Record Details

Title Towards An Integrated Simulator For Enhanced Geothermal Reservoirs
Authors H. L. Xing, J. Gao, J. Zhang and Y. Liu
Year 2010
Conference World Geothermal Congress
Keywords Integrated reservoir simulation, High performance computing, Finite element method, Lattice Boltzmann method, Microseismicity, Permeability, Enhanced geothermal reservoirs
Abstract This paper introduces the current state in computer modelling of geothermal reservoir system and then focuses on our research efforts in high performance simulation of enhanced geothermal reservoir system. PANDAS - Parallel Adaptive static/dynamic Nonlinear Deformation Analysis System - a novel supercomputer simulation tool has been developing for simulating the highly non-linear coupled geomechanical-fluid flow-thermal systems involving heterogeneously fractured geomaterials at different spatial and temporal scales. It is applied to simulate and visualise the enhanced geothermal system (EGS), such as (1) visualisation of the microseismic events to monitor and determine where/how the underground rupture proceeds during a hydraulic stimulation, to generate the mesh using the recorded data for determining the domain of the ruptured zone and to evaluate the material parameters (i.e. the permeability) for the further numerical analysis; (2) converting the available fractured rock image/fracture data to lattice grid and further simulating the fluid flow in the complicated fractures involving the detailed description of fracture dimension and geometry by the Lattice Boltzmann method; (3) interacting fault system simulation to determine the relevant complicated dynamic rupture process; (4) multiphase coupled thermo-fluid flow analysis of a geothermal reservoir system. A few of benchmark and application examples are presented to show its accuracy, stability and usefulness in simulating the enhanced geothermal reservoir system.
Back to Results Download File