

Progress in CO₂-based EGS

Aleks D. Atrens^{1*}, Hal Gurgenci¹, Victor Rudolph¹

¹The Queensland Geothermal Energy centre of Excellence.

Mansergh Shaw Building (#45),

The School of Mechanical & Mining Engineering, The University of Queensland, QLD 4072

The concept of Engineering Geothermal Systems (EGS) using CO₂ as a heat extraction fluid has been expanded since it was first proposed. A better theoretical understanding is available for the behaviour in the reservoir, process design, corrosion & condensation issues, and rock geochemistry, although knowledge of some of these systems is incomplete. Sufficient understanding is now available to provide a power plant design given site and reservoir parameters, and viability can be estimated. A number of challenges remain, however, and these must be addressed for the concept to be realisable. Those challenges are contextualised here to provide focus for the most urgent issues to be addressed.

Keywords: Carbon dioxide, CO₂, EGS, enhanced geothermal systems, thermosiphon, hot dry rock, hot wet rock

Introduction

CO₂-based EGS have been discussed previously (Brown 2000; Pruess 2006; Pruess and Azaroual 2006; Gurgenci et al. 2008; Pruess 2008; Atrens et al. 2009a; Atrens et al. 2009b; Atrens et al. 2010). A full discussion of the technical and economic issues related to CO₂-based EGS have been reported (Gurgenci 2009). Many of those issues are broadly applicable to all EGS; those will not be discussed here. There are a number of issues that are unique to CO₂-based EGS. These have primarily been lack of understanding of the process design, performance in the reservoir, CO₂-H₂O interactions, CO₂-H₂O-rock interactions, thermodynamic performance, etc. Some of these issues have been addressed in varying levels of detail.

Many technical challenges for the concept to overcome remain. These can be grouped under two broad categories: general challenges, which are overarching and apply to any use of CO₂ in EGS, and reservoir challenges, which are specific to the reservoir type.

General Challenges

There are a number of challenges that must be addressed to make CO₂-based EGS viable. Each of these is effectively show-stopping if the associated issues are unresolvable

The overarching challenges that must be addressed are:

- CO₂ Sourcing

- CO₂ turbomachinery
- Solubility and reactivity of rock compounds and elements in pure or near-pure CO₂
- Legal/regulatory issues with subsurface CO₂.

Reservoir Challenges

Beyond the overarching issues, there are a number of issues that depend on the type of reservoir being examined. The individual challenges for the different reservoir types are discussed below.

Un-dryable Reservoirs

This term is used to group reservoirs that are well hydraulically connected, and initially saturated or oversaturated with water. This grouping would include hot sedimentary aquifer systems (HSA), and EGS projects such as in the Cooper Basin where high pressure implies long-distance connectivity. These type of systems have an associated challenge of extreme difficulty in creating a dry CO₂-rich operating zone within the reservoir, either due to the large energy input necessary to displace water, or the difficulty in containing CO₂ within the desired region.

Dryable Reservoirs

Dryable reservoirs signify a reservoir grouping of those which are under-saturated with water at the outset, or have a limited initial volume of water that is easily displaceable. Examples of this category are the Fenton Hill reservoir, which was acknowledged as being unconnected and relatively lacking in water content, or the Hijiri reservoir system, which experienced significant losses of injected fluid into the reservoir formation (implying an ease in displacing existing reservoir fluids). The challenges associated with systems of this type are the time period required to dry the reservoir, and the profile over time of fluid loss into the reservoir formation.

Wet Reservoir

This category is used for systems that are have a liquid water phase coexisting with CO₂-rich fluid near the reservoir operating zone. CO₂-rich fluid may be produced in this case, allowing a single-loop, but there are important issues of both water and carbon dioxide being present in the reservoir. The challenges associated with this type of

system are related to the water-CO₂ relationships: time required until sufficiently pure CO₂ can be recovered, CO₂-H₂O dynamics in the reservoir (horizontally and vertically), rock-water-CO₂ interactions including mineral transformation / dissolution / deposition (permeability change) and geo-sequestration, and the thermodynamic effects of high water content in the CO₂-rich phase.

CO₂-Rich Reservoir

There is also the possibility of operating a CO₂-based EGS system in a reservoir that is already CO₂-rich. This could be a naturally occurring reservoir, or artificial as the result of artificial CO₂ injection for reasons other than CO₂-based geothermal power generation. The challenge associated with this reservoir type is identifying a reservoir that contains or may in the future contain CO₂, and is also suitable for geothermal power generation.

Discussion

There is a continuum between the three former reservoir types, and some of the challenges relating to CO₂-H₂O interactions overlap. Separating reservoirs into the categories discussed above clarifies the range of these interactions that are vital to consider for different situations. The implication of this is that there is an opportunity to target the proposed CO₂-based EGS technology towards situations where the challenges are more readily overcome. This may be useful where there are particular issues related to certain systems that may not be feasibly answered in the foreseeable future, or that may be most suitably be resolved by field trials in a reservoir of a different type.

It is recommended that current goals towards implementation of a CO₂-based EGS power system focus on reservoirs that can feasibly be dried, as these have a smaller number of associated challenges. Reservoirs of this type are also less likely to be targeted for use for water-based EGS, so there is less risk of competitively disadvantaging one technology over another.

References

Atrens, A. D., H. Gurgenci, et al., 2009a., "CO₂ thermosiphon for competitive power generation." *Energy & Fuels* **23**(1): 553-557.

Atrens, A. D., H. Gurgenci, et al., 2009b., Exergy analysis of a CO₂ thermosiphon. Thirty-fourth workshop on geothermal reservoir engineering. Stanford University, Stanford, California.

Atrens, A. D., H. Gurgenci, et al., 2010., "Electricity generation using a carbon-dioxide thermosiphon." *Geothermics*.

Brown, D. W., 2000., A hot dry rock geothermal energy concept utilizing supercritical CO₂ instead of water. Twenty-Fifth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California.

Gurgenci, H., 2009., Electricity generation using a supercritical CO₂ geothermal siphon. Thirty-fourth workshop on geothermal reservoir engineering. Stanford University, Stanford, California.

Gurgenci, H., V. Rudolph, et al., 2008., Challenges for geothermal energy utilisation. Thirty-Third Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California.

Pruess, K. 2006. "Enhanced geothermal systems (EGS) using CO₂ as working fluid—A novel approach for generating renewable energy with simultaneous sequestration of carbon." *Geothermics* **35**: 351–367.

Pruess, K., 2008., "On production behaviour of enhanced geothermal systems with CO₂ as working fluid." *Energy Conversion and Management* **49**: 1446-1454.

Pruess, K. and M. Azaroual, 2006., On the feasibility of using supercritical CO₂ as heat transmission fluid in an engineered hot dry rock geothermal system. Thirty-first workshop on geothermal reservoir engineering. Stanford University, Stanford, California.