure 15: Distribution of the length of intersection lines in
three-dimensional fracture network: Leeds Fracture Data Set
(class=length categories)

The analysis of intersection density in 3D for this
block is shown in Figure 16 in which subplot A is a
3D contour of the density of fracture centroid
points while subplot B is the density of centres of
intersection lines. It can be clearly seen that even
for the same section the resulting density is
different for fracture centroid points and

intersection line centre points.

Figure 16: Density map of locations (A) and intersection
points (B) of 3D fracture network, Leeds Fracture Data Set

As a result the right hand side of the block (Figure
16) has considerably less conductivity despite
having a high density of fractures.

Conclusions

In this research we have developed robust
algorithms/frameworks  for the intersection
analysis of fracture networks of any degree of
complexity. Three novel analyses were conducted
in this study including a) intersection density as an
effective and realistic representation of the
conductivity within a fracture network, b)
distribution of the length of fracture intersection
lines in a fracture network which is shown to be
exponential, and c) the effect of length of fractures
on the percolation state of a 2D fracture network.
We have shown that the number of percolation
clusters has a non-linear relationship to the range
of variations in the fracture length. In other words,
fracture size and its variability are both important
variables in percolation analysis and connectivity
index evaluation, which in turn are important
measures for the quantification of fluid flow
characteristics of fracture networks.
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