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Abstract:

Fracture networks and their connectivity are the
principal factors affecting fluid flow in hot dry rock
(HDR) geothermal reservoirs. Largely because of
the complexity of the problem models of HDR
reservoirs tend to be over-simplified using either a
very limited number of fractures or an equivalent
porous media approach. This paper describes a
Markov Chain Monte Carlo (MCMC) conditioning
technique for reservoir fracture modelling by
taking into account the seismic events collected
during the fracture stimulation process. Using the
technique, the fracture model “evolves” during the
simulation process and eventually converges to a
predefined optimal criterion. The proposed
method is tested using seismic data collected
during the hydraulic fracture stimulation
processes of the Habanero wells in Geodynamics’
Cooper Basin project.

Keywords: Fracture network, seismic events,
Markov chain Monte Carlo.

Introduction

The technical and commercial viability of HDR
geothermal energy depends on the creation of
artificial reservoirs, or Enhanced Geothermal
Systems (EGS), in the rock mass by stimulating
and creating fractures (generally by hydro-
fracturing) to enable geothermal flow. The
artificial reservoir forms the critical component in
an EGS: the fracture network that connects the
injection and production wells and acts as the
heat exchange chamber for the system. HDR
productivity ~ depends crucially  on the
connectivity/permeability of the reservoir fracture
network and a realistic fracture model, such as
that described in this paper, is the key to
assessing reservoir performance and designing a
suitable heat exchange chamber for the EGS.

The characterisation of rock fracture networks is a
very difficult problem not least because accurate
field measurement of a single fracture is difficult
and measurement of all fractures is impossible.
Thus, in practice, the whole fracture system is not
observable on any meaningful scale and the only
realistic approach is via a stochastic model
informed by sparse data and/or by analogues. In
HDR applications, a realistic solution is even more
difficult as the only reference data related to the
fracture system are either from geophysical
borehole logs and/or sparse seismic events
kilometres beneath the surface and detected
during the hydraulic stimulation process. For
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these reasons current models of fracture systems
used for HDR flow modelling are oversimplified
representations of reality. They either use an
equivalent porous media approach (e.g., Xing et
al. 2009), single fracture representation (e.g.,
Zhang et al., 2009) or a combination of both.

Stochastic fracture modelling is the general
approach in which locations, size, orientation and
other properties of fractures are treated as
random variables with inferred probability
distributions. In the simplest case, once the
parameters of the distributions are inferred, the
rock fracture model is constructed by Monte Carlo
simulation.  First, the fracture locations are
generated, usually by a Poisson distribution in
which fracture intensity for a particular area is
either assumed to be constant or is derived from
geostatistical estimation or simulation. Secondly,
the orientation of each fracture is generated, most
commonly from a Fisher distribution. Finally, the
size of each fracture is generated from a specified
distribution, the most common being exponential,
lognormal or gamma. Other fracture properties,
such as aperture width and fracture strength, can
then be added into the network by additional
Monte Carlo steps. Options for fracture
intersections and fracture termination can also be
incorporated.  Simulated fracture models are
usually validated by sampling the model (using
scan lines or areas) and assessing the extent to
which the sampled values conform to the
statistical models specified (Kulatilake et al.
2003). Such models are certainly very useful in
describing the statistical behaviours of the fracture
system. However, in order to make the generated
models more realistic, some forms of data
conditioning must be built into the fracture
generation process. Data conditioning in two-
dimensional fracture trace simulation is generally
considered a simple matter but, probably because
of the complexity involved, there are very few
publications of algorithms and methods for data
conditioning in three-dimensional stochastic
fracture modelling. Mardia et. al (2007) described
an attempt to condition a fracture model by
borehole intersection data using Markov Chain
Monte Carlo (MCMC) simulation. In this paper,
however, the conditioning data are the seismic
events observed during the fracture stimulation
process of the HDR reservoir and they are not,
therefore, confined to any known order (e.g.,
boreholes).

fracture
micro-

During hydraulic stimulation,
slips/initiations/propagations  produce



seismic events that can be monitored by a
network of geophones and analysed to obtain the
event locations. To date, these “point cloud” data
have been used to estimate the volume of a
reservoir that is connected by wells. We believe
these micro-seismic events not only identify the
locations of fracture slip, initiation and/or
propagation but also contain vital information
about the structure of existing fractures and
fracture networks. Successful extraction of this
information will significantly improve the reliability
of fracture models so that a more realistic fracture
representation of the HDR reservoir can be
obtained. Moriya et al. (2002) use microseismic
multiplet analysis to derive the fracture plane on
the assumption that seismic events from the same
fracture will produce similar microseismicities.
This approach, however, only accounts for a small
proportion of the total seismic events (17% in
Moriya et al. 2002) and the fundamental
assumption behind the approach is questionable.

Assumption

It is generally acknowledged that during the
hydraulic fracture stimulation process, the
effective normal compressive stress acting across
two fracture planes of a fracture is reduced due to
the hydraulic pressure and that will cause the two
planes to slip against each other. This is
generally considered to be the key mechanism in
creating a permeable HDR reservoir as shear-
slips will result in mis-alignment of fracture
surface topographies which will cause a lateral
dilation and thereby enhance fracture apertures
and significantly increase the permeability of the
fracture network. The shear slips between
fracture planes will produce small-scale seismicity
whose seismic waves can be captured and
analysed by a network of geophones to derive the
location of the event (Baisch et al. 2006). The
effect of hydraulic pressure also makes it possible
for existing fractures to propagate in the reservoir
and new fractures to be initiated. The final
outcome of the process will be a permeable
reservoir connected to the wells through a
complex fracture network.

Based on this conceptual description of the
fracture stimulation process, it is reasonable to
assume that seismic events only occur on fracture
planes. The criterion of a realistic fracture model
is then directly related to the overall closeness of
the seismic events to fracture planes fitted in the
model. In this context, fracture simulation
essentially becomes a stochastic geometry
reconstruction problem given a set of point
clouds. Reconstruction of a surface from random
point clouds is computationally and algorithmically
challenging and is an active research area in
computer and mathematical sciences (Bercovier
et al. 2002). The success of current practice,
however, depends critically on close sampling
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points on the surface, which is usually not an
issue as the point clouds are generally obtained
from laser scanning or some form of digitizing.
For seismic point clouds in geothermal
applications, however, samples are very sparse.
For a given fracture, only a few points are
available, which indicate either the propagation
front of the fracture or a point on the fracture
surface where shear slip occurs at the time the
events are detected. Current methodology is thus
not directly applicable to fracture modelling.

The most common approach in stochastic fracture
modelling is to use a 3D plane to represent a
fracture, which could be bounded (e.g., elliptical
plane, polygonal plane) or unbounded (e.g.,
Poisson plane). The fracture model (network)
then becomes a series of connected fracture
planes, Fi, i=1,2...n, where n is the total number
of fractures. A seismic event point, P;, j=1,2.m (m
is the total number of seismic event points) can
then be associated with a fracture F; with distance

m
d;. Zdii can then be used as a simple
j=1

criterion to quantify the goodness of fit of the fitted
fracture model.

MCMC model

Planar polygons are used to represent fractures in
this research. For each fracture polygon F;, the
location is described by the coordinates of its
centre point (x;, Vi, 2z), the orientations are
described by three angles: dip direction «;, dip
angle £ and rotation angle y and the sizes of the
fractures are described by a major axis a; and a
minor axis b; of an ellipse containing the polygon
(Xu & Dowd, 2010). In other words, we
parameterize fracture planes with parameters (x;,
Vi, Zi, a, B, 7%, &, by), i=1,2...n. Fracture plane F;
can also be expressed in functional form as

A%+ 20y + 197 = o

(,153) , /I(yi),/l(zi)) is the unit vector normal to the

where

fracture plane and can be calculated from (¢, £,
#). Given a point P; (X, yj, z), not necessarily
lying on the plane, the signed orthogonal distance
to fracture F; is defined by:

1)

where Pj(Fi) is the projection point of P; on

fracture plane F, A matching function
&i)e{1.2,...,n} is used to associate each point P;
with one and only one fracture polygon. We shall

A%, + A0y, + 407, — 0 if PP cF,

oo otherwise



impose a simple criterion of minimum distance for
this association and therefore by writing d;; we
mean point P; is associated with fracture polygon
F; as its distance calculated by Equation (1) is the
minimum when compared with distances to any
other fracture plane.

d={d;;}Vvj is then the complete set of projection
distances. Since seismic event points that lie on
the same fracture will not be exactly co-planar, we
must allow for statistical variation and treat a
fracture as a distorted version of an idealized
plane. A simple Gaussian noise model can then
be adopted:

2

di; ~N(0,07) @

to represent the distortion in the data from the
idealized plane. In other words, the orthogonal
distances are identically and independently
normally distributed with mean zero and variance
o°. Therefore, the likelihood function for the set of
seismic event points P={P;} can be defined as:

(djl)

:(x/_a)mgle !

given a set of fractures F={F} and the matching
function &.). The product of this likelihood with
priors of F gives the posterior distribution for F
and the attention now is to estimate the posterior
distributions of F and hence the parameters of the
fracture set. A Markov chain can be used to
generate samples from the posterior distribution
which is commonly constructed by the Metropolis-
Hastings algorithm using the Monte Carlo
acceptance/rejection technique imposed by the
Hastings’ ratio:

L(P; F,¢) @)

S(P)a(F®“ | P)
S(F)a(P|FY)
where 3(.) is the posterior (target) distribution and

g(.) is a transition kernel which is usually chosen
so that it is easy to sample from.

£(F®,P)=min{1, @)

A more detailed description of this model can be
found in Mardia et al (2007) where a similar model
was developed to generate fracture models
conditional on intersection points between
fractures and boreholes drilled on a regular grid.

The Habanero Point Cloud

The point cloud used in this study is the Q-Con
processed dataset of locations of seismic events
recorded during the hydraulic fracture stimulation
of Habanero 1 between November 6 and
December 22, 2003 (Weidler, 2005). A total of
23,232 seismic events are recorded in this
dataset which covers an area roughly of 2.5 km®.
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Figure 1 shows the absolute hypocentre locations
of these events.

Figure 1 Absolute hypocenter locations
of the seismic events

Clearly an ideal sub-horizontal reservoir has been
formed by the stimulation process which is gently
dipping in the South-west direction. Early
analysis has revealed that the major part of the
reservoir is confined within a sub-horizontal layer
of approximately 30m (Baisch et al. 2006). Figure
2 shows ratios of increments in the volume of the
reservoir, the geographical extents in the
horizontal, East-west and North-south vertical
planes covered by the seismic events during the
stimulation period. Note that the increments are
plotted on a relative scale where the ordinate
represents the ratios against the volume or
geographical extents of the reservoir covered by
seismic events on November 6, 2003.

250
Horizontal Volume
200 -
150 - NS
100 EW
. ) 4
0 / Days after Nov. 6 2003

0 10 20 30 40 50
Figure 2 Increments in volume and geographical
extents covered by seismic events

Habanero Fracture Model

A total of 20052 fractures were initially generated
based on a non-homogeneous point process with
a non-parametric density model estimated by the
point cloud shown in Figure 1. Fracture locations
X, Vi Z), i=1,...,20052, are generated. The
following parameters are used for initial fracture
generation:
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e Fracture orientation: Fisher distribution with
k=1. Orientation parameters (a;, £, ») are
then calculated.

e Fracture size: lognormal distribution with
mean = 80m and variance = 12,000 m?.

MCMC method described was then applied to
update the fracture network. The following
transition kernels are used in the MCMC process:

e Fracture orientation (o, /S, »): normal
proposal with standard deviation of 0.1 (in
radian).

e Fracture location (x;, i, z): normal proposal
with standard deviation of 1.0.

Fracture size is not optimised in the current trial.
Fractures without any association with any point
after 100,000 iterations were removed from the
system. After 2M iterations, the fracture model
obtained is shown in Figure 3.

_1182.34/
382071\

Figure 3 Habanero fracture model
after 2M MCMC steps

This fracture model includes 10,995 fractures.
Figure 4 shows the distribution of d;; before and
after the application of the MCMC updating
process. Comparison of statistics is given in
Table 1. Clearly the reliability of the model has
been significantly improved.

Table 1 Comparison of statistics of dj:
before and after MCMC optimisation

Initial Optimised
model model
Number of fractures 20052 10995
Minimum d; -116 -0.35
Maximum dj; 303 0.39
Mean value of d; 0 0
Variance of d;; 12.5 0.0028
2 291437 |66
Z d ji
99% of d;; within range  |[-11, 34] [[-0.17, 0.17]
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Figure 4 Histogram of d;i for intial and optimised fracture
models

Orientations of fractures have also changed
significantly.  There is no clear indication of
orientation preference in the original fracture
model (see the lower hemispherical projections of
poles of fracture planes in Figure 5a). The
fracture pole plot after optimisation (Figure 5b)
clearly demonstrates a great proportion of sub-
horizontal fractures. This is encouraging as it
agrees well with the propagation pattern of the
seismic event point cloud observed during
stimulation (Baisch et al. 2006).
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(b) optimised model

Figure 5 Hemispherical projections of poles of fracture
planes

Conclusions

This is a preliminary trial to demonstrate the
application of MCMC in fitting a fracture model
using a point cloud dataset. Clearly the method is
effective, however there are still many remaining
challenging issues. Fracture join/split (Mardia et
al. 2007) is not yet considered in this work. The
effect of the initial point process model has not
been assessed and this will affect the total
number of fractures retained in the final fracture
network. The illustrated fracture model is by no
means the ultimate optimal model for the
Habanero fractured reservoir and further
investigation is needed to achieve such a model.

The next stage of the process is to assess the
connectivity of the fracture network between wells
(e.g., between Habanero 1 and 3). Hydraulic
apertures of fractures can be estimated from the
degree of seismicity recorded in the seismic
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signals (Baisch et al. 2009).
conductance between wells can
estimated.

The hydraulic
then be
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