
Australian Geothermal Energy Conference 2009 

1 

Fracture Simulation for Deep Crystalline Rock 

Chaoshui Xu
1
 and Peter A. Dowd

2
*  

1
 School of Civil, Environmental and Mining Engineering, University of Adelaide 

2
 Faculty of Engineering, Computer and Mathematical Science, University of Adelaide 

* Corresponding author: Peter.Dowd@Adelaide.edu.au 

 
This paper describes the application of simulated 
annealing for fracture modelling in crystalline rock.  
The technique is capable of incorporating the 
spatial correlations of fracture properties within a 
fracture set or across different fracture sets so 
that more realistic fracture systems can be 
simulated. 
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Introduction 

Realistic fracture models are crucial for the design 
and performance assessment of geothermal 
reservoirs, especially in hot dry rock (HDR) 
applications.  The model is the fundamental input 
required for the modelling of fluid flow through the 
3D fracture network comprising initial fractures 
and new fractures created by hydraulic 
stimulation.  The characterisation of rock fracture 
networks is an extremely difficult problem not 
least because accurate field measurement of a 
single discontinuity is difficult and measurement of 
all discontinuities is impossible. For these 
reasons, in practical applications, there is no 
observable reality of the 3D network on any 
meaningful scale and the only realistic approach 
is via a stochastic model informed by sparse data 
and/or by analogues. 

The first step in stochastic fracture modelling is 
data collection and statistical analysis, from which 
model parameters are derived.  Data normally 
come from surveys of analogues, such as rock 
outcrops, or from direct or indirect observations of 
the rock mass such as drill cores, borehole 
imaging, geophysical surveys or seismic 
monitoring during fracture stimulation.  In general, 
the outcomes of this step include the identification 
of fracture sets, the distribution characteristics of 
fracture locations, and statistical distributions of 
fracture properties, such as orientation, size and 
aperture.  On the basis of these parameters it is 
then possible to generate a 3D fracture network 
for the reservoir, which is a possible “reality” in the 
sense that all statistical characteristics of the 
network are reproduced. 

The two most commonly used mathematical 
methods for stochastic fracture simulation are 
Poisson planes (Dershowitz and Einstein, 1988) 
and random object models (Stoyan et al., 1995, 
Molchanov, 1997), with the latter more popular 
because of its flexibility for adaption to a wide 
range of applications.  Current practice in random 
object models is to generate fractures via a 
Boolean-type approach (Stoyan et al. 1995, 

Molchanov 1997, Chilès and Delfiner 1999).  The 
fractures are divided into sets and parameters for 
location, size and orientation are modelled 
separately for each set.  The final fracture model 
is the combination of each set of fractures 
generated independently.  Spatial correlation is 
considered only for modelling the fracture 
intensity which defines the number of fractures in 
a particular area (2D) or volume (3D).  Other 
spatial correlations, either auto-correlation for an 
individual variable or cross-correlations between 
pairs of variables, within a fracture set or between 
different fracture sets, are generally ignored.  
These correlations, however, must be included to 
generate realistic fracture models. 

Boolean object model 

It is common practice to classify observed 
fractures (traces) into sets according to their 
orientations and to study each set independently.  
The separation of fractures into different sets is 
based on the belief that fractures formed by 
tectonic activity are likely to be oriented in 
approximately the same direction and to display 
similar properties (e.g., size, aperture).  It is 
therefore reasonable to study the sets individually.   

The generation of a Boolean object model is 
relatively straight-forward (Xu and Dowd, 2009). 
For a given fracture set, the fracture locations are 
generated first, usually by a Poisson distribution in 
which fracture intensity for a particular area (2D) 
or volume (3D) is either assumed to be constant 
or is derived from geostatistical estimation or 
simulation.  Secondly, the orientation of each 
fracture is generated, most commonly from a 
Fisher distribution.  Finally, the size of each 
fracture is generated from a specified distribution, 
the most common being exponential, lognormal or 
gamma.  Other fracture properties, such as 
aperture and joint strength, can then be added 
into the network by additional Monte Carlo steps.  
Options for fracture intersections and 
termination/truncation can also be incorporated.  
Additional fracture sets can be generated in a 
similar fashion (independent simulation) to 
produce the final fracture model.  

A common approach to the statistical analysis of 
fracture models is to use marked point processes.  
Fracture locations are represented by points 
(centre point or a random point on the fracture) in 
space and all fracture properties, such as 
orientation, size and aperture, are represented by 
marks associated with the points.  In this context 
a Boolean object model can be described as a 
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realisation of a point process with independent 
markings.  A two-dimensional example is given in 
Figure 1, which shows fracture traces on a Yucca 
Mountain outcrop, as mapped by Barton and 
Larson (1985).  Similarly, three-dimensional 
representations of fractures by marked points can 
also be constructed provided the shapes of the 
fractures are assumed. 

 

 (a) Fracture traces 

 (b) Point representation  

Figure 1 Two-dimensional fracture pattern and the 
corresponding point representation, Barton and Larson 
(1985) 

This simplistic fracture model assumes no spatial 
correlation among the fracture sets, and no spatial 
correlation between fracture properties and 
fracture locations and among fracture properties 
themselves.  The only spatial correlation model 
included in the model is the fracture point density 
defined as the number of fracture representation 
points per unit area (2D) or per unit volume (3D).  
This correlation is imposed either by using a 
geostatistical model to simulate the fracture point 
density or implicitly by various types of point 
patterns (homogeneous, non-homogeneous, 
cluster or Cox point process). 

 

Spatial correlations in fracture 
modelling 

In general, fractures sets tend to be correlated 
(Chilès and Marsily, 1993).  This is supported by 
the observation that different fracture sets may be 
formed by different tectonic events active at 

different times, which raises the possibility that the 
formation of newer fractures is likely to be 
influenced by existing fracture networks.  The 
extent and significance of the correlations can 
vary but can cover various aspects of the fracture 
properties.  For example, five fractures sets are 
identified for the fracture pattern in Figure 1a; the 
auto- and cross- K-functions of the fracture 
locations shown in Figure 2a and b (Xu and 
Dowd, 2008) show that the fracture locations of 
different fracture sets have some association and 
are not independent. Either a hierarchical model 
(Lee et al. 1990) or plurigaussian simulation 
(Dowd et al. 2007, Xu & Dowd 2008) can be used 
to incorporate these correlations into the fracture 
model.  A cluster point process is another type of 
model that can takes the correlation of fracture 
locations into account during fracture model 
construction.   

 

Figure 2 Auto- and cross- K-functions for the point dataset 
Figure 1b 

Fracture properties can also be correlated and the 
correlation can be among fractures in the same 
set or across different sets.  These correlations 
are ignored in the Boolean object model, i.e., 
marks generated in the model are spatially 
independent.  Practical observation and statistics 
(Priest 1993, Lee and Farmer 1993, Baghbanan 
and Jing 2007, Chilès and de Marsily, 1993) 
suggest high correlation between fracture size 
and aperture.  Sizes and locations of fractures are 
always spatially correlated, even if the fractures 
belong to the same fracture set.  The general 
practice of classifying fractures in sets and their 
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independent treatment is an indication that 
fracture properties are highly correlated with 
orientation.  For realistic fracture modelling these 
correlations cannot be ignored. 

Demonstration of the incorporation of 
correlations in fracture model  

Figure 3a shows a simulated 3D fracture system 
generated in a volume of interest of size 

100!100!100.  In reality, such an image is difficult 
to obtain and we are restricted to the use of 
exposed 2D images such as rock outcrops or 
quarry faces.  An example of this type of image is 
shown in Figure 3b, which was obtained by 
cutting Figure 3a by a north-south vertical cross-
sectional plane (shown), thus simulating an 
exposed quarry face.  The fracture trace lines on 
the image can now be analysed to construct a 
possible model to describe the pattern.  Using the 
mid-points of the trace lines, the corresponding 
point dataset for the fractures is shown in Figure 
3c.   

We consider here two marks for each point, the 

fracture trace length, ", and orientation #.   Angle 

# is measured clockwise from the vertical 
direction and it is, therefore, necessary to make 

the transform to $ = %# - &/2% (0' $ ' &/2) for the 
convenience of analysis.  After this 

transformation, small $ values correspond to near 
horizontal lines (parallel to Northing direction in 

Figure 3a) and large $ values suggest the lines 
are nearly vertical (parallel to vertical direction in 
the Figure 3a).   

The correlation coefficient between " and $ is 

estimated as 0.48 and the distributions of " and $ 
are estimated using a kernel density estimate 
which show lognormal and uniform types 
respectively.  We fit an approximate lognormal 
distribution with a mean of 0.8 and a variance of 

2.0 in logarithmic scale for ".  The positive 

correlation between $ and " indicates that the two 
marks are highly correlated, i.e., vertical fractures 
tend to be longer than horizontal ones.  In 
summary, for the example, 
 

1. " follows a lognormal distribution (with 
estimated mean of 0.8 and variance of 2.0 
in logarithmic scale). 

2. # and $ follow a uniform distribution on 

the interval [0, &]. 

3. " and $ are positively correlated with 
correlation coefficient 0.48, i.e., in 
physical terms vertical fractures tend to 
be longer. 
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Figure 3 Simulated example: (a) 3D fractures, (b) Fracture 
traces on the plane, (c) Representing point pattern 

To quantify the spatial correlations between " and 

$, we use the cumulative spatial mark correlation 
function introduced by Xu et al. (2007): 
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f+  is the second 

order f-product density function for the point field 
and f  in this definition is the application-
dependent mark function.  Based on this 
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definition, Km(t) !1 if there is no correlation 
between marks at distance t. 

For the example (Figure 3), Figure 4a shows the 
spatial auto-mark correlation function for fracture 

line length " and Figure 4b shows the spatial 

auto-mark correlation for fracture orientation #.  
The spatial cross-mark correlation function 

between " and # is given in Figure 4c.  The Monte 
Carlo (MC) simulation envelope (average value 

and $95% bounds) for the case of spatially 
uncorrelated marks is also plotted on the graphs.  
These three figures reveal some important spatial 
characteristics between the marks in the 
simulated example dataset; briefly: 

4. Smaller values of )(ˆ tK"  for small t 

indicate that fractures (points) close to 
each other tend to be shorter (smaller 

mark ").  In physical terms, aggregated 
fractures tend to be shorter in length.  
Although this feature is not apparent in 
Figure 3b, it is widely observed in practice 
that short fractures in rock tend to occur 
in clusters as the result of local thermal 
effects and long fractures caused by 
geological movement (forces) tend to be 
more isolated or sparsely distributed. 

5. Smaller values of )(ˆ tK"#  for small t 

suggest that fractures (points) close to 
each other tend to be horizontal and 
shorter.  In physical terms, aggregated 
fractures in this particular dataset are 
more horizontally oriented and longer 
fractures tend to be more vertically 
oriented and more sparsely distributed. 

6. The flat appearance of )(ˆ tK #  suggests 

that, in terms of fracture orientation, there 
is no preferential direction of the pattern 
of fracture aggregation. 

The aim of simulating a fracture set that 
resembles Figure 3b now becomes two fold: 

 
i). The point pattern of the simulated fractures 

must resemble the point pattern in Figure 
3c in such a way that the point intensity 

field %(X) and the first and second moment 
measures, such as the inter-event distance 
function H(t) and the K-function K(t), are 
honoured (Stoyan et al. 1995). 

ii). The simulated fractures must follow the 
mark distribution, the multivariate mark 
correlation and their spatial auto- and 
cross-mark correlations as described in 1 – 
6 above. 

 

MC simulation 

ˆ ( )K t"  

&10-2

(a)

Km(t)

 

MC simulation 

ˆ ( )K t#

&10-2

(b)

Km(t)

MC simulation 

ˆ ( )K t"#  

&10
-2

(c)

Km(t)

 

Figure 4 Corresponding cumulative mark correlation 

functions ˆ ( )K t"  vs distance t (a), ˆ ( )K t#  vs t (b) and 

ˆ ( )K t"#  vs t (c) for the simulated example (Figure 3).  The 

Monte Carlo (MC) simulation envelops shown are obtained 
for spatially uncorrelated marked point process 

Problem i) can be solved, for example, by fitting 
an optimal non-parametric model (Xu et al., 
2003).  The second problem, however, cannot be 
easily resolved.  Conditions 1 - 3 can be met by 

using a joint probability density function of " and # 

(') for mark generation. We use simulated 
annealing to incorporate the spatial auto- and 
cross-correlation conditions (e.g., 4 - 6 above), as 
proposed in Xu et al. (2007). 

Figure 5a shows a point realisation of the marked 
point process using a non-parametric model.  This 
realisation is generated by a Boolean object 
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model and therefore initially the spatial auto- and 

cross-mark correlations of !, " and between ! and 

" are non-existent.  The realisation is then refined 
by simulated annealing and, after 1300 mark 
swaps, the final spatial mark correlation functions 
are given in Figure 6a and 6b, which indicate that 
the spatial mark correlation functions are closely 
reproduced at the end of the annealing process. 

 

(a)

(b)

 

Figure 5 Simulated annealing process for the example shown 
in Figure 3 (a) One realisation from non-parametric model, 
(b) One realisation of the simulated fractures after annealing, 

The final image of the simulated fractures, shown 
in Figure 5b, is not an exact replica of the original 
data (Figure 3b), but resembles the original data 
in the sense that the first and second moments of 
the characteristics of the corresponding marked 
point process (first and second order point 
intensity characteristics, mark distributions, 
multivariate mark correlations and spatial mark 
correlation functions) are reproduced. 

Conclusions 

Parameters of rock fractures (e.g., locations, 
orientation, size, aperture) are in generally 
spatially correlated.  The correlations must be 
incorporated into the fracture model for realistic 
simulation of rock fracture system.  The 
correlations can be quantified by cumulative 
spatial mark correlation function and the 
correlations can be effectively incorporated in the 
fracture model by simulation annealing. 
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Figure 6 Simulated annealing process for the example shown 

in Figure 3 (a) ˆ ( )K t!  vs distance t, (b) ˆ ( )K t!"  vs t, (e) 
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