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This paper describes the application of simulated
annealing for fracture modelling in crystalline rock.
The technique is capable of incorporating the
spatial correlations of fracture properties within a
fracture set or across different fracture sets so
that more realistic fracture systems can be
simulated.
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Introduction

Realistic fracture models are crucial for the design
and performance assessment of geothermal
reservoirs, especially in hot dry rock (HDR)
applications. The model is the fundamental input
required for the modelling of fluid flow through the
3D fracture network comprising initial fractures
and new fractures created by hydraulic
stimulation. The characterisation of rock fracture
networks is an extremely difficult problem not
least because accurate field measurement of a
single discontinuity is difficult and measurement of
all discontinuities is impossible. For these
reasons, in practical applications, there is no
observable reality of the 3D network on any
meaningful scale and the only realistic approach
is via a stochastic model informed by sparse data
and/or by analogues.

The first step in stochastic fracture modelling is
data collection and statistical analysis, from which
model parameters are derived. Data normally
come from surveys of analogues, such as rock
outcrops, or from direct or indirect observations of
the rock mass such as drill cores, borehole
imaging, geophysical surveys or seismic
monitoring during fracture stimulation. In general,
the outcomes of this step include the identification
of fracture sets, the distribution characteristics of
fracture locations, and statistical distributions of
fracture properties, such as orientation, size and
aperture. On the basis of these parameters it is
then possible to generate a 3D fracture network
for the reservoir, which is a possible “reality” in the
sense that all statistical characteristics of the
network are reproduced.

The two most commonly used mathematical
methods for stochastic fracture simulation are
Poisson planes (Dershowitz and Einstein, 1988)
and random object models (Stoyan et al., 1995,
Molchanov, 1997), with the latter more popular
because of its flexibility for adaption to a wide
range of applications. Current practice in random
object models is to generate fractures via a
Boolean-type approach (Stoyan et al. 1995,

Molchanov 1997, Chilés and Delfiner 1999). The
fractures are divided into sets and parameters for
location, size and orientation are modelled
separately for each set. The final fracture model
is the combination of each set of fractures
generated independently. Spatial correlation is
considered only for modelling the fracture
intensity which defines the number of fractures in
a particular area (2D) or volume (3D). Other
spatial correlations, either auto-correlation for an
individual variable or cross-correlations between
pairs of variables, within a fracture set or between
different fracture sets, are generally ignored.
These correlations, however, must be included to
generate realistic fracture models.

Boolean object model

It is common practice to classify observed
fractures (traces) into sets according to their
orientations and to study each set independently.
The separation of fractures into different sets is
based on the belief that fractures formed by
tectonic activity are likely to be oriented in
approximately the same direction and to display
similar properties (e.g., size, aperture). It is
therefore reasonable to study the sets individually.

The generation of a Boolean object model is
relatively straight-forward (Xu and Dowd, 2009).
For a given fracture set, the fracture locations are
generated first, usually by a Poisson distribution in
which fracture intensity for a particular area (2D)
or volume (3D) is either assumed to be constant
or is derived from geostatistical estimation or
simulation. Secondly, the orientation of each
fracture is generated, most commonly from a
Fisher distribution. Finally, the size of each
fracture is generated from a specified distribution,
the most common being exponential, lognormal or
gamma. Other fracture properties, such as
aperture and joint strength, can then be added
into the network by additional Monte Carlo steps.
Options  for  fracture intersections and
termination/truncation can also be incorporated.
Additional fracture sets can be generated in a
similar fashion (independent simulation) to
produce the final fracture model.

A common approach to the statistical analysis of
fracture models is to use marked point processes.
Fracture locations are represented by points
(centre point or a random point on the fracture) in
space and all fracture properties, such as
orientation, size and aperture, are represented by
marks associated with the points. In this context
a Boolean object model can be described as a
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realisation of a point process with independent
markings. A two-dimensional example is given in
Figure 1, which shows fracture traces on a Yucca
Mountain outcrop, as mapped by Barton and
Larson (1985). Similarly, three-dimensional
representations of fractures by marked points can
also be constructed provided the shapes of the
fractures are assumed.
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(b) Point representation

Figure 1 Two-dimensional fracture pattern and the
corresponding point representation, Barton and Larson
(1985)

This simplistic fracture model assumes no spatial
correlation among the fracture sets, and no spatial
correlation between fracture properties and
fracture locations and among fracture properties
themselves. The only spatial correlation model
included in the model is the fracture point density
defined as the number of fracture representation
points per unit area (2D) or per unit volume (3D).
This correlation is imposed either by using a
geostatistical model to simulate the fracture point
density or implicitly by various types of point
patterns  (homogeneous, non-homogeneous,
cluster or Cox point process).

Spatial correlations in fracture
modelling

In general, fractures sets tend to be correlated
(Chilés and Marsily, 1993). This is supported by
the observation that different fracture sets may be
formed by different tectonic events active at
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different times, which raises the possibility that the
formation of newer fractures is likely to be
influenced by existing fracture networks. The
extent and significance of the correlations can
vary but can cover various aspects of the fracture
properties. For example, five fractures sets are
identified for the fracture pattern in Figure 1a; the
auto- and cross- K-functions of the fracture
locations shown in Figure 2a and b (Xu and
Dowd, 2008) show that the fracture locations of
different fracture sets have some association and
are not independent. Either a hierarchical model
(Lee et al. 1990) or plurigaussian simulation
(Dowd et al. 2007, Xu & Dowd 2008) can be used
to incorporate these correlations into the fracture
model. A cluster point process is another type of
model that can takes the correlation of fracture
locations into account during fracture model
construction.

(K(f)-n-t)x 100

3

MC average +95% envelope
RO

Figure 2 Auto- and cross- K-functions for the point dataset
Figure 1b

Fracture properties can also be correlated and the
correlation can be among fractures in the same
set or across different sets. These correlations
are ignored in the Boolean object model, i.e.,
marks generated in the model are spatially
independent. Practical observation and statistics
(Priest 1993, Lee and Farmer 1993, Baghbanan
and Jing 2007, Chiles and de Marsily, 1993)
suggest high correlation between fracture size
and aperture. Sizes and locations of fractures are
always spatially correlated, even if the fractures
belong to the same fracture set. The general
practice of classifying fractures in sets and their
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independent treatment is an indication that
fracture properties are highly correlated with
orientation. For realistic fracture modelling these
correlations cannot be ignored.

Demonstration of the incorporation of
correlations in fracture model

Figure 3a shows a simulated 3D fracture system
generated in a volume of interest of size
100x100x100. In reality, such an image is difficult
to obtain and we are restricted to the use of
exposed 2D images such as rock outcrops or
quarry faces. An example of this type of image is
shown in Figure 3b, which was obtained by
cutting Figure 3a by a north-south vertical cross-
sectional plane (shown), thus simulating an
exposed quarry face. The fracture trace lines on
the image can now be analysed to construct a
possible model to describe the pattern. Using the
mid-points of the trace lines, the corresponding
point dataset for the fractures is shown in Figure
3c.

We consider here two marks for each point, the
fracture trace length, & and orientation . Angle
a is measured clockwise from the vertical
direction and it is, therefore, necessary to make
the transform to g = |- m2| (0< B < n/2) for the
convenience of  analysis. After  this
transformation, small g values correspond to near
horizontal lines (parallel to Northing direction in
Figure 3a) and large g values suggest the lines
are nearly vertical (parallel to vertical direction in
the Figure 3a).

The correlation coefficient between & and g is
estimated as 0.48 and the distributions of £ and g
are estimated using a kernel density estimate
which show lognormal and uniform types
respectively. We fit an approximate lognormal
distribution with a mean of 0.8 and a variance of
2.0 in logarithmic scale for &  The positive
correlation between g and & indicates that the two
marks are highly correlated, i.e., vertical fractures
tend to be longer than horizontal ones. |In
summary, for the example,

1. ¢ follows a lognormal distribution (with
estimated mean of 0.8 and variance of 2.0
in logarithmic scale).

2. aand gfollow a uniform distribution on
the interval [0, =].

3. & and g are positively correlated with
correlation coefficient 0.48, i.e., in
physical terms vertical fractures tend to
be longer.
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Figure 3 Simulated example: (a) 3D fractures, (b) Fracture
traces on the plane, (c) Representing point pattern

To quantify the spatial correlations between £ and
S, we use the cumulative spatial mark correlation
function introduced by Xu et al. (2007):

_ L gwt o e—1(f)
m(t)_K(t)fm 2 (j)u /12 (u)du

wherew, =v7* /I'(1+g/2) is the volume of

the unit ball in R®, K(t) is the second order K-
function, 4 is the point density, /12” is the second

order f-product density function for the point field
and f in this definition is the application-
dependent mark function. Based on this
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definition, Ky (f) =1 if there is no correlation
between marks at distance t.

For the example (Figure 3), Figure 4a shows the
spatial auto-mark correlation function for fracture
line length & and Figure 4b shows the spatial
auto-mark correlation for fracture orientation g.
The spatial cross-mark correlation function
between £and gis given in Figure 4c. The Monte
Carlo (MC) simulation envelope (average value
and 195% bounds) for the case of spatially
uncorrelated marks is also plotted on the graphs.
These three figures reveal some important spatial
characteristics between the marks in the
simulated example dataset; briefly:

4. Smaller values of Ieé(t) for small t

indicate that fractures (points) close to
each other tend to be shorter (smaller
mark &). In physical terms, aggregated
fractures tend to be shorter in length.
Although this feature is not apparent in
Figure 3b, it is widely observed in practice
that short fractures in rock tend to occur
in clusters as the result of local thermal
effects and long fractures caused by
geological movement (forces) tend to be
more isolated or sparsely distributed.

5. Smaller values of I%{;ﬁ(t) for small t

suggest that fractures (points) close to
each other tend to be horizontal and
shorter. In physical terms, aggregated
fractures in this particular dataset are
more horizontally oriented and longer
fractures tend to be more vertically
oriented and more sparsely distributed.

6. The flat appearance of ]%ﬂ (t) suggests

that, in terms of fracture orientation, there
is no preferential direction of the pattern
of fracture aggregation.

The aim of simulating a fracture set that
resembles Figure 3b now becomes two fold:

i). The point pattern of the simulated fractures
must resemble the point pattern in Figure
3c in such a way that the point intensity
field A(X) and the first and second moment
measures, such as the inter-event distance
function H(f) and the K-function K(t), are
honoured (Stoyan et al. 1995).

ii). The simulated fractures must follow the
mark distribution, the multivariate mark
correlation and their spatial auto- and
cross-mark correlations as described in 1 —
6 above.
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Figure 4 Corresponding cumulative mark correlation
functions K. (¢) vs distance { (a), [Qﬁ(t) vs t (b) and

I%w () vs t(c) for the simulated example (Figure 3). The

Monte Carlo (MC) simulation envelops shown are obtained
for spatially uncorrelated marked point process

Problem i) can be solved, for example, by fitting
an optimal non-parametric model (Xu et al.,
2003). The second problem, however, cannot be
easily resolved. Conditions 1 - 3 can be met by
using a joint probability density function of £and g
() for mark generation. We use simulated
annealing to incorporate the spatial auto- and
cross-correlation conditions (e.g., 4 - 6 above), as
proposed in Xu et al. (2007).

Figure 5a shows a point realisation of the marked
point process using a non-parametric model. This
realisation is generated by a Boolean object
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model and therefore initially the spatial auto- and
cross-mark correlations of & g and between &and
p are non-existent. The realisation is then refined
by simulated annealing and, after 1300 mark
swaps, the final spatial mark correlation functions
are given in Figure 6a and 6b, which indicate that
the spatial mark correlation functions are closely
reproduced at the end of the annealing process.
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Figure 5 Simulated annealing process for the example shown
in Figure 3 (a) One realisation from non-parametric model,
(b) One realisation of the simulated fractures after annealing,

The final image of the simulated fractures, shown
in Figure 5b, is not an exact replica of the original
data (Figure 3b), but resembles the original data
in the sense that the first and second moments of
the characteristics of the corresponding marked
point process (first and second order point
intensity  characteristics, mark distributions,
multivariate mark correlations and spatial mark
correlation functions) are reproduced.

Conclusions

Parameters of rock fractures (e.g., locations,
orientation, size, aperture) are in generally
spatially correlated. The correlations must be
incorporated into the fracture model for realistic
simulation of rock fracture system. The
correlations can be quantified by cumulative
spatial mark correlation function and the
correlations can be effectively incorporated in the
fracture model by simulation annealing.
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Figure 6 Simulated annealing process for the example shown
in Figure 3 (a) 1%5 () vs distance t, (b) Iegﬁ (t) vst, (e)
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