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Abstract: 
Fracture networks and their connectivity are the 
principal factors affecting fluid flow in hot dry rock 
(HDR) geothermal reservoirs.  Largely because of 
the complexity of the problem models of HDR 
reservoirs tend to be over-simplified using either a 
very limited number of fractures or an equivalent 
porous media approach.  This paper describes a 
Markov Chain Monte Carlo (MCMC) conditioning 
technique for reservoir fracture modelling by 
taking into account the seismic events collected 
during the fracture stimulation process.  Using the 
technique, the fracture model “evolves” during the 
simulation process and eventually converges to a 
predefined optimal criterion.  The proposed 
method is tested using seismic data collected 
during the hydraulic fracture stimulation 
processes of the Habanero wells in Geodynamics’ 
Cooper Basin project. 
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Introduction 
The technical and commercial viability of HDR 
geothermal energy depends on the creation of 
artificial reservoirs, or Enhanced Geothermal 
Systems (EGS), in the rock mass by stimulating 
and creating fractures (generally by hydro-
fracturing) to enable geothermal flow.  The 
artificial reservoir forms the critical component in 
an EGS: the fracture network that connects the 
injection and production wells and acts as the 
heat exchange chamber for the system.  HDR 
productivity depends crucially on the 
connectivity/permeability of the reservoir fracture 
network and a realistic fracture model, such as 
that described in this paper, is the key to 
assessing reservoir performance and designing a 
suitable heat exchange chamber for the EGS.   
 
The characterisation of rock fracture networks is a 
very difficult problem not least because accurate 
field measurement of a single fracture is difficult 
and measurement of all fractures is impossible. 
Thus, in practice, the whole fracture system is not 
observable on any meaningful scale and the only 
realistic approach is via a stochastic model 
informed by sparse data and/or by analogues. In 
HDR applications, a realistic solution is even more 
difficult as the only reference data related to the 
fracture system are either from geophysical 
borehole logs and/or sparse seismic events 
kilometres beneath the surface and detected 
during the hydraulic stimulation process. For 

these reasons current models of fracture systems 
used for HDR flow modelling are oversimplified 
representations of reality.  They either use an 
equivalent porous media approach (e.g., Xing et 
al. 2009), single fracture representation (e.g., 
Zhang et al., 2009) or a combination of both. 
 
Stochastic fracture modelling is the general 
approach in which locations, size, orientation and 
other properties of fractures are treated as 
random variables with inferred probability 
distributions. In the simplest case, once the 
parameters of the distributions are inferred, the 
rock fracture model is constructed by Monte Carlo 
simulation.  First, the fracture locations are 
generated, usually by a Poisson distribution in 
which fracture intensity for a particular area is 
either assumed to be constant or is derived from 
geostatistical estimation or simulation.  Secondly, 
the orientation of each fracture is generated, most 
commonly from a Fisher distribution.  Finally, the 
size of each fracture is generated from a specified 
distribution, the most common being exponential, 
lognormal or gamma.  Other fracture properties, 
such as aperture width and fracture strength, can 
then be added into the network by additional 
Monte Carlo steps.  Options for fracture 
intersections and fracture termination can also be 
incorporated.  Simulated fracture models are 
usually validated by sampling the model (using 
scan lines or areas) and assessing the extent to 
which the sampled values conform to the 
statistical models specified (Kulatilake et al. 
2003).  Such models are certainly very useful in 
describing the statistical behaviours of the fracture 
system.  However, in order to make the generated 
models more realistic, some forms of data 
conditioning must be built into the fracture 
generation process.  Data conditioning in two-
dimensional fracture trace simulation is generally 
considered a simple matter but, probably because 
of the complexity involved, there are very few 
publications of algorithms and methods for data 
conditioning in three-dimensional stochastic 
fracture modelling.  Mardia et. al (2007) described 
an attempt to condition a fracture model by 
borehole intersection data using Markov Chain 
Monte Carlo (MCMC) simulation.  In this paper, 
however, the conditioning data are the seismic 
events observed during the fracture stimulation 
process of the HDR reservoir and they are not, 
therefore, confined to any known order (e.g., 
boreholes). 
 

During hydraulic stimulation, fracture 
slips/initiations/propagations produce micro-
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seismic events that can be monitored by a 
network of geophones and analysed to obtain the 
event locations. To date, these “point cloud” data 
have been used to estimate the volume of a 
reservoir that is connected by wells.  We believe 
these micro-seismic events not only identify the 
locations of fracture slip, initiation and/or 
propagation but also contain vital information 
about the structure of existing fractures and 
fracture networks. Successful extraction of this 
information will significantly improve the reliability 
of fracture models so that a more realistic fracture 
representation of the HDR reservoir can be 
obtained.  Moriya et al. (2002) use microseismic 
multiplet analysis to derive the fracture plane on 
the assumption that seismic events from the same 
fracture will produce similar microseismicities.  
This approach, however, only accounts for a small 
proportion of the total seismic events (17% in 
Moriya et al. 2002) and the fundamental 
assumption behind the approach is questionable. 

 
Assumption 

It is generally acknowledged that during the 
hydraulic fracture stimulation process, the 
effective normal compressive stress acting across 
two fracture planes of a fracture is reduced due to 
the hydraulic pressure and that will cause the two 
planes to slip against each other.  This is 
generally considered to be the key mechanism in 
creating a permeable HDR reservoir as shear-
slips will result in mis-alignment of fracture 
surface topographies which will cause a lateral 
dilation and thereby enhance fracture apertures 
and significantly increase the permeability of the 
fracture network.  The shear slips between 
fracture planes will produce small-scale seismicity 
whose seismic waves can be captured and 
analysed by a network of geophones to derive the 
location of the event (Baisch et al. 2006).   The 
effect of hydraulic pressure also makes it possible 
for existing fractures to propagate in the reservoir 
and new fractures to be initiated.  The final 
outcome of the process will be a permeable 
reservoir connected to the wells through a 
complex fracture network. 

Based on this conceptual description of the 
fracture stimulation process, it is reasonable to 
assume that seismic events only occur on fracture 
planes.  The criterion of a realistic fracture model 
is then directly related to the overall closeness of 
the seismic events to fracture planes fitted in the 
model.  In this context, fracture simulation 
essentially becomes a stochastic geometry 
reconstruction problem given a set of point 
clouds.  Reconstruction of a surface from random 
point clouds is computationally and algorithmically 
challenging and is an active research area in 
computer and mathematical sciences (Bercovier 
et al. 2002).  The success of current practice, 
however, depends critically on close sampling 

points on the surface, which is usually not an 
issue as the point clouds are generally obtained 
from laser scanning or some form of digitizing.  
For seismic point clouds in geothermal 
applications, however, samples are very sparse.  
For a given fracture, only a few points are 
available, which indicate either the propagation 
front of the fracture or a point on the fracture 
surface where shear slip occurs at the time the 
events are detected.  Current methodology is thus 
not directly applicable to fracture modelling.  

 
The most common approach in stochastic fracture 
modelling is to use a 3D plane to represent a 
fracture, which could be bounded (e.g., elliptical 
plane, polygonal plane) or unbounded (e.g., 
Poisson plane).  The fracture model (network) 
then becomes a series of connected fracture 
planes, Fi, i=1,2…n, where n is the total number 
of fractures.  A seismic event point, Pj, j=1,2..m (m 
is the total number of seismic event points) can 
then be associated with a fracture Fi with distance 

dj:i.   can then be used as a simple 

criterion to quantify the goodness of fit of the fitted 
fracture model. 
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MCMC model 
Planar polygons are used to represent fractures in 
this research.  For each fracture polygon Fi, the 
location is described by the coordinates of its 
centre point (xi, yi, zi), the orientations are 
described by three angles: dip direction i, dip 
angle i and rotation angle i and the sizes of the 
fractures are described by a major axis ai and a 
minor axis bi of an ellipse containing the polygon 
(Xu & Dowd, 2010).  In other words, we 
parameterize fracture planes with parameters (xi, 
yi, zi, i, i, i, ai, bi), i=1,2…n.  Fracture plane Fi 
can also be expressed in functional form as 

 where 

 is the unit vector normal to the 

fracture plane and can be calculated from (i, i, 
i).  Given a point Pj (xj, yj, zj), not necessarily 
lying on the plane, the signed orthogonal distance 
to fracture Fi is defined by: 
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where  is the projection point of Pj on 

fracture plane Fi.  A matching function 
(j){1,2,…,n} is used to associate each point Pj 
with one and only one fracture polygon.  We shall 
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impose a simple criterion of minimum distance for 
this association and therefore by writing dj:i we 
mean point Pj is associated with fracture polygon 
Fi as its distance calculated by Equation (1) is the 
minimum when compared with distances to any 
other fracture plane. 

d={dj:i}j is then the complete set of projection 
distances.  Since seismic event points that lie on 
the same fracture will not be exactly co-planar, we 
must allow for statistical variation and treat a 
fracture as a distorted version of an idealized 
plane.  A simple Gaussian noise model can then 
be adopted: 

),0(~ 2
: Nd ij  

(2) 

to represent the distortion in the data from the 
idealized plane.  In other words, the orthogonal 
distances are identically and independently 
normally distributed with mean zero and variance 
2.  Therefore, the likelihood function for the set of 
seismic event points P={Pj} can be defined as: 
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given a set of fractures F={Fi} and the matching 
function (.).  The product of this likelihood with 
priors of F gives the posterior distribution for F 
and the attention now is to estimate the posterior 
distributions of F and hence the parameters of the 
fracture set.  A Markov chain can be used to 
generate samples from the posterior distribution 
which is commonly constructed by the Metropolis-
Hastings algorithm using the Monte Carlo 
acceptance/rejection technique imposed by the 
Hastings’ ratio: 
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where (.) is the posterior (target) distribution and 
q(.) is a transition kernel which is usually chosen 
so that it is easy to sample from. 

 
A more detailed description of this model can be 
found in Mardia et al (2007) where a similar model 
was developed to generate fracture models 
conditional on intersection points between 
fractures and boreholes drilled on a regular grid. 
 

The Habanero Point Cloud 
The point cloud used in this study is the Q-Con 
processed dataset of locations of seismic events 
recorded during the hydraulic fracture stimulation 
of Habanero 1 between November 6 and 
December 22, 2003 (Weidler, 2005).  A total of 
23,232 seismic events are recorded in this 
dataset which covers an area roughly of 2.5 km2.  

Figure 1 shows the absolute hypocentre locations 
of these events. 
  

Figure 1 Absolute hypocenter locations  
  of the seismic events 

  
Clearly an ideal sub-horizontal reservoir has been 
formed by the stimulation process which is gently 
dipping in the South-west direction.  Early 
analysis has revealed that the major part of the 
reservoir is confined within a sub-horizontal layer 
of approximately 30m (Baisch et al. 2006).  Figure 
2 shows ratios of increments in the volume of the 
reservoir, the geographical extents in the 
horizontal, East-west and North-south vertical 
planes covered by the seismic events during the 
stimulation period.  Note that the increments are 
plotted on a relative scale where the ordinate 
represents the ratios against the volume or 
geographical extents of the reservoir covered by 
seismic events on November 6, 2003. 
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Figure 2 Increments in volume and geographical  
  extents covered by seismic events 
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Habanero Fracture Model 
A total of 20052 fractures were initially generated 
based on a non-homogeneous point process with 
a non-parametric density model estimated by the 
point cloud shown in Figure 1.  Fracture locations 
(xi, yi, zi), i=1,…,20052, are generated.  The 
following parameters are used for initial fracture 
generation: 
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 Fracture orientation: Fisher distribution with 
=1.  Orientation parameters (i, i, i) are 
then calculated. 

 Fracture size: lognormal distribution with 
mean = 80m and variance = 12,000 m2.  

 
MCMC method described was then applied to 
update the fracture network.  The following 
transition kernels are used in the MCMC process: 

 Fracture orientation (i, i, i): normal 
proposal with standard deviation of 0.1 (in 
radian). 

 Fracture location (xi, yi, zi): normal proposal 
with standard deviation of 1.0. 

 
Fracture size is not optimised in the current trial.  
Fractures without any association with any point 
after 100,000 iterations were removed from the 
system.  After 2M iterations, the fracture model 
obtained is shown in Figure 3. 
 

Figure 3 Habanero fracture model  
  after 2M MCMC steps 

This fracture model includes 10,995 fractures.  
Figure 4 shows the distribution of dj:i before and 
after the application of the MCMC updating 
process.  Comparison of statistics is given in 
Table 1.   Clearly the reliability of the model has 
been significantly improved. 
 
 

Table 1 Comparison of statistics of dj:i 
before and after MCMC optimisation 

 Initial 
model 

Optimised 
model 

Number of fractures 20052 10995 
Minimum dj:i -116 -0.35 
Maximum dj:i 303 0.39 
Mean value of dj:i 0 0 
Variance of dj:i 12.5 0.0028 

 2
:ijd  

291437 66 

99% of dj:i within range [-11, 34] [-0.17, 0.17]
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(a) initial model 
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(b) optimised model 

 1000

 
Figure 4 Histogram of dj:i for intial and optimised fracture 

models 
 
Orientations of fractures have also changed 
significantly.  There is no clear indication of 
orientation preference in the original fracture 
model (see the lower hemispherical projections of 
poles of fracture planes in Figure 5a).  The 
fracture pole plot after optimisation (Figure 5b) 
clearly demonstrates a great proportion of sub-
horizontal fractures.  This is encouraging as it 
agrees well with the propagation pattern of the 
seismic event point cloud observed during 
stimulation (Baisch et al. 2006).  
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(a) initial model 

 

(b) optimised model 
 

Figure 5 Hemispherical projections of poles of fracture 
planes 

 
Conclusions 
This is a preliminary trial to demonstrate the 
application of MCMC in fitting a fracture model 
using a point cloud dataset.  Clearly the method is 
effective, however there are still many remaining 
challenging issues.  Fracture join/split (Mardia et 
al. 2007) is not yet considered in this work.  The 
effect of the initial point process model has not 
been assessed and this will affect the total 
number of fractures retained in the final fracture 
network.  The illustrated fracture model is by no 
means the ultimate optimal model for the 
Habanero fractured reservoir and further 
investigation is needed to achieve such a model. 
 
The next stage of the process is to assess the 
connectivity of the fracture network between wells 
(e.g., between Habanero 1 and 3).  Hydraulic 
apertures of fractures can be estimated from the 
degree of seismicity recorded in the seismic 

signals (Baisch et al. 2009).  The hydraulic 
conductance between wells can then be 
estimated. 
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